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1 Introduction

NNs have garnered significant interest in recent decades owing to their extensive ap-
plications in associative memory, pattern recognition, signal processing, and so on [8,
18]. In such applications, keeping NNs steadily working is a basic requirement [28]. As
a result, researching issues related to stability of NNs is crucial [1, 6, 15]. As we know,
time delay will inherently exist due to the limitation of amplifier switching speed and
communication rate. The emergence of time delays may cause various problems such as
poor performance, oscillation, and instability [2]. Thus, many researchers are devoted to
the stability of NNs with time delay, and a large number of research results have been
published [1, 2, 6, 15, 28]. Numerous control strategies, including state feedback control
[29], impulsive control [19], intermittent control [22], and sampled-data control [11],
were further developed in the stability research for delayed NNs. Besides, the sampled-
data control, as another control strategies, are widely adopted due to its superb digital
controller implementation.

For stability problem of sampled-data control systems, the input delay method pro-
posed in [5] was extensively employed in [4, 9, 23], where there was only a typical time-
varying delay applied to the signal transfer, and then the classical Lyapunov approach
was utilized to determine the stability requirements for sampled-data control systems
by constructing Lyapunov functional. However, simple transforming cannot capture the
signal’s sawtooth structure and requires the functional to be positive definite throughout
the sampling interval, such a generated functional may result in excessive conservatism.

To reduce the conservativeness of stability criteria for sampled-data control systems,
a looped-functional approach was proposed in [12], which just requiring the created func-
tional to be positive definite at the sampling instants rather than during the entire sampling
interval. Subsequently, some meaningful works have been carried out by employing the
looped-functional approach [13, 26]. However, there is still room for improvement of
the looped-functionals used in [12, 13, 26] since this construction only uses information
in [tl−1, t] and does not use information in [t, tl+1]. To overcome this insufficient, an
improved looped-functional including the information in [tl−1, t] and [t, tl+1], called two-
sided looped-functional, was first structured in [25]. In recent years, some stability criteria
of NNs with sampled-data control have been established based on the two-sided looped-
functional method; see [14, 21, 24, 30] and references therein.

The NNs proposed in [14, 21, 24, 30] are real-valued NNs in which the neuron states,
activation functions, connection weights, and outputs are all real values. Although real-
valued NNs have gained many applications, they also have certain limitations. In actuality,
multidimensional data is commonly encountered, while neurons of real-valued NNs are
not perfect at handling all forms of input. It is widely known that the neurons of QVNNs
are quaternion values, which manipulate better than complex-valued NNs and real-valued
NNs in processing some high-dimensional data, like that color images and body images.
Because a quaternion has one real part and three imaginary parts, it can deal with mul-
tidimensional data better. For example, in three-dimensional space, the spatial rotation
could be described tersely and efficiently with the quaternion. The spatial rotation in
3D geometrical affine transformations – translation, image compression, and color night
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vision – can all be efficiently and compactly described by quaternion. Therefore, QVNN
have received widespread attention, and some stability criteria have been established;
see [3, 7, 10, 16, 17] and references therein. To the author’s knowledge, there are few
research conclusions on stability of QVNN via sampled-data control.

Motivated by the preceding points, this paper aims at the stability of QVNN with
sampled-data control by employing the two-sided looped-functional method. The follow-
ing is a summary of the contributions made to the paper:

(i) The two-sided looped-functional method is first employed to investigate the sta-
bility of QVNNs with sampled-data control.

(ii) The considered QVNNs model in this paper is not broken down into real-valued
models or complex-valued models.

(iii) The obtained criteria in this paper are in the form of LMIs, and the YALMIP
toolbox in Matlab can be applied to calculate it.

(iv) The obtained criteria are valid for both real-valued and complex-valued NNs.

Notations. Q, Qn, and Qn×m symbolize the skew field of quaternion numbers, n-di-
mensional, and n × m quaternion-valued vectors and matrices. Suppose A ∈ Qn×m,
A∗ represents its conjugate transpose, and A > 0 stands for A is positive definite matrix
with A∗ = A. Suppose z ∈ Qn, ‖z‖ denotes its norm.

2 Model description and preliminaries

The following QVNNs with discrete and neutral delays is considered:

ṗ(t) = −Dp(t) +Af
(
p(t)

)
+Bg

(
p(t− ς)

)
+ Cṗ(t− σ) + u(t), (1)

where p(t) ∈ Qn represents the state of neuron; ς > 0 and σ > 0 symbolize the discrete
and neutral delay; f(·), g(·) ∈ Qn are activation functions; D > 0 is a real diagonal
matrix; A,B,C ∈ Qn×n are the connection weight matrices; u(t) ∈ Qn is the control
input. The corresponding initial condition is

p(s) = φ(s), s ∈ [−ρ, 0], (2)

in which ρ = max{ς, σ}, and φ(s) ∈ Qn is continuous and bounded in [−ρ, 0].
For system (1) with initial value (2), the sampled-data controller is offered:

u(t) = Kp(tl), tl 6 t < tl+1, (3)

where l ∈ N+; K ∈ Qn×n is the state gain matrix, tl are the sampling instants, where
0 = t0 < t1 < · · · < tl < · · · , and liml→∞ tl = +∞.

By substituting (3) into (1), there is

ṗ(t) = −Dp(t) +Af
(
p(t)

)
+Bg

(
p(t− ς)

)
+ Cṗ(t− σ) +Kp(tl) (4)

for tl 6 t < tl+1.
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To examine the stability of model (4), the subsequent two presumptions must be met:

(H1) For any a, b ∈ Q, if fi and gi (i = 1, 2, . . . , n) satisfy fi(0) = 0 and gi(0) = 0,
there are scalars Fi > 0 and Gi > 0 such that∣∣fi(a)− fi(b)∣∣ 6 Fi|a− b|, ∣∣gi(a)− gi(b)∣∣ 6 Gi|a− b|,
where F = diag{F1,F2, . . . ,Fn} and G = diag{G1,G2, . . . ,Gn}.

(H2) The variable sampling periods hl = tl+1 − tl satisfy

hm 6 hl 6 hM ,

where hm and hM are two known positive constants.

The following lemmas are crucial to obtain the stability conclusion of model (4).

Lemma 1. (See [3].) If 0 < A ∈ Qn×n, the constant ε > 0 always exists for all t > 0
and ω(s) ∈ Qn such that( t∫

t−ε

ω(s) ds

)∗
A

( t∫
t−ε

ω(s) ds

)
6 h

t∫
t−ε

ω∗(s)Aω(s) ds.

Lemma 2. Suppose X ∈ Qn×n exists for given 0 < A,B ∈ Qn×n such that[
A X
X∗ B

]
> 0. (5)

Then

1

n(t)
$∗A$ +

1

1− n(t)
η∗Bη >

[
$
η

]∗ [
A X
X∗ B

] [
$
η

]
,

where $, η ∈ Qn are arbitrary two vectors, n(t) ∈ (0, 1) is an arbitrary function for
t > 0.

Proof. For arbitrary two vectors $, η ∈ Qn and a function n(t) ∈ (0, 1) with t > 0, we
have from (5) that

0 6

√ 1−n(t)
n(t) $

−
√

n(t)
1−n(t)η

∗ [A X
X∗ B

]√ 1−n(t)
n(t) $

−
√

n(t)
1−n(t)η


=

1− n(t)
n(t)

$∗A$ −$∗Xη − η∗X∗$ +
n(t)

1− n(t)
η∗Bη.

That is,
1

n(t)
$∗A$ +

1

1− n(t)
η∗Bη >

[
$
η

]∗ [
A X
X∗ B

] [
$
η

]
.

The proof is finished.
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3 Main results

Theorem 1. Suppose there exist five positive definite matrices P1, P2, P3, P4, P5, two
positive diagonal matricesR1,R2, and fifteen matricesM,S,Q,Xij ,Lij ,Zij , N ∈ Qn×n
(i, j = 1, 2,Z21 = Z∗12) such that [

P4 S
S∗ P5

]
> 0, (6)

Ω + hmΓ < 0, Ω + hmΠ < 0,

Ω + hMΓ < 0, Ω + hMΠ < 0,
(7)

where
Ω = (Ωij)8×8, Γ = (Γij)8×8, Π = (Πij)8×8

in which

Ω11 = P2 − P4 + S + S∗ − P5 − L11 − L∗11 − L12 − L∗12

+ L21 + L∗21 + L22 + L∗22 + FR1F ,
Ω14 = P1 −M −M∗ −DQ∗,
Ω17 = P4 − S∗ − X∗11 − X∗12 + L11 + L∗11 + L∗12 − L21 −DQ∗,
Ω18 = −S + P5 − X∗21 − X∗22 + L12 − L∗21 − L22 − L∗22,

Ω22 = −R1, Ω24 = A∗Q∗, Ω27 = A∗Q∗,

Ω33 = −R2, Ω34 = B∗Q∗, Ω37 = B∗Q∗,

Ω44 = P3 −Q−Q∗, Ω46 = QC, Ω47 =M∗ +N −Q∗,
Ω48 =M, Ω55 = −P2 + GR2G, Ω66 = −P3,

Ω67 = C∗Q∗, Ω77 = −P4 + X11 + X∗11 − L11 − L∗11 +N +N∗,

Ω78 = S + X12 + X∗21 − L12 + L∗21,

Ω88 = −P5 + X22 + X∗22 + L22 + L∗22,

Γ14 = L11 + L∗11 − L21 − L∗21, Γ44 = hMP4,

Γ47 = X∗11 − L11 − L∗11 + L21, Γ48 = X∗21 + L∗21,

Γ77 = Z11, Γ78 = Z12, Γ88 = Z22;

Π14 = −L12 − L∗12 + L22 + L∗22, Π44 = hMP5,

Π47 = −X∗12 + L∗12, Π48 = −X∗22 + L12 − L22 − L∗22,

Π77 = −Z11, Π78 = −Z12, Π88 = −Z22.

Then model (4) is globally stable under assumptions (H1) and (H2), and the gain matrix
of (3) is

K = Q−1N. (8)

Proof. Let

X =

[
X11 X12

X21 X22

]
, L =

[
L11 L12

L21 L22

]
, Z =

[
Z11 Z12

Z∗12 Z22

]
,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Stabilization of chaotic quaternion-valued neutral-type neural networks 1155

$1 =
[
pT(tl), p

T(tl+1)
]T
,

$2(t) =
[
pT(t)− pT(tl), p

T(tl+1)− pT(t)
]T
,

$3(t) =
[
(tl+1 − t)

(
pT(t)− pT(tl)

)
, (t− tl)

(
pT(tl+1)− pT(t)

)]T
.

Let
W (t) = V (t) + v(t),

where

V (t) = p∗(t)P1p(t) +

t∫
t−ς

p(s)P2p(s) ds+

t∫
t−σ

ṗ∗(s)P3ṗ(s) ds, (9)

v(t) = hl(tl+1 − t)
t∫

tl

ṗ∗(s)P4ṗ(s) ds− hl(t− tl)
tl+1∫
t

ṗ∗(s)P5ṗ(s) ds

+
(
p(t)− p(tl)

)∗
M
(
p(tl+1)− p(t)

)
+
(
p(tl+1)− p(t)

)∗
M∗
(
p(t)− p(tl)

)
+$∗1X$3(t) +$∗3(t)X

∗$1 +$∗2(t)L$3(t) +$∗3(t)L
∗$2(t)

+ (tl+1 − t)(t− tl)$∗1Z$1.

Note that V (t) is a Lyapunov functional, and v(t) is a looped functional since v(tl) =
v(tl+1) = 0. By doing the straightforward computation for the derivative of W (t)
along (4), one obtains that

V̇ (t) = ṗ∗(t)P1p(t) + p∗(t)P1ṗ(t) + p∗(t)P2p(t)− p∗(t− ς)P2p(t− ς)
+ ṗ∗(t)P3ṗ(t)− ṗ∗(t− σ)P3ṗ(t− σ), (10)

v̇(t) = −hl

t∫
tl

ṗ∗(s)P4ṗ(s) ds+ hl(tl+1 − t)ṗ∗(t)P4ṗ(t)− hl

tl+1∫
t

ṗ∗(s)P5ṗ(s) ds

+ hl(t− tl)ṗ∗(t)P5ṗ(t) + ṗ∗(t)M
[
p(tl+1)− p(t)

]
−
[
p(t)− p(tl)

]∗
M ṗ(t)

− ṗ∗(t)M∗
[
p(t)− p(tl)

]
+
[
p(tl+1)− p(t)

]∗
M∗ṗ(t) +$∗1X$̇3(t)

+ $̇∗3(t)X
∗$1 + $̇∗2(t)L$3(t) + $̇∗3(t)L

∗$2(t) +$∗2(t)L$̇3(t)

+$∗3(t)L
∗$̇2(t) + (tl+1 − t)$∗1Z$1 − (t− tl)$∗1Z$1

6 −hl

t∫
tl

ṗ∗(s)P4ṗ(s) ds+ hM (tl+1 − t)ṗ∗(t)P4ṗ(t)− hl

tl+1∫
t

ṗ∗(s)P5ṗ(s) ds

+ hM (t− tl)ṗ∗(t)P5ṗ(t) + ṗ∗(t)M
[
p(tl+1)− p(t)

]
−
[
p(t)− p(tl)

]∗
M ṗ(t)

− ṗ∗(t)M∗
[
p(t)− p(tl)

]
+
[
p(tl+1)− p(t)

]∗
M∗ṗ(t) +$∗1X$̇3(t)

+ $̇∗3(t)X
∗$1 + $̇∗2(t)L$3(t) + $̇∗3(t)L

∗$2(t) +$∗2(t)L$̇3(t)

+$∗3(t)L
∗$̇2(t) + (tl+1 − t)$∗1Z$1 − (t− tl)$∗1Z$1. (11)
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Using condition (6), Lemmas 1 and 2 result in

−hl

t∫
tl

ṗ∗(s)P4ṗ(s) ds− hl

tl+1∫
t

ṗ∗(s)P5ṗ(s) ds

6 − hl
t− tl

(
p(t)− p(tl)

)∗
P4

(
p(t)− p(tl)

)
− hl
tl+1 − t

(
p(tl+1)− p(t)

)∗
P5(p(tl+1)− p(t))

6 −
[

p(t)− p(tl)
p(tl+1)− p(t)

]∗ [
P4 S
S∗ P5

] [
p(t)− p(tl)

p(tl+1)− p(t)

]
= p∗(t)(−P4 + S + S∗ − P5)p(t) + p∗(t)(P4 − S∗)p(tl) + p∗(t)(−S + P5)p(tl+1)

+ p∗(tl)(P4 − S)p(t)− p∗(tl)P4p(tl) + p∗(tl)Sp(tl+1)

+ p∗(tl+1)(−S∗ + P5)p(t) + p∗(tl+1)S
∗p(tl)− p∗(tl+1)P5p(tl+1). (12)

It is easy to compute that

$∗1X$̇3(t) + $̇∗3(t)X
∗$1

= −p∗(t)(X∗11 + X∗12)p(tl)− p∗(t)(X∗21 + X∗22)p(tl+1)

− p∗(tl)(X11 + X12)p(t) + p∗(tl)(X11 + X∗11)p(tl) + p∗(tl)(X12 + X∗21)p(tl+1)

− p∗(tl+1)(X21 + X22)p(t) + p∗(tl+1)(X21 + X∗12)p(tl)

+ p∗(tl+1)(X22 + X∗22)p(tl+1)

+ (tl+1 − t)
[
p∗(tl)X11ṗ(t)

+ p∗(tl+1)X21ṗ(t) + ṗ∗(t)X∗11p(tl) + ṗ∗(t)X∗21p(tl+1)
]

− (t− tl)
[
p∗(tl)X12ṗ(t) + ṗ∗(t)X∗12p(tl) + p∗(tl+1)X22ṗ(t)

+ ṗ∗(t)X∗22p(tl+1)
]
, (13)

$̇∗2(t)L$3(t) +$∗3(t)L
∗$̇2(t)

= (tl+1 − t)
[
ṗ∗(t)(L11 − L21)p(t) + ṗ∗(t)(−L11 + L21)p(tl)

+ p∗(t)(L∗11 − L∗21)ṗ(t) + p∗(tl)(−L∗11 + L∗21)ṗ(t)
]

+ (t− tl)
[
ṗ∗(t)(L12 − L22)p(tl+1) + ṗ∗(t)(−L12 + L22)p(t)

+ p∗(tl+1)(L
∗
12 − L∗22)ṗ(t) + p∗(t)(−L∗12 + L∗22)ṗ(t)

]
, (14)

$∗2(t)L$̇3(t) + $̇∗3(t)L
∗$2(t)

= p∗(t)(−L11 + L21 − L12 + L22 − L∗11 + L∗21 − L∗12 + L∗22)p(t)

+ p∗(t)(L11 − L21 + L∗11 + L∗12)p(tl) + p∗(t)(L12 − L22 − L∗21 − L∗22)p(tl+1)

+ p∗(tl)(L11 + L12 + L∗11 − L∗21)p
∗(t) + p∗(tl)(−L11 − L∗11)p(tl)

+ p∗(tl)(−L12 + L∗21)p(tl+1) + p∗(tl+1)(−L21 − L22 + L∗12 − L∗22)p(t)

+ p∗(tl+1)(L21 − L∗12)p(tl) + p∗(tl+1)(L22 + L∗22)p(tl+1)
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+ (tl+1 − t)
[
p∗(t)(L11 − L21)ṗ(t)− p∗(tl)L11ṗ(t) + p∗(tl+1)L21ṗ(t)

+ ṗ∗(t)(L∗11 − L∗21)p(t)− ṗ∗(t)L∗11p(tl) + ṗ∗(t)L∗21p(tl+1)
]

+ (t− tl)
[
p∗(t)(−L12 + L22)ṗ(t) + p∗(tl)L12ṗ(t)− p∗(tl+1)L22ṗ(t)

+ ṗ∗(t)(−L∗12 + L∗22)p(t) + ṗ∗(t)L∗12p(tl)− ṗ∗(t)L∗22p(tl+1)
]
, (15)

(tl+1 − t)$∗1Z$1 − (t− tl)$∗1Z$1

= (tl+1 − t)
[
p∗(tl)Z11p(tl) + p∗(tl)Z12p(tl+1)

+ p∗(tl+1)Z
∗
12p(tl) + p∗(tl+1)Z22p(tl+1)

]
− (t− tl)

[
p∗(tl)Z11p(tl) + p∗(tl)Z12p(tl+1)

+ p∗(tl+1)Z
∗
12p(tl) + p∗(tl+1)Z22p(tl+1)

]
. (16)

Employing assumption (H1) results in

0 6 p∗(t)FR1Fp(t)− f∗
(
p(t)

)
R1f

(
p(t)

)
, (17)

0 6 p∗(t− ς)GR2Gp(t− ς)− g∗
(
p(t− ς)

)
R2g

(
p(t− ς)

)
. (18)

Moreover, (4) indicates

0 =
[
ṗ(t) + p(tl)

]∗
Q
[
−ṗ(t)−Dp(t) +Af

(
p(t)

)
+Bg

(
p(t− ς)

)
+ Cṗ(t− σ) +Kp(tl)

]
+
[
−ṗ(t)−Dp(t) +Af

(
p(t)

)
+Bg

(
p(t− ς)

)
+ Cṗ(t− σ) +Kp(tl)

]∗
×Q∗

[
ṗ(t) + p(tl)

]
. (19)

Let

ϑ(t) =
[
p∗(t), f∗

(
p(t)

)
, g∗

(
p(t− ς)

)
, ṗ∗(t), p∗(t− ς), ṗ∗(t− σ), p∗(tl), p∗(tl+1)

]∗
.

From (10)–(19) and noting (8), we can get that

Ẇ (t) 6 ϑ∗(t)
[
Ω + (tl+1 − t)Γ + (t− tl)Π

]
ϑ(t)

= ϑ∗(t)

[
tl+1 − t
hl

(Ω + hlΓ ) +
t− tl
hl

(Ω + hlΠ)

]
ϑ(t).

Let ρ ∈ [0, 1], then hl ∈ [hm, hM ] can be rewritten as hl = ρhm + (1− ρ)hM . Thus

Ẇ (t) 6 ϑ∗(t)

{
tl+1 − t
hl

[
ρ(Ω + hmΓ ) + (1− ρ)(Ω + hMΓ )

]
+
t− tl
hl

[
ρ(Ω + hmΠ) + (1− ρ)(Ω + hMΠ)

]}
ϑ(t). (20)

By using condition (7), we have from (20) that

Ẇ (t) 6 0, t > 0,

Nonlinear Anal. Model. Control, 29(6):1150–1166, 2024
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which implies that model (4) is globally stable, and the gain matrix of (3) is

K = Q−1N.

The proof is finished.

Remark 1. When neutral delay is not considered, model (1) degenerates into the follow-
ing model:

ṗ(t) = −Dp(t) +Af
(
p(t)

)
+Bg

(
p(t− ς)

)
+ u(t), t > 0. (21)

At this time, the controller is

u(t) = Kp(tl), tl 6 t < tl+1, w ∈ N+. (22)

From Theorem 1 we have the following result by taking P3 = 0 in (9) and C = 0
in (19).

Corollary 1. Suppose there exist four positive matrices P1, P2, P4, P5, two diagonal
positive matrices R1, R2, and fifteen matrices M,S,Q,Xij ,Lij ,Zij , N ∈ Qn×n (i, j =
1, 2, Z21 = Z∗12) such that [

P4 S
S∗ P5

]
> 0,

Ω + hmΓ < 0, Ω + hmΠ < 0,

Ω + hMΓ < 0, Ω + hMΠ < 0,

where
Ω = (Ωij)7×7, Γ = (Γij)7×7, Π = (Πij)7×7

in which

Ω11 = P2 − P4 + S + S∗ − P5 − L11 − L∗11 − L12 − L∗12 + L21

+ L∗21 + L22 + L∗22 + FR1F ,
Ω14 = P1 −M −M∗ −DQ∗,
Ω17 = P4 − S∗ − X∗11 − X∗12 + L11 + L∗11 + L∗12 − L21 −DQ∗,
Ω18 = −S + P5 − X∗21 − X∗22 + L12 − L∗21 − L22 − L∗22,

Ω22 = −R1, Ω24 = A∗Q∗, Ω27 = A∗Q∗, Ω33 = −R2,

Ω34 = B∗Q∗, Ω37 = B∗Q∗, Ω44 = −Q−Q∗,
Ω47 =M∗ +N −Q∗, Ω48 =M, Ω55 = −P2 + GR2G,
Ω77 = −P4 + X11 + X∗11 − L11 − L∗11 +N +N∗,

Ω78 = S + X12 + X∗21 − L12 + L∗21,

Ω88 = −P5 + X22 + X∗22 + L22 + L∗22,

Γ14 = L11 + L∗11 − L21 − L∗21, Γ44 = hMP4,
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Γ47 = X∗11 − L11 − L∗11 + L21, Γ48 = X∗21 + L∗21,

Γ77 = Z11, Γ78 = Z12, Γ88 = Z22;

Π14 = −L12 − L∗12 + L22 + L∗22, Π44 = hMP5,

Π47 = −X∗12 + L∗12, Π48 = −X∗22 + L12 − L22 − L∗22,

Π77 = −Z11, Π78 = −Z12, Π88 = −Z22.

Then model (21) is globally stable under assumptions (H1) and (H2), and the gain matrix
of (22) is

K = Q−1N.

Remark 2. The two-sided looped-functional method is first employed in this paper to
investigate the stability of QVNNs with sampled-data control. It should be pointed out
that the positivity of the constructed energy function W (t) = V (t) + v(t) is not required
in this paper. The positivity of Lyapunov functional V (t) and the conditions v(tl) =
v(tl+1) = 0 are only required.

Remark 3. The obtained criteria in this paper are in the form of LMIs, and the YALMIP
toolbox in Matlab can be applied to calculate it. The numbers of decision variables in
Theorem 1 and Corollary 1 are 17.5n2 + 4.5n and 17n2 + 4n, respectively.

Remark 4. It needs to be emphasized the acquired criteria holds for both real-valued and
complex-valued NNs.

4 Example

For model (21), we take into account the following parameters:

D =

[
0.035 0
0 0.042

]
,

A =

[
0.295+0.0141i+0.055j+0.0098k 0.0072+0.001i−0.0095j+0.0048k
0.0086+0.001i+0.005j+0.0039k 0.395+0.0097i+0.017j+0.026k

]
,

B =

[
−0.808+0.0058i+0.0012j+0.0021k 0.026+0.003i+0.0054j−0.0038k
−0.037+0.022i+0.0035j+0.0189k −0.817+0.016i−0.0146j+0.0084k

]
,

ς = 2,
f1
(
p(t)

)
= f2

(
p(t)

)
= 0.2 tanh

(
p(t)

)
,

g1
(
p(t)

)
= g2

(
p(t)

)
= 0.6 tanh

(
p(t)

)
.

When u(t) = 0, the state trajectories of model (21) with initial conditions

p1(s) = 1.24 + 0.26i− 0.35j − 0.4k

and
p2(s) = −2.37− 0.24i+ 0.88j + 0.39k,

s ∈ [−2, 0], are shown in Fig. 1, which are stable.
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Figure 1. The state trajectories of model (21) when u(t) = 0.

For model (1), based on the parameters of model (21), we add the following param-
eters:

σ = 2,

C =

[
−0.2055+0.006i+0.0032j+0.001k 0.0079−0.0014i+0.0031j+0.001k
0.0096+0.0005i+0.0093j+0.001k −0.2598+0.005i+0.0076j+0.001k

]
.

When u(t) = 0, the state trajectories of model (1) with initial conditions

p1(s) = 1.24 + 0.26i− 0.35j − 0.4k

and
p2(s) = −2.37− 0.24i+ 0.88j + 0.39k,

s ∈ [−2, 0], are shown in Fig. 2, which are chaotic. This means that neutral delay has
a significant impact on the stability of quaternion-valued neural networks.

We consider the sampling instants as

tl =
l2

1 + l
, l ∈ N+,

and the controller is

u(t) = Kp(tl), tl 6 t < tl+1, l ∈ N+.
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Figure 2. The state trajectories of model (1) when u(t) = 0.

Obviously, assumptions (H1) and (H2) are satisfied with

F =

[
0.2 0
0 0.2

]
, G =

[
0.6 0
0 0.6

]
and hm = 0.5, hM = 1. The feasible solutions of (6)–(7) are shown as follows:

P1 =

[
178.3 1.163−2.722i+1.561j−1.719k

1.163+2.722i−1.561j+1.719k 124.3

]
,

P2 =

[
145.4 0.8455−0.6711i−0.0044j−0.0192k

0.8455+0.6711i+0.0044j+0.0192k 107.4

]
,

P3 =

[
55.58 −1.26−0.9598i+1.732j−1.078k

−1.26+0.9598i−1.732j+1.078k 47.43

]
,

P4 =

[
183.7 5.635−5.36i+0.9132j−1.33k

5.635+5.36i−0.9132j+1.33k 81.11

]
,

P5 =

[
106.3 5.972−5.056i+0.3751j−0.4483k

5.972+5.056i−0.3751j+0.4483k 20.21

]
,

R1 =

[
343.6748 0

0 386.1514

]
, R2 =

[
368.8447 0

0 294.7742

]
,

M =

[
93.86−0.0427i+0.2664j−0.1082k 1.63−1.907i+0.8891j−0.9145k
1.313+2.209i−0.8698j+0.2246k 55.24+0.056i+0.1063j+0.0305k

]
,
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S =

[
25.61+0.0276i+0.0881j−0.089k 3.889−3.823i+0.9876j−0.1352k
4.054+3.758i−0.5478j−0.001k −28.95−0.0151i+0.0363j+0.0052k

]
,

Q =

[
299.8 −0.7233−2.442i+2.495j−4.814k

−0.7233+2.442i−2.495j+4.814k 239.4

]
,

X11 =

[
110.9+0.0229i−0.2893j+0.1034k 3.605−3.216i−0.0875j−1.359k
3.523+3.414i−0.1112j+2.334k 38.57−0.0271i−0.1129j+0.0096k

]
,

X12 =

[
41.64−0.0447i−0.0351j+0.0966k −3.318+3.014i−0.4697j−0.4561k
−3.507−2.321i−0.0048j+0.2166k 81.69+0.0459i+0.0092j+0.0037k

]
,

X21 =

[
45.87+0.0092i+0.251j−0.0582k −2.598+2.144i−0.2568j−3.93k
−2.217−2.574i+0.5551j+2.741k 77.5−0.0089i+0.1319j+0.011k

]
,

X22 =

[
−70.81−0.0274i−0.1262j+0.0166k 2.958−2.17i+0.4945j+3.873k
2.667+1.862i−0.4787j−3.444k −98.93+0.0095i−0.049j−0.0002k

]
,

L11 =

[
−2.813+0.002i−0.1908j−0.0026k −0.7884+0.0047i−0.1033j−0.0007k
−0.7806+0.013i−0.2684j+0.0008k −4.364+0.0023i+0.527j+0.0029k

]
,

L12 =

[
13.26+0.0087i−0.0741j−0.0378k −0.4019+0.9477i−0.7015j−0.7193k
−0.1955−0.4023i+0.608j+1.543k 25.56−0.0068i−0.0612j+0.0231k

]
,

L21 =

[
15.41−0.0026i−0.1336j+0.1255k −1.521+0.7683i−0.1487j−1.361k
−1.825−0.4614i+0.0001j+1.143k 20.62+0.0108i+0.0058j+0.0136k

]
,

L22 =

[
1.279−0.0041i−0.6159j+0.0087k 0.544+0.0027i−0.7223j+0.0042k
0.8657+0.0008i+0.3925j+0.0004k 4.727+0.0003i−0.8124j+0.0009k

]
,

Z11 =

[
120.6 0.595−0.6618i−0.06153j−1.983k

0.595+0.6618i+0.06153j+1.983k 91.91

]
,

Z12 =

[
−44.64+0.0292i+0.0503j−0.0035k −0.1612+0.1288i−0.0167j+0.4577k
0.0083−0.3308i+0.1581j−0.6561k −35.59−0.0238i+0.0194j−0.015k

]
,

Z22 =

[
8.218 0.5521−0.41i+0.00589j−0.00493k

0.5521+0.41i−0.00589j+0.00493k 1.053

]
,

N =

[
−233.6−0.0174i+0.1317j−0.1239k −0.0163+1.054i−0.5862j+4.923k
−0.0707−1.038i+0.6608j−4.669k −187.6+0.0033i−0.0163j−0.0247k

]
.

According to Theorem 1, this model is globally stable, and the gain matrix is

K =

[
−0.7791+0.0001i+0.0005j−0.0005k −0.0019−0.0029i+0.0046j+0.0038k
−0.0027+0.0036i−0.0054j−0.0038k −0.7836+0.0002i+0.00002j−0.0001k

]
.

The state trajectories of model (1) with the initial conditions

p1(s) = 1.24 + 0.26i− 0.35j − 0.4k

and
p2(s) = −2.37− 0.24i+ 0.88j + 0.39k,

s ∈ [−2, 0], are shown in Fig. 3, which is stable.
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Figure 3. The state trajectories of model (1) when u(t) = Kp(tl).

5 Conclusions

The stability of QVNTNNs has been investigated by designing sampled-data controller.
Based on the two-sided functional method, a main stability criterion of the considered
NNs has been derived in the form of LMI. A numerical example was provided to demon-
strate the effectiveness of the obtained result. It should be noted that the obtained results
in this paper are valid for real-valued NNs and complex-valued NNs.

We would like to point out that it is possible to generalize our main results to more
complex systems, such as quaternion-valued neural networks with time-varying delays
[10], stochastic quaternion-valued neural networks [27], and coupled quaternion-valued
neural networks [20]. The corresponding results will be carried out in the near future.
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