In this paper, the synchronization problem for a class of generalized neural networks with interval time-varying delays and reaction-diffusion terms is investigated under Dirichlet boundary conditions and Neumann boundary conditions, respectively. Based on Lyapunov stability theory, both delay-derivative-dependent and delay-range-dependent conditions are derived in terms of linear matrix inequalities (LMIs), whose solvability heavily depends on the information of reaction-diffusion terms. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. The obtained synchronization results are easy to check and improve upon the existing ones. In our results, the assumptions for the differentiability and monotonicity on the activation functions are removed. It is assumed that the state delay belongs to a given interval, which means that the lower bound of delay is not restricted to be zero. Finally, the feasibility and effectiveness of the proposed methods is shown by simulation examples.