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Abstract. Formal specifications are mathematical descriptions of the desired 
system functionality. Since they are usually written separately from the software 
itself, it is important to ensure that the software implements what the specifi-
cation requires. A common approach to achieve this is to have a specification 
detailed enough to generate source code but those are rarely written due to 
expertise required. If code is not generated, then currently there is no straight-
forward way to reliably show that implementation conforms to initial formal 
specification. This research attempts to define a way to extract formal TLA+ spe-
cification by translating Elixir source code and generating detailed specification 
to give the system developer the ability to show that it refines the initial one.

Keywords: TLA+, Elixir, translation, specification refinement, distributed sys-
tems, message passing.

1 Introduction

Distributed systems are well known for their complexity [1]. As a result, 
many methods have been developed to prevent mistakes during their 
development, formal specifications being one of them. However, even 
having a formal specification is not a guarantee of a correct system – there is 
also a matter of ensuring that implementation conforms to the specification. 
Since manual analysis is slow and error-prone, several automated methods 
have been developed over the years to simplify the process, such as 
generating implementation code from a rather detailed specification (e.g. 
[2]). In this paper we attempt to go the other way – to develop a method 
to extract a detailed TLA+ specification from Elixir source code. We do that 
by defining the Elixir source code translation into TLA+ and generating the 
detailed specification. Later, refinement mapping could be shown between 
the generated specification and a more abstract one, thus demonstrating, 
that implementation has the same properties as the abstract specification. 
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This approach allows avoiding frequent manual changes to detailed 
specification as the code changes, which results in development process 
simplification and a decrease in developer expertise required.

We define translation for source code written in the Elixir programming 
language [3]. It is a language for BEAM virtual machine, which, due to its 
process model, makes it easy to develop a distributed system. Elixir also 
has extensive abstract syntax tree manipulation capabilities [4], which helps 
with source code analysis.

TLA+ [1] has been chosen as a target for our translation. It is a formal 
specification language, developed to address the challenges posed by 
specifications of distributed systems. It is a mathematical specifications 
language, which makes it programming language agnostic and allows 
specifying systems on a higher level than code.

There have been attempts to develop specification extraction in the past 
for Erlang programming language, which is another language for BEAM 
virtual machine, e.g. [5], which translates Erlang into µCRL specification 
language. We base our work on previous work done for Elixir and TLA+ – 
[6], which develops a way to translate and generate sequential code into 
PlusCal and from there into TLA+. In this paper, the focus is on extracting 
specification for interprocess communication – how messages are sent 
between the processes. We base our translation on GenServer module usage 
– it is an Elixir standard library module that simplifies the development of 
processes that receive messages and keep state [4]. This allows us to look at 
the system from a higher level and abstract details which are not important 
for message passing between processes.

In this paper term “translation” refers to the process of turning one 
language into another, in our case Elixir into TLA+. Term “generation” refers 
to the automated creation of detailed specification files which contain the 
translated source code.

2 Distributed systems model

We model a distributed system as a set of processes, which send messages 
to and receive from a global set of inflight messages. Each process is 
completely synchronous and independent from others. We consider the set 
of messages in flight unordered; messages can be delivered to processes 
in any order. We also assume that processes do not crash, they cannot be 
created nor destroyed.
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We base source code translation on GenServer Elixir module usage, 
i.e. we consider only implementations that use functions from this module 
to communicate between the processes. We consider such a decision 
justified since the GenServer module is a part of the standard library and is 
commonly used for such tasks.

3 Sequential code translation

Sequential code specification extraction is out of the scope of this 
investigation. However, we partially define it to the degree that is necessary 
to extract specification for message passing. Here we present a basic 
outline of our translation method, albeit incomplete. It is based on an idea 
developed in earlier work [6].

Since Elixir is a functional programming language, it is convenient to 
translate sequential code in units of functions. Therefore, each function 
is expected to be translated into a separate TLA+ module. In Elixir it is 
possible to give several definitions for the same function, which would be 
differentiated by passed arguments – during runtime, the first definition, 
where arguments match parameter types, is executed. In general, it would 
be more widely applicable to have such pattern matching done inside the 
function module, however, for our purposes, it was sufficient to treat such 
definitions as separate functions.

We treat Elixir functions as a series of expressions that are executed 
one after another. We expect sequential code specification to reflect this 
– generated specification should consist of a series of operators each of 
which is a translation of an expression in Elixir. These expressions should be 
deterministic, that is, given the current process state, they should produce 
the next process state. For example, given the following Elixir function:

def send(n) do 
  other_function(n + 1)

end

it could be translated as a set of TLA+ operators shown in Listing 1.

–

In this paper term “translation” ref
our case Elixir into TLA+. Term “generation” refers to the automated creation of detailed 

2 Distributed systems model 

3 Sequential code translation 

–

–

def send(n) do 
  other_function(n + 1) 
end 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  ≜
        𝑃𝑃! 𝑝𝑝𝑐𝑐𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, "other_function", ⟨𝑃𝑃! 𝑐𝑐𝑝𝑝𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 1) + 1⟩)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ≜
        𝑃𝑃! 𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑃𝑃! 𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙_𝑣𝑣𝑐𝑐𝑙𝑙𝑟𝑟𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝))

line1 line2

Listing 1. Example function expression translations.
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In the example above, function body, consisting of a single expression 
is translated as two separate expressions, line1 and line2. The first one 
represents the function call together with incrementing its parameter by 
one while the second one returns the result of the previous function call 
to the caller. As is evident by this example, not all Elixir expressions are 
represented as separate expressions in the translation (e.g. parameter 
increment), nor each operator in translated specification is explicitly 
reflected in the source code (e.g. function return).

We make use of our Process TLA+ module, which provides operators to 
access and control the process state. They allow to abstract away the details 
of common actions away from function modules, making them simpler to 
translate automatically. Like function expression operators, they are also 
completely deterministic. This module is included locally in each function 
module with INSTANCE TLA+ command, as shown in Listing 2. INSTANCE 
command applied as shown includes all the identifiers of the Process 
module under the namespace P, with Process module constant Processes 
replaced with Processes identifier from the current module [7].

P
Processes Processes

LOCAL 𝑃𝑃 ≜ INSTANCE 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 WITH 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

line_enabled line_action line_enabled

line_action

4 Specification generation for the entire program 

procState sysState
messageQueue messageQueue

procState

procState
sysState

sysState

handle_cast handle_call

def handle_cast({:client, num}, state) 
messageQueue

Listing 2. Process module inclusion in function modules.

Function expression operators are meant to be local to the function 
module. The rest of the generated specification uses line_enabled and line_
action operators. line_enabled operator is meant to check if some process is 
supposed to execute any expression in the current function module. Typically, 
it should delegate to the Process module operator of the same name. Similarly, 
the line_action operator is given the current process state and a line to execute 
on that process state and delegates to a correct expression in the module.

Elixir GenServer module function calls are not translated as regular 
function calls. Instead, we define TLA+ GenServer module, which operators 
serve as direct equivalents.

4	 Specification	generation	for	the	entire	program

The entire distributed system specification is generated from a template, 
gaps in which are filled in with source code parts translated into TLA+. 
This template defines a general execution model for the entire distributed 
system and handles message deliveries between the processes.
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The state of the entire system is split between three variables: procState, 
sysState, and messageQueue. The last of these, messageQueue, is a set of all 
messages which still have not been received while others store the state of 
the system itself as it is known for each process. procState contains mostly 
the values used in specification parts that describe the sequential code 
execution, e.g. function modules. For example, the value of the procState 
variable determines which function expression should be executed on any 
given process. Meanwhile, sysState contains values required for distributed 
system specification, e.g. what message is currently being processed. 
sysState contains part of the internal GenServer Elixir module functions 
state. Such separation increases the modularity of the whole method and 
simplifies the model-checking of any part of sequential code separately 
from the rest of the generated specification.

Communication between the processes is modelled by a combination 
of actions, some of which are generated from source code, while others 
are predefined. Message-receiving actions are generated from GenServer 
module callback functions handle_cast and handle_call headers. Listing 3 
shows how the following GenServer handler function header is translated:

def handle_cast({:client, num}, state)

The main purpose of the formula in Listing 3 is to match the message in 
the messageQueue and call the respective message handling function with 
the actual message and current process state as parameters. The actual 
functionality of the message handler function is to be specified by the 
function module, the same as for any other sequential code.

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 ≜
        ∃𝑚𝑚 ∈ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑡𝑡 ∈ 𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚
                 ∧ 𝑚𝑚. 𝑡𝑡𝑃𝑃 =  𝑡𝑡
                 ∧ 𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚[1] = "CLIENT"
                 ∧ 𝑃𝑃! 𝑤𝑤𝑎𝑎𝑤𝑤𝑡𝑡𝑤𝑤𝑎𝑎𝑚𝑚(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡])
                 ∧ 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ =  𝑚𝑚𝑝𝑝𝑎𝑎_𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑡𝑡,
                        𝑃𝑃! 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(
                                𝑃𝑃! 𝑡𝑡𝑃𝑃_𝑓𝑓𝑤𝑤𝑎𝑎𝑤𝑤𝑚𝑚ℎ𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡]),
                                ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑃𝑃𝑎𝑎𝑚𝑚𝑡𝑡! 𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎,
                                ⟨𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚,  𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡]. 𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎⟩ ))
                 ∧ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ = 𝑀𝑀! 𝑎𝑎𝑎𝑎𝑃𝑃𝑝𝑝(𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑚𝑚)
                 ∧ 𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑚𝑚𝑠𝑠𝑚𝑚_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑡𝑡, 𝑝𝑝! 𝑚𝑚𝑎𝑎𝑡𝑡_𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠_𝑡𝑡𝑃𝑃(𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡], 𝑚𝑚))
                 ∧ UNCHANGED 𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑎𝑎

handler_finished –

waiting_responses deliver_responses

function_lines

fn_line

∃𝑎𝑎 ∈ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎𝑚𝑚:
        LET
                𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 ≜ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑝𝑝], 𝑎𝑎)
                𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡 ≜ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑝𝑝], 𝑎𝑎)
        IN
                𝑓𝑓𝑎𝑎_𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎(𝑝𝑝, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)

𝑓𝑓𝑎𝑎_𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡) ≜
        LET
                𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚_𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎 ≜ 𝑃𝑃! 𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎(𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)
                𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 ≜ 𝑀𝑀! 𝑓𝑓𝑚𝑚𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡. 𝑚𝑚𝑎𝑎𝑎𝑎𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
        IN
                ∧ 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
                ∧ 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)
                ∧ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ = 𝑀𝑀! 𝑒𝑒𝑚𝑚𝑎𝑎𝑏𝑏_𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚)

 

Listing 3. Message receiving action example.
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Other actions related to message passing are there to ensure the system 
state is updated as expected after the received message is handled and to 
take care of synchronous communication. handler_finished action does both 
jobs simultaneously – it updates the system state after the handler finishes 
and sends out the response message, which may be returned by the handler 
function. The other two actions, waiting_responses and deliver_responses are 
there to correctly translate GenServer multicall function call which sends 
the same message to several recipients and waits for their responses. We 
do not provide definitions for these actions here due to space constraints; 
definitions can be found in the code repository1.

Sequential code execution is specified by function_lines action. It is defined 
as a disjunction of formulas of the structure shown in Listing 4. The entire 
disjunction is also existentially quantified to select any process, which allows 
to model-check different expression execution orderings for a group of pro-
cesses. fn_line operator is displayed in Listing 5. If some function expression can 
be executed, it updates the process state, sends out all produced messages 
and starts waiting for replies to the synchronous messages sent.

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 ≜
        ∃𝑚𝑚 ∈ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑡𝑡 ∈ 𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚
                 ∧ 𝑚𝑚. 𝑡𝑡𝑃𝑃 =  𝑡𝑡
                 ∧ 𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚[1] = "CLIENT"
                 ∧ 𝑃𝑃! 𝑤𝑤𝑎𝑎𝑤𝑤𝑡𝑡𝑤𝑤𝑎𝑎𝑚𝑚(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡])
                 ∧ 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ =  𝑚𝑚𝑝𝑝𝑎𝑎_𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑡𝑡,
                        𝑃𝑃! 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(
                                𝑃𝑃! 𝑡𝑡𝑃𝑃_𝑓𝑓𝑤𝑤𝑎𝑎𝑤𝑤𝑚𝑚ℎ𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡]),
                                ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑃𝑃𝑎𝑎𝑚𝑚𝑡𝑡! 𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎,
                                ⟨𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚,  𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡]. 𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎⟩ ))
                 ∧ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ = 𝑀𝑀! 𝑎𝑎𝑎𝑎𝑃𝑃𝑝𝑝(𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑚𝑚)
                 ∧ 𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑚𝑚𝑠𝑠𝑚𝑚_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑡𝑡, 𝑝𝑝! 𝑚𝑚𝑎𝑎𝑡𝑡_𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠_𝑡𝑡𝑃𝑃(𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡], 𝑚𝑚))
                 ∧ UNCHANGED 𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑎𝑎

handler_finished –

waiting_responses deliver_responses

function_lines

fn_line

∃𝑎𝑎 ∈ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎𝑚𝑚:
        LET
                𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 ≜ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑝𝑝], 𝑎𝑎)
                𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡 ≜ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑝𝑝], 𝑎𝑎)
        IN
                𝑓𝑓𝑎𝑎_𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎(𝑝𝑝, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)

𝑓𝑓𝑎𝑎_𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡) ≜
        LET
                𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚_𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎 ≜ 𝑃𝑃! 𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎(𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)
                𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 ≜ 𝑀𝑀! 𝑓𝑓𝑚𝑚𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡. 𝑚𝑚𝑎𝑎𝑎𝑎𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
        IN
                ∧ 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
                ∧ 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)
                ∧ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ = 𝑀𝑀! 𝑒𝑒𝑚𝑚𝑎𝑎𝑏𝑏_𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚)

 

Listing 4. Structure of function module expression execution block.

∃𝑙𝑙 ∈ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓! 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙:
        LET
                𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒 ≜ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓! 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙[𝑝𝑝], 𝑙𝑙)
                𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓 ≜ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓! 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙[𝑝𝑝], 𝑙𝑙)
        IN
                𝑓𝑓𝑓𝑓_𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙(𝑝𝑝, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓)

𝑓𝑓𝑓𝑓_𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓) ≜
        LET
                𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑙𝑙_𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑒𝑒 ≜ 𝑃𝑃! 𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑒𝑒(𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓)
                𝑓𝑓𝑓𝑓𝑏𝑏𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙_𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑙𝑙 ≜ 𝑀𝑀! 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙_𝑏𝑏𝑙𝑙𝑚𝑚𝑙𝑙(𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓. 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓_𝑏𝑏𝑙𝑙𝑚𝑚𝑙𝑙)
        IN
                ∧ 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒
                ∧ 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙′ = 𝑓𝑓𝑝𝑝𝑒𝑒_𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓_𝑙𝑙𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓)
                ∧ 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑚𝑚𝑓𝑓𝑙𝑙𝑓𝑓𝑙𝑙′ = 𝑀𝑀! 𝑒𝑒𝑓𝑓𝑙𝑙𝑏𝑏_𝑙𝑙𝑙𝑙𝑓𝑓𝑒𝑒(𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑚𝑚𝑓𝑓𝑙𝑙𝑓𝑓𝑙𝑙, 𝑓𝑓𝑓𝑓𝑏𝑏𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙_𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑙𝑙)
                ∧ 𝑓𝑓𝑙𝑙𝑛𝑛𝑓𝑓𝑀𝑀𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒′ = 𝑓𝑓𝑙𝑙𝑛𝑛𝑓𝑓𝑀𝑀𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 + 𝐶𝐶𝑒𝑒𝑝𝑝𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝐶𝐶(𝑓𝑓𝑓𝑓𝑏𝑏𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙_𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑙𝑙)
                ∧ IF 𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑙𝑙_𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑒𝑒 THEN
                        𝑙𝑙𝐶𝐶𝑙𝑙𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙′ = 𝑙𝑙𝑙𝑙𝑓𝑓_𝑤𝑤𝑒𝑒𝑓𝑓𝑓𝑓_𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑓𝑓𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑝𝑝(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙, 𝑓𝑓𝑓𝑓𝑏𝑏𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙_𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑙𝑙)
                    ELSE
                        UNCHANGED 𝑙𝑙𝐶𝐶𝑙𝑙𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙

fn_line

M S

–

–

5 Work in progress 

 

Listing 5. fn_line operator definition.

1 https://github.com/mr-frying-pan/master
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In all listings provided in this section, we use operators from modules 
referred to as M and S. These names stand for Messaging and System 
TLA+ modules, respectively. Similarly to the Process module described in 
Section 3 these modules provide operators for their respective areas  – 
message passing and system state modifications. They are included in the 
specification in the same way as the Process module – using INSTANCE 
command.

5 Work in progress

Experiment to verify the applicability of the developed method to a realistic 
algorithm is currently in progress. We have generated a specification for our 
implementation of Bracha reliable broadcast [8]. We attempt to show that 
the generated specification is a refinement of an abstract Bracha reliable 
broadcast specification. Abstract specification of Bracha reliable broadcast, 
our Elixir implementation and generated specification for it are available in 
the source code repository2.

Message-passing part of the specification was generated according 
to the proposed method. To perform model-checking, sequential code 
specification is also needed. Since sequential code generation is outside the 
scope of this investigation, it was written manually. Despite that, manually 
written function modules retain the required operators so that they can be 
used in generated specification with minimal changes to it.

We try to show the refinement with model-checking, by showing that 
abstract specification holds as a property when model-checking generated 
specification. So far, an initial refinement mapping has been defined; 
however, the correctness of the mapping is yet to be shown, and we 
continue tuning the refinement.

6 Conclusions

The developed translation method is modular, different modules 
encapsulate their respective areas well. If necessary, it is possible to prove 
properties for any module separately, for both predefined modules and 

2 Repository can be found in https://github.com/mr-frying-pan/master.
	 Abstract	specification	is	in	gen_spec/tla/BrachaRBC.tla.
	 Our	Elixir	implementation	is	in	bracha/lib/bracha.ex.
	 Main	generated	specification	file	is	gen_spec/tla/bracha.tla.
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sequential code modules. We attempt to limit the state explosion by having 
completely deterministic operators where it is possible to have them, 
making the number of states dependent on initial inputs. 

Future work in the area is needed to further limit state explosion since 
currently there are a lot of orderings sequential expressions could be 
executed in, in addition to the message delivery orderings.

Also, more work is needed to obtain a fully functional specification 
generator. Currently, we generate only overall specification, without the 
function modules while the bulk of functionality for some algorithm often 
would be implemented as sequential operations. The sequential code 
generator is currently being developed and will have to be incorporated 
into the existing one once it is finished.

Synchronous communication between processes also requires future 
work, especially the specification of timeouts. It is possible to add timeouts 
into our specification, but it would require handling process failures and 
errors.
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