This paper presents the dynamics of mosquitoes and humans with general nonlinear incidence rate and multiple distributed delays for the disease. The model is a SEIRS system of delay differential equations. The normalized dimensionless version is derived; analytical techniques are applied to find conditions for deterministic extinction and permanence of disease. The BRN R0* and ESPR E(e–(μvT1+μT2)) are computed. Conditions for deterministic extinction and permanence are expressed in terms of R0* and E(e–(μvT1+μT2)) and applied to a P. vivax malaria scenario. Numerical results are given.