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Abstract. In this paper, the finite-time control design problem for a class of nonlinear systems
with matched and mismatched uncertainty is addressed. The finite-time control scheme is designed
by integrating multi power reaching (MPR) law and finite-time disturbance observer (FTDO) into
integral sliding mode control, where a novel sliding surface is designed, and the FTDO is applied
to estimate the uncertainty. Then the fixed-time reachability of the MPR law is analyzed, and the
finite-time stability of the closed-loop system is proven in the framework of Lyapunov stability
theory. Finally, numerical simulation and the application to the flight control of hypersonic vehicle
(HSV) are provided to show the effectiveness of the designed controller.
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1 Introduction

It is necessary to take uncertainties into account when considering the system perfor-
mance, since system performance degradation and instability are caused by uncertainties.
Sliding mode control (SMC) [29] is probably the most popular approaches for dealing
with bounded uncertainties, and it can achieve the finite-time stabilization of the sliding
variable through switching control [19]. Besides, it has been regarded as one of the
effective robust control approaches owing to its many various advantages, which include
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its invariance to system uncertainties and external disturbances, i.e., the strong robustness
[7, 28]. And thereby, the research on SMC design of uncertain systems and application
to engineering systems [23–26] has attracted a lot of attention. The convergence of the
traditional linear sliding mode control (LSMC) is asymptotically stable. Compared with
LSMC, terminal sliding mode control (TSMC) converges fleetly in finite time [14], so it
had been widely proposed in the literature. However, the conventional TSMC has singu-
larity problem. To avoid this problem, the nonsingular TSMC (NTSMC) was proposed
in [8], but it is only suitable for the second-order and some special high-order systems.
A continuous NTSMC scheme [35] was designed for a system with the mismatched
uncertainty in which the mismatched uncertainty was handled by a FTDO, and the system
achieved stable in finite time. However, the sliding surface needs to be designed for
second-order and nth-order (n > 2) system, respectively. Then in [10], a continuous
NTSMC strategy was proposed, but it did not provide convergence analysis. Furthermore,
a controller, which combined super-twisting algorithm and TSMC, was proposed in [12].
Based on the finite-time convergence and robustness properties, the stability analysis
was only suitable for the first- or second-order system. A single exponential reaching
law-based SMC scheme [39] made the system stable in finite time, while the chattering
problem cannot be eliminated completely.

System uncertainty includes matched uncertainty that acts on the system via the input
channel, and mismatched uncertainty that contains perturbations in the system param-
eters. SMC is robust for matched uncertainty, but it is still a challenge to design SMC
scheme for systems with the mismatched uncertainty, since the uncertain system dynamics
are influenced even after reaching the sliding surface [17, 37]. For the importance of
tackling mismatched uncertainties in practical applications, many control approaches
have been proposed to address the problem of mismatched uncertainties [32, 33, 38]. The
combination of SMC with other methods that provide estimate of uncertainties enables
a reduction in the magnitude of the discontinuous component in control and thereby offers
the possibility of mitigating the chattering in control input [11]. Disturbance observer
(DO) technique is one such strategy that has been integrated with SMC for nonlinear sys-
tems with mismatched uncertainty [36]. The DO technique has been proved to be effective
in compensating the effects of unknown external disturbances and model uncertainties in
control systems [6]. Besides, DO-based control method can provide a feasible way in
improving robustness and handling the unknown disturbances or uncertainties of nonlin-
ear systems. As we know, although SMC behaves the characteristic of robustness, the
chattering problem is its main disadvantage. A lot of approaches are applied to eliminate
the chattering problem, such as high-order SMC, the replacement of sign function with
sigmoid function or saturated function, reaching law-based control [15,40]. The reaching
law-based control achieves the improvement of the dynamic performance for the reaching
phase and alleviates the chattering problem to some extent.

In this paper, the control design problem of a class of nonlinear systems with matched
and mismatched uncertainty is addressed by combining FTDO, MPR law and SMC. The
contribution can be concluded as follows.

The fixed-time reachability of the MPR law is firstly analyzed, and the upper bound
of the reachability time is obtained. Moreover, the MPR law is combined with FTDO
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technique to ensure the system state converges to zero in finite time even the system is
affected by the uncertainty.

In addition, the matched and mismatched uncertainty is tackled by the FTDO. Then
the sliding mode controller is designed based on the FTDO, the MPR law and the integral
sliding surface. It avoids the chattering problem caused by the sign function existed in
traditional SMC.

To proceed, the output tracking error is proven to converge to zero in finite time. At
the level of simulation, the fastest stability of the designed control strategy is testified
by comparing it with other two methods. Its effectiveness is further evaluated by the
application to altitude and velocity tracking control of HSV.

The outline of this paper is as follows. Section 2 introduces the problem formulation
and preliminaries, which are subsequently being used in controller design and stability
analysis. The FTDO-based SMC scheme and the stability analysis of the closed-loop
system are given in Section 3. Then in Section 4, the effectiveness of the proposed scheme
is evaluated by numerical simulations. Finally, conclusions are shown in Section 5.

2 System description and preliminaries

2.1 System description

Consider a class of nonlinear systems given by

ẋi = xi+1 + di(x, t), i = 1, 2, . . . , n− 1,

ẋn = f(x) + g(x)u+ dn(x, t),

y = x1,

(1)

where x1, x2, · · · , xn represent the system states, x = [x1, x2, . . . , xi]
T, u and y are

the control input and the output, respectively. f(x), g(x) are smooth functions and
g(x) 6= 0, di(x, t), i = 1, 2, . . . , n − 1, and dn(x, t) represent the mismatched and
matched disturbance, respectively. They may include external unmeasurable and/or state
dependent disturbances, uncertainties and nonlinearities.

Assumption 1. The output reference command and its time derivative are continuous and
bounded, i.e., x1d, ẋ1d are continuous and bounded.

Assumption 2. For the system disturbances di(x, t), i = 1, 2, . . . , n, there exist unknown
positive constants µi so that |di(x, t)| 6 µi, and di(x̄i, t) is (n− i+ 1)th differentiable.

The control objective is to propose the sliding mode control law which combining the
MPR law and FTDO such that the closed loop system achieves the stable tracking in finite
time.

2.2 Preliminaries

The lemmas and definitions, which will be used in Section 3, are given here.
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Lemma 1. (See [1].) Consider the following system:

ẋ = f(x), x ∈ R, f(0) = 0.

Suppose that there is a continuous function V (x) : U → R such that

(i) V (x) is positive definite.
(ii) There are real numbers c > 0, α ∈ (0, 1) and an open neighborhood U0 ∈ U of

the origin such that V̇ (x) + cV α(x) 6 0, x ∈ U0 \ {0}.

Then the origin is a finite-time stable equilibrium of system. If U = U0 = Rn, the origin
is a globally finite-time stable equilibrium of system.

Lemma 2. (See [2].) Consider the following system:

ẋi = xi+1, i = 1, 2, . . . , n− 1,

ẋn = u.

If the controller is designed as

u = −k1 sgnx1|x1|α1 − k2 sgnx2|x2|α2 − k3 sgnx3|x3|α3

− · · · − kn sgnxn|xn|αn ,

under the control input, the closed-loop system is globally finite-time stable, whereαi−1 =
αiαi+1/(2αi+1−αi), i = 2, 3, . . . n, αn = α, α ∈ (1− ε, 1), ε ∈ (0, 1), αn+1 = 1, and
k1, k2, . . . , kn ensure that sn + kns

n−1 + · · ·+ k1 = 0 is Hurwitz.

Definition 1. (See [18].) Consider the following system:

ẋ = f(x, t), x ∈ Rn, x(0) = x0, (2)

where f(x, t) ∈ Rn × R+ → Rn is a nonlinear function, which can be discontinuous.
Assume the origin is an equilibrium point of (2). The origin of (2) is said to be fixed-time
stable if it is globally finite-time stable and the settling time function T (x0) is bounded,
i.e., there is Tmax > 0 such that T (x0) 6 Tmax for all x0 ∈ Rn.

3 MPR law-based SMC design

In this section, the SMC scheme is designed for uncertain system based on FTDO and
the MPR law, where the FTDO is used to handling uncertainties, and the MPR law is
employed to alleviate the chattering problem of SMC.

3.1 Fixed-time reachability of the MPR law

We adopt the following MPR law [40]:

ṡ = −c1|s|β1 sgn s− c2|s|β2 sgn s− c3|s|β3 sgn s− c4s, (3)
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where ci > 0, i = 1, . . . , 4, β1 > 1, 0 < β2 < 1,

β3 =

{
max{β1, |s|}, |s| > 1,

min{β2, |s|} else.

There are three exponential terms in (3), which are used to adjust the convergence process
to make the system has a faster convergence speed obviously. The finite-time reachability
of the above reaching law is analyzed in [40]. In what follows, the further analysis is done
to show that it behaves fixed-time reachability.

As demonstrated in [40], for the continuous system without uncertainty, under the
MPR law (3), the sliding variable reaches the sliding surface s = 0 in finite time T0,
which satisfies

T0 6 T1 + T2 + T3 + T4

with

T1 =
1

(1− β1)c4

[
ln

(
β1−β1

1 +
c1
c4

sgn s0

)
− ln

(
s1−β1

0 +
c1
c4

sgn s0

)]
,

T2 =
1

(1− β1)c4

[
ln

(
1 +

c1 + c3
c4

sgn s0

)
− ln

(
β1−β1

1 +
c1 + c3
c4

sgn s0

)]
,

T3 =
1

(β2 − 1)c4

[
ln

(
β1−β2

2 +
c2
c4

sgn s0

)
− ln

(
1 +

c2
c4

sgn s0

)]
,

T4 =
1

(β2 − 1)c4

[
ln

(
1 +

c2 + c3
c4

sgn s0

)
− ln

(
β1−β2

2 +
c2 + c3
c4

sgn s0

)]
,

(4)

where s0 is the initial value of s.
To proceed, we will prove that the reaching phase of (3) is completed in fixed time,

i.e., the sliding variable s reaches the sliding surface s = 0 in fixed time.

Theorem 1. Under the MPR law (3), the reachability of the sliding variable s can be
ensured in a fixed time T , which satisfies T 6 T ′max = max{T ′1max, T

′
2max}, where

T ′1max =
1

(β1 − 1)c4
ln
c4β

1−β1

1 + c1 + c3

c4β
1−β1

1 + c1
+

1

(1− β2)c4
ln
β1−β2

2 c4 + c2 + c3
c4

,

T ′2max =
1

(β1 − 1)c4
ln
c4(−1)1−β1 − c1
c4β

1−β1

1 − c1
c4β

1−β1

1 − (c1 + c3)

c4 − (c1 + c3)

+
1

(1− β2)c4
ln

[
c4 − c2

β1−β2

2 c4 − c2
β1−β2

2 c4 − (c2 + c3)

c4 − (c2 + c3)

]
.

Proof. We carry out the analysis into two cases, one is s0 > 0, another is s0 < 0.
Case 1: s0 > 0. Without loss of generality, assume that s0 > β1, the reaching phase

of s can be completed through four phases as follows:

s0 −→ β1 −→ 1 −→ β2 −→ 0.

Nonlinear Anal. Model. Control, 25(2):163–182

https://doi.org/10.15388/namc.2020.25.16510


168 F. Wang et al.

(a) For the first two phases, s0 −→ β1 −→ 1, from (4), the reaching time T11 is

T11 = T1 + T2

=
1

(β1 − 1)c4
ln
s1−β1

0 + c1
c4

β1−β1

1 + c1
c4

+
1

(β1 − 1)c4
ln
β1−β1

1 + c1+c3
c4

1 + c1+c3
c4

.

The derivative of T11 with respect to s0 is

dT11
ds0

= −s
−β1

0

c4

β1−β1

1 + c1
c4

s1−β1

0 + c1
c4

,

since s0 > 0, β1 > 1, dT11/ds0 < 0, which induces that T11 is monotone decreasing
when s0 decreases to 1. Thus, T11 is governed by the following inequality:

T11 6 T11|s0=1 =
1

(β1 − 1)c4
ln

c4 + c1

c4β
1−β1

1 + c1

c4β
1−β1

1 + c1 + c3
c4 + c1 + c3

6
1

(β1 − 1)c4
ln
c4β

1−β1

1 + c1 + c3

c4β
1−β1

1 + c1
.

(b) For the last two phases, 1 −→ β2 −→ 0, from (4), the reaching time T12 is

T12 = T3 + T4 =
1

(β2 − 1)c4
ln
β1−β2

2 + c2
c4

1 + c2
c4

+
1

(β2 − 1)c4
ln

1 + c2+c3
c4

β1−β2

2 + c2+c3
c4

=
1

(1− β2)c4
ln

c4 + c2

β1−β2

2 c4 + c2

β1−β2

2 c4 + c2 + c3
c4 + c2 + c3

6
1

(1− β2)c4
ln
β1−β2

2 c4 + c2 + c3
c4 + c2 + c3

6
1

(1− β2)c4
ln
β1−β2

2 c4 + c2 + c3
c4

.

Based on above analysis, when s0 > 0, the sliding variable s will reach the sliding
surface s = 0 in the fixed time T ′1, which yields

T ′1 = T11 + T12 6 T ′1max

=
1

(β1 − 1)c4
ln
c4β

1−β1

1 + c1 + c3

c4β
1−β1

1 + c1
+

1

(1− β2)c4
ln
β1−β2

2 c4 + c2 + c3
c4

. (5)

Case 2: s0 < 0. We assume that s0 < −β1, and the reaching phase of sliding
variable s can be divided into following four phases:

s0 −→ −β1 −→ −1 −→ −β2 −→ 0.

(a) For the first two phases, s0 −→ −β1 −→ −1, the reaching time T21 is

T21 = T1 + T2

=
1

(β1 − 1)c4
ln
s1−β1

0 − c1
c4

β1−β1

1 − c1
c4

+
1

(β1 − 1)c4
ln
β1−β1

1 − c1+c3
c4

1− c1+c3
c4

, (6)
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and the derivative of T21 with respect to s0 is

dT21
ds0

= −s
−β1

0

c4

β1−β1

1 − c1
c4

s1−β1

0 − c1
c4

.

From equations (4) and (6) we have β1−β1

1 > c1/c4, s1−β1

0 > c1/c4, β1−β1

1 > s1−β1

0 ,
then s1−β1

0 > c1/c4 > 0, and s−β1

0 = s1−β1

0 /s0 < 0, β1 > 1, thereby, dT21/ds0 > 0.
Then we obtain that T21 is monotone increasing when s0 ∈ (−∞,−1], and it satisfies

T21 6 T21|s0=−1

=
1

(β1 − 1)c4
ln
c4(−1)1−β1 − c1
c4β

1−β1

1 − c1
c4β

1−β1

1 − (c1 + c3)

c4 − (c1 + c3)
.

(b) For the last two phases, the reaching process of sliding variable s is −1 −→
−β2 −→ 0, the reaching time T22 is

T22 = T3 + T4 =
1

(β2 − 1)c4
ln
β1−β2

2 − c2
c4

1− c2
c4

+
1

(β2 − 1)c4
ln

1− c2+c3
c4

β1−β2

2 − c2+c3
c4

=
1

(1− β2)c4
ln

1− c2
c4

β1−β2

2 − c2
c4

β1−β2

2 − c2+c3
c4

1− c2+c3
c4

6
1

(1− β2)c4
ln

c4 − c2
β1−β2

2 c4 − c2
β1−β2

2 c4 − (c2 + c3)

c4 − (c2 + c3)
.

As shown in above equation, when s0 < 0, swill reach the sliding surface s = 0 in a fixed
time T ′2, which is

T ′2 = T21 + T22

6 T ′2max =
1

(β1 − 1)c4
ln
c4(−1)1−β1 − c1
c4β

1−β1

1 − c1
c4β

1−β1

1 − (c1 + c3)

c4 − (c1 + c3)

+
1

(1− β2)c4
ln

c4 − c2
β1−β2

2 c4 − c2
β1−β2

2 c4 − (c2 + c3)

c4 − (c2 + c3)
. (7)

From above analysis, the sliding variable s reaches the sliding surface s = 0 in a fixed
time T , which satisfies T 6 T ′max = max{T ′1max, T

′
2max}. As shown in (5) and (7),

T ′max has no relationship with s0, so referred to [32], the sliding variable s can reach the
sliding surface s = 0 in the fixed time. The proof is completed.

Remark 1. Although in this paper, we adopt the MPR law proposed in [40], the difference
of this paper is as follows. In [40], authors had analyzed that the MPR law (3) can assure
the stability of the system without uncertainty in finite time, while in this paper, we further
analyze and obtain the fixed-time stability. Furthermore, in [40], when the system is
affected by uncertainty or disturbance, the MPR law (3) makes the system state converges
to a neighborhood around equilibrium point in finite time, while in this paper, we combine
the MPR law with FTDO technique to guarantee that the system state converges to zero
in finite time. The detail procedure will be shown in the following section.
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3.2 Control law design

In this section, we will incorporate the MPR law (3) and FTDO into SMC to design
controller for the uncertain system (1).

The tracking error of system (1) is defined as

e = x1 − x1d, (8)

where x1d is the reference command of x1.
From (8) and inspired by [35], a novel sliding surface is designed as

s = e[n−1] +

σ∫
0

n−1∑
i=0

li sgn e[i]
∣∣e[i]∣∣ωi dσ, (9)

where ωi−1 = ωiωi+1/(2ωi+1−ωi) (i = 2, . . . , n), ωn+1 = 1, ωn = ω0 ∈ (1−ε, 1), ε ∈
(0, 1), li > 0 (i = 0, 1, . . . , n−1), and the polynomial λn−1 + ln−1λ

n−2 + · · ·+ l1λ+ l0
is Hurwitz.

Remark 2. The difference of this paper from [35] is as follows. (a) The controller of this
paper is designed by integrating MPR law and FTDO into SMC, which guarantees the
finite-time stability of the system, and the tracking error converges to zero in finite time.
(b) Based on the applied MPR law, the fixed-time reachability of the sliding variable is
analyzed, and the finite-time stability of the system is achieved. The time derivative of (9)
along (1) is

ṡ = f(x) + g(x)u+

n∑
i=1

d
[n−i]
i − x[n]1d +

n−1∑
i=0

li sgn e[i]|e[i]|ωi (10)

In (10), the terms d[n−i]i represent the (n− i)th time derivative of the ith disturbance, and
d̂
[n−i]
i are their estimate, which are provide by the FTDO proposed in [5, 16, 20], and its

formulation is

x̂i = zi0, d̂i = zi1,
ˆ̇
di = zi2, . . . , d

[n−i]
i = zin−i+1,

żi0 = vi0 + fi(x, u),

vi0 = −ηi0L
1/(n−i+2)
i

∣∣zi0 − xi∣∣(n−i+1)/(n−i+2)
+ sgn

(
zi0 − xi

)
+ zi1,

żi1 = vi1,

vi1 = −ηi1L
1/(n−i+1)
i

∣∣zi1 − vi0∣∣(n−i)/(n−i+1)
sgn
(
zi1 − vi0

)
+ zi2,

. . .

vij = −ηijL
1/(n−i+2−j)
i

∣∣zij − vij−1∣∣(n−i+1−j)/(n−i+2−j)
sgn
(
zij − vij−1

)
+ zij+1,

. . .

żin−i+1 = vin−i+1,

vin−i+1 = −ηin−i+1Li sgn
(
zin−i+1 − vin−i

)

(11)
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with i = 1, 2, . . . , n and j = 0, 1, 2, . . . , n − i + 1, fi(x, u) = xi+1, i = 1, . . . , n − 1,
fn(x, u) = f(x) + g(x)u, and ηij > 0 is the observer coefficients to be designed, whose
design procedure can be referred to [16]. And the larger the parameters, the faster the
convergence and the higher sensitivity to input noises and the sampling step [16], and the
trade-off should be made when designing these coefficients.

Define the estimate errors ei0 = zi0 − xi, eij = zij − d
[j−1]
i , then the dynamic of the

estimate errors are governed by

ėi0 = −ηi0L
1/(n−i+2)
i

∣∣ei0∣∣(n−i+1)/(n−i+2)
sgn
(
ei0
)

+ ei1,

. . .

ėij = −ηijL
1/(n−i+2−j)
i

∣∣eij − ėij−1∣∣(n−i+1−j)/(n−i+2−j)

× sgn
(
eij − ėij−1

)
+ eij+1,

ėin−i+1 ∈ −ηin−i+1Li sgn
(
ein−i+1 − ėin−i

)
+ [−Li, Li].

(12)

Assume that the disturbance satisfies Assumption 2, then it follows from [5,16,20] that
the observer error system (12) is finite-time stable, i.e., there is a time constant Te = T0
satisfies that eij = 0 for t > Te.

Combining with the MPR law(3), the control input is designed as

u = −g−1(x)

[
f(x) +

n∑
i=1

d̂
[n−i]
i − x[n]1d +

n−1∑
i=0

li sgn e[i]|e[i]|ωi

+ c1|s|β1 sgn s+ c2|s|β2 sgn s+ c3|s|β3 sgn s+ c4s

]
. (13)

So substituting (13) into (10), (3) holds, and as the analysis mentioned in Section 3.1,
s reaches the sliding surface s = 0 in fixed time.

Remark 3. It is known that the sign function in traditional SMC induces the chattering
problem. Though (13) includes sign function, the term |sθi|kθi sign(sθi) (i = 1, 2, 3) is
a continuous function [2], which alleviates the chattering problem, and it also can be
clearly seen from the simulation results in Section 4.

Remark 4. There are many other robust control schemes to deal with uncertainty. The
main differences of DO-based control approach from other robust approaches can be
concluded as follows. At first, since the DO-based compensation is added to improve the
robustness and disturbance attenuation after the base line controller is developed, there
is no change to the base line controller. Secondly, DO-based control method is not a
worst case-based design while most of the existed robust control approaches are worst
case-based design, which has been criticized as being “over-conservative”, and promising
robustness is achieved with the price of degraded nominal performance. Besides, for DO-
based control approach, the nominal performance of the base line controller is recovered
in the absence of disturbances or uncertainties.
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3.3 Stability analysis

In this subsection, the stability analysis of the closed-loop system will be shown in the
framework of Lyapunov theory, and it is concluded as the following theorem.

Theorem 2. Consider the nonlinear system (1), under Assumptions 1, 2, with FTDO (11),
the sliding surface (9), and the designed sliding mode controller (13), the tracking error
e converges to zero in finite time.

Proof. Choose the Lyapunov function as

V =
1

2

n−1∑
i=0

(
e[i]
)2
. (14)

The time derivative of (14) yields

V̇ =

n−1∑
i=0

e[i]e[i+1] 6
e2

2
+

n−1∑
i=1

3(e[i])2

2
+

(e[n])2

2
. (15)

For the last term e[n] = [ṡ −
∑n−1
i=0 li sgn e[i]|e[i]|ωi ], from (10) and (13), e[n] =

−c1|s|β1+1 − c2|s|β2+1 − c3|s|β3+1 − c4s2 +
∑n
i=1 e

i
n−i −

∑n−1
i=0 li sgn e[i]|e[i]|ωi , so

(15) satisfies

V̇ 6
e2

2
+

n−1∑
i=1

3(e[i])2

2
+

5

2

(
c21|s|2β1 + c22|s|2β2 + c23|s|2β3 + c24|s|2

)
s2

+ 2

(
n∑
i=1

ein−i

)2

+ 2

(
n−1∑
i=0

li sgn e[i]
∣∣e[i]∣∣ωi)2

.

Since |e[i]|ωi < (1 + |e[i]|) and by invoking the Cauchy–Schwarz inequality [27]
(a1 + · · ·+ an)2 6 n(a21 + · · ·+ a2n), above inequality yields

V̇ 6
5

2

(
c21|s|2β1 + c22|s|2β2 + c23|s|2β3 + c24|s|2

)
s2 +

3

2

n−1∑
i=0

(
e[i]
)2

+
4

n− 1

n−1∑
i=0

l2i
(
e[i]
)2

+ 2

n∑
i=1

ein−i + 4

(
n−1∑
i=0

li

)2

. (16)

(a) If |s| > 1, |s| < |s0|, then (16) satisfies

V̇ 6
5

2

(
c21|s0|2β1 + c22|s0|2β2 + c23|s0|2β3 + c24|s0|2

)
s2

+

n−1∑
i=0

(
3

2
+

4

n− 1
l2i

)(
e[i]
)2

+
1

2

n∑
i=1

ein−i + 4

(
n−1∑
i=0

li

)2

. (17)
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(b) If |s| 6 1, then (16) can be rewritten as

V̇ 6
5

2

(
c21 + c22 + c23 + c24

)
s2

+

n−1∑
i=0

(
3

2
+

4

n− 1
l2i

)(
e[i]
)2

+
1

2

n∑
i=1

ein−i + 4

(
n−1∑
i=0

li

)2

. (18)

Based on (17) and (18), (16) can be expressed as

V̇ 6 K1s
2 +

(
3

2
+

4

n− 1
l2i

) n−1∑
i=0

(
e[i]
)2

+
5

2

n∑
i=1

ein−i + 4

(
n−1∑
i=0

li

)2

6 KV + C, (19)

where K = max{3 + 8l2i /(n − 1), K1}, i = 1, . . . , n, K1 = max{K2,K3}, C =∑n
i=1 e

i
n−i/2+4(

∑n−1
i=0 li)

2, K2 = 5(c21 +c22 +c23 +c24), K3 = 5(c21|s0|2β1 +c22|s0|2β2 +
c23|s0|2β3 + c24|s0|2).

As shown in (12), the estimate error ein−i will converge to zero in finite time. It implies
that in (19),C is bounded, then referred to [27], V and e[i], i = 1, 2, . . . , n, will not escape
to infinity time before the convergence of observer error dynamics.

According to Section 3.2, sliding variable s can reach the sliding surface s = 0 in
fixed time. Once the estimate error ein−i achieves stable in finite time, it follows from (8)
and (9) that the tracking error dynamics are governed by

e[i] = e[i+1], i = 0, . . . , n− 1,

e[n] = −
σ∫

0

n−1∑
i=0

li sgn e[i]
∣∣e[i]∣∣ωi dσ.

(20)

Then from Lemma 2, system (20) is finite-time stable, and the tracking error e can
converge to zero in finite time. The proof is completed.

Remark 5. Here we only consider the finite-time control of nonlinear systems with
uncertainty. For controller design of nonlinear systems, there are many other problems
should be considered, state and control constraints, unmeasure states, and so on. It is
very important to consider state and control constraints at the level of control design,
especially for the engineering systems, if they are not taken into account, the performance
of the system will be degraded, even become unstable. Barrier Lyapunov function, model
predictive control and optimal control are applied to solve the state and control constraints
[3,3,4,13,30]. A variant nonsmooth maximum principle was proposed for optimal control
problems with both pure state and mixed constraints in [4]. Moreover, in [3], a variant
nonsmooth maximum principle for state constrained problems was developed, where
the results were also sufficient conditions of optimality for the normal linear-convex
problems.
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4 Simulation

To evaluate the effectiveness of the designed control scheme, two examples are given
below. One is the second-order system, and another is the application to the tracking
control problem of HSV in cruise phase.

Example 1. The nonlinear uncertain system is considered as follows:

ẋ1 = x2 + d1(x, t),

ẋ2 = cosx2 + x2 + log
(
1 + x21

)
+ u+ d2(x, t),

y = x1

with the following mismatched and matched disturbances [16, 22]:

d1(x, t) =


x1 + sinx1, 0 6 t < 15, 25 6 t 6 35,

x1 + sinx1 + 2, 15 6 t < 25,

x1 + sinx1 + 0.5 sin t, t > 35,

d2(x, t) =


x31 + sinx2, 0 6 t < 15, 25 6 t 6 35,

x31 + sinx2 + 1, 15 6 t < 25,

x31 + sinx2 + 0.6 cos t, t > 35.

For the better demonstration of the designed MPR law-based control scheme, the
compared simulations with other two methods that are single power reaching (SPR) law-
based control scheme and double power reaching (DPR) law-based control scheme are
carried out. The SPR law and DPR law are as follows:

SPR: ṡ = −k1|s|ω1 sgn s− k4s;
DPR: ṡ = −k1|s|ω1 sgn s− k2|s|ω2 sgn s− k4s.

During the simulation, the controller parameters of three control methods are given
in Table 1. The parameters of sliding mode surface are α0 = 9/11, α1 = 27/53, α2 =
27/40, l0 = 8, l1 = 7, and the parameters of the observer are L1 = 10, L2 = 40,
η10 = 11, η11 = 13, η12 = η20 = 12, η21 = 23.

Table 1. Controller parameters of three
control strategies.

SPR DPR MPR
k1 = 6 k1 = 6 k1 = 6
ω1 = 1.8 ω1 = 1.8 ω1 = 1.8

k2 = 5 k2 = 5
ω2 = 0.06 ω2 = 0.06

k3 = 5
k4 = 8 k4 = 8 k4 = 8
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Remark 6. The parameters of the MPR law (3) are chosen to satisfy ci > 0, i = 1, . . . , 4,
β1 > 1, 0 < β2 < 1,

β3 =

{
max{β1, |s|}, |s| > 1,

min{β2, |s|} else.

Based on the reachability analysis of the sliding variable s, the larger the parameters c4,
β1 and the smaller the parameter β2, the faster the reachability of the sliding variable s.
Thus, the faster convergence of tracking error is obtained. Moreover, the parameters of
the sliding surface (9) are chosen to yield ωi−1 = ωiωi+1/(2ωi+1 − ωi) (i = 2, . . . , n),
ωn+1 = 1, ωn = ω0 ∈ (1 − ε, 1), ε ∈ (0, 1), li > 0 (i = 0, 1, . . . , n − 1), and the
polynomial λn−1+ln−1λ

n−2+· · ·+l1λ+l0 is Hurwitz. As shown in (20), the parameters
of the designed sliding surface (9) directly affect the convergence rate of the tracking error.
At last, the larger the parameters of the FTDO (11), the faster the convergence and the
higher estimation accuracy. They indirectly affect the convergence of the tracking error
as given in (19). Based on the simulation results, when designing above parameters, the
trade-off should be made to achieve the best control performance.

Simulation results are shown in Figs. 1–3. For the better demonstration of the simu-
lation results, the local time simulation results are also given.

As shown in Fig. 1, under the same controller parameters, the DPR law-based control
strategy and MPR law-based control strategy assures the stable tracking of output in the
presence of the matched and mismatched disturbances. The MPR law-based control strat-
egy achieves the stable tracking of x1 in about 1 second and the tracking error converges
to zero in finite time. Whereas, the stable time of DPR law-based control strategy is
in about 2.5 seconds. And the SPR law-based control strategy achieves the most poor
tracking performance. As can be seen from Fig. 2 that the control input is smooth and no
chattering occurs under three control schemes. Moreover, in the presence of uncertainty,
the sliding variable under MPR law reaches the sliding surface s = 0 in finite time and
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Figure 1. Time history of output tracking.

Nonlinear Anal. Model. Control, 25(2):163–182

https://doi.org/10.15388/namc.2020.25.16510


176 F. Wang et al.

0 5 10 15 20 25 30 35 40 45 50
−100

0

100

u

time(s)

 

 

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

s

 

 

time(s)

MPR DPR SPR

          
֓







time(s)

s

 

 

MPR DPR SPR

MPR DPR SPR

Figure 2. Time history of control input and the sliding state.
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Figure 3. Time history of the disturbance estimate.

keeps stable in equilibrium point and no chattering occurs. And other two laws only reach
the region around s = 0, the region of SPR law is larger than that of DPR law. It shows
that the reaching performance of the MPR is better than those of other two reaching laws.
It can be seen from Fig. 3 that the FTDO possess a good estimate performance under three
control schemes.

From above analysis, the following conclusion can be obtained.
(a) The designed control scheme achieves the stable tracking of output under uncer-

tainty in finite time, and it behaves good robustness via using FTDO. In addition, the
chattering problem coherent in traditional SMC is effectively avoided.

(b) Compared with other two control schemes (DPR law-based control scheme and
SPR law-based control scheme), the designed control scheme has the fastest convergence
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rate and the highest tracking accuracy under the same design parameters and simulation
conditions.

The simulation result verifies the theoretical results mentioned in previous section.

Example 2 [Application to HSV]. To further testify the effectiveness of the proposed
control strategy, the altitude and velocity tracking control problem of HSV in cruise phase
is shown as follows. The longitudinal dynamic equations of HSV are [34]

V̇ =
T cosα−D

m
− g sin γ, ḣ = V sin γ,

γ̇ =
L+ T sinα

mV
− g cos γ

V
, α̇ = q − γ̇,

q̇ =
Myy

Iyy
, η̈i = −2ξiωiη̇i − ω2

i ηi +Ni, i = 1, 2, 3,

(21)

where V , h, γ, α, q represents velocity, altitude, flight path angle (FPA), angle of attack
(AOA) and pitch rate. Besides, L, D, T , Myy, Ni (i = 1, 2, 3) are lift, drag, thrust,
pitching moment and the generalized forces, which are complex functions of states and
inputs. The approximations of the forces and moments and the coefficients are referred
to [21].

The control goal is to design the controller to assure that V and h track the given
reference signals Vref and href with aerodynamic uncertainty, where the flexible dynamics
are not taken into account directly at the level of control design, but are considered as
perturbations on the rigid body equations, and their effects are evaluated in the simulation.
By the same token in [9, 31, 41], the controller for altitude and velocity is developed
separately from the engineering backgrounds of HSV. Dynamic (21) can be transformed
into the following form:

V̇ = fV + gV φ+∆fV , (22)

ḣ = V sin γ, γ̇ = α+∆fγ ,

α̇ = q +∆fα, q̇ = fq + gqδe +∆fq.
(23)

In above equations, ∆fV , ∆fγ , ∆fα and ∆fq are unknown, and the detail for them
can be referred to [31], which can be estimated by the FTDO.

On the basis of the preceding section, the control inputs for (22) and (23) are as
follows:

uv = −g−1v

[
fv +∆f̂v − Vref +

3∑
i=1

kvi|sv|βvi sgn sv + kv4sv

]

uh = −g−1q

[
fq +∆f̂ [3]γ +∆f̂ [2]α +∆f̂ [1]q − h

[4]
ref + kh4sh

+

3∑
i=0

lhi sgn e
[i]
h

∣∣e[i]h ∣∣ωhi +

3∑
i=1

khi|sh|βhi sgn sh

]
,

Nonlinear Anal. Model. Control, 25(2):163–182

https://doi.org/10.15388/namc.2020.25.16510


178 F. Wang et al.

0 100 200 300 400 500
7800

7900

8000

8100

8200

time(s)

V
(f
t/
s)

 

 

0 100 200 300 400 500
8.5

8.55

8.6

8.65

8.7
x 10

4

time(s)

h
(f
t)

 

 

0 100 200 300 400 500

−5

0

5

10

time(s)

e v
(f
t/
s)

0 100 200 300 400 500

−10

0

10

20

time(s)

e h
(f
t)

Vref

V

href

h

0 50

−5

0

5

10

0 10 20 30

−10

0

10

20

Figure 4. Time response of velocity and altitude tracking.

where sv = ev = V − Vref and eh = h − href are the tracking errors of veloc-
ity and altitude, respectively. Besides, the sliding surface for altitude is sh = e

[3]
h +∫ σ

0
(
∑3
i=0 lhi sgn e

[i]
h |e

[i]
h |ωhi) dσ.

During the simulation, the flight mission is set as: the aircraft achieves a climbing
maneuver under the constant dynamic pressure q̄ = 2075.44 psf, where altitude reference
command href is produced to make the aircraft climbs 1800 ft. At the same time, the
velocity reference command Vref is computed by Vref = (2q̄ exp((href −h0)/hs)/ρ0)0.5.
Moreover, the reference commands are brought out via a second-order pre-filter where
a damping factor and a natural frequency are 0.95 and 0.03 rad/s, respectively. The fuel
level of aircraft is 50 percent and the uncertainty of aerodynamic parameter are set to
be +30 percent of the nominal case. Figures 4–6 describe the simulation results of the
designed control scheme.

As presented in Figs. 4–6, the designed controller achieves the stable tracking of
velocity and altitude with aerodynamic uncertainty. In detail, it can be observed from
Fig. 4 that the corresponding maximum absolute values of velocity and altitude tracking
errors are about less than 1 ft/s and 15 ft, respectively. And the designed control scheme
makes velocity and altitude tracking their reference commands in about 30 seconds and
15 seconds, respectively. It is clear from Fig. 5 that the control inputs are smooth, and
they are kept between 0.4 and 0.8, between −0.05 rad and 0.35 rad, respectively. And no
chattering problem occurs. As shown in Fig. 6, the designed control scheme effectively
handles the aerodynamics uncertainty of HSV, and the applied FTDO estimates the uncer-
tainty caused by aerodynamic parameters in high estimation accuracy and fast estimation
rate. (Here efV , efγ , efα , efq represent the estimate errors of ∆fV , ∆fγ , ∆fα, ∆fq ,
respectively.)
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Figure 5. Time response of control inputs.

Figure 6. Time response of FTDO estimation error.
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5 Conclusions

In this paper, combining MPR law and FTDO with SMC, the finite-time control scheme is
proposed for uncertain nonlinear systems. The designed MPR law-based DOSMC scheme
effectively avoids the chattering problem and achieves finite-time stability. Besides, the
fixed-time feature of the MPR law is firstly analyzed. To sequel, the effectiveness of the
developed control scheme is validated by a nonlinear system and the application of HSV
tracking control problem. In future, we will focus on the finite-time control or optimal
control of nonlinear systems with uncertainty, state and input constraints.
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