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Abstract. In the autonomous Duffing–Holmes oscillator, the existence of periodic orbits was
detected numerically. Using the Hopf bifurcation theory, we prove analytically that such periodic
orbits exist. We also provide the exact bifurcation value where the Hopf bifurcation takes place.
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1 Introduction and statement of the results

A classical nonlinear differential system with chaotic dynamics is the Duffing–Holmes
nonautonomous oscillator

ẍ+ bẋ− x+ x3 = a sinωt.

This oscillator has been studied intensively; see [1, 2, 4–15]. In article [11], the authors
considered the following autonomous version of Duffing–Holmes oscillator:

ẋ = y,

ẏ = x+ ay − bz − x3, a, b,∈ R,
ż = c(y − z), c ∈ R.

(1)

They constructed a specific electrical circuit to imitate solutions of oscillator (1) and
obtained the simulation and experimental results and the corresponding electronic device.
The irregular behavior of time series of the differential system (1) can lead to chaos.
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In the reference [9], the authors provided the analysis of the differential system (1) around
the specific values of parameters a = 19/10, b = 5/2, and c ∈ (2.5, 3.85) ⊂ R. In this
case, system (1) has exactly three equilibrium points at (−1, 0, 0), (0, 0, 0), and (1, 0, 0).
They examined the characteristics of these points under the change of the variable c from
2.55 to 3.85 and got some numerical results as follows. When c ∈ (2.55, 3.55], all three
equilibrium points are nonattractive, and there are periodic orbits around the two side
equilibrium points (−1, 0, 0) and (1, 0, 0).

In this paper, using the Hopf bifurcation theory, we provide a proof for the existence of
isolated periodic orbits (also called limit cycles) around the equilibrium points (±1, 0, 0)
found numerically. Namely, we have the following main result.

Theorem 1. Assume that a = 19/10, b = 5/2, and c ∈ (2.5, 3.85). At the equilib-
rium point O1 = (1, 0, 0), the differential system (1) has a Hopf bifurcation at c0 =
(
√
26049 + 57)/60 ≈ 3.64. More precisely, on the center manifold of the equilibrium

point O1, the following statements hold:

(i) O1 is a stable strong focus without any small limit cycle around O1 for c > c0.
(ii) O1 is a stable weak focus of order 1 for c = c0.

(iii) O1 is an unstable strong focus with a small limit cycle around O1 for c < c0.

Note that the differential system (1) is invariant under the change

(x, y, z) 7→ (−x,−y,−z),

so the conclusion of Theorem 1 is also valid for the equilibrium point O−1 = (−1, 0, 0).

2 Preliminary results

To detect the Hopf bifurcation, the key point is to calculate the first Lyapunov coefficient.
There are several methods to complete the computation. In this paper, we employ the
method of the book [3] that we describe in what follows.

Consider a differential system in Rn or Cn with an equilibrium at x = 0

ẋ = F (x),

F (x) =
(
Fi(x)

)T
= Ax+

1

2
B(x,x) +

1

6
C(x,x,x) +O

(
‖x‖4

)
,

whereA is the Jacobian matrix, andB(x,y) = (Bi(x,y))
T,C(x,y, z) = (Ci(x,y, z))

T

are multilinear functions, x = (x1, . . . , xn)
T, y = (y1, . . . , yn)

T, z = (z1, . . . , zn)
T. In

coordinates, we have

Bi(x,y) =

n∑
j,k=1

∂2Fi(u)

∂uj∂uk

∣∣∣∣
u=0

xjyk,

Ci(x,y, z) =

n∑
j,k,l=1

∂3Fi(u)

∂uj∂uk∂ul

∣∣∣∣
u=0

xjykzl, i = 1, 2, . . . , n,

(2)

where u = (u1, . . . , un)
T.
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Assume that A has the unique pair of complex eigenvalues λ1 = ω0i and λ2 = −ω0i,
ω0 > 0, with zero real parts. Let q = (qi)

T be a unit complex eigenvector corresponding
to λ1, and let p be the adjoint eigenvector, i.e.,

Aq = λ1q, qTq = 1,

ATp = λ2p, qTp = 1.

Then the first Lyapunov coefficient l1(0) can be obtained by formula (5.34) of the book
[3], i.e.,

l1(0) =
1

2ω0
Re
(
pTC(q,q,q)− 2pTB

(
q, A−1B(q,q)

))
+

1

2ω0
Re
(
pTB

(
q, (2ω0iI −A)−1B(q,q)

))
,

where Re(·) represents the real part of a complex number.
For n = 3, consider the following differential system depending on one parameter α:

ẋ = F (x, α), x ∈ R3, α ∈ R, (3)

with an equilibrium point x0 = 0, whose eigenvalues are a pair of conjugate complex
number λ1,2 = u(α) ± v(α)i and one negative number λ3 such that u(0) = 0 and
v(0) = ω0 > 0.

If u(α) and the first Lyapunov coefficient l1(α) satisfy that the derivative u′(0) 6= 0
and l1(0) 6= 0, then there exists a smooth invariant manifold (called center manifold)
depending on α for small |α|. On the center manifold, the stability of the equilibrium
changes when α changes passing through 0, which leads to the appearance or disappear-
ance of the limit cycles. In fact, the differential system (3) is topologically equivalent to
the following system:

ẋ = βx− y + σx
(
x2 + y2

)
,

ẏ = x+ βy + σy
(
x2 + y2

)
,

ż = −z,
(4)

where β = u(α)/v(α) and σ = sign(l1(0)) = ±1. In the invariant plane z = 0, the
differential system (4) undergoes a supercritical (resp. subcritical) Hopf bifurcation when
σ = −1 (resp. σ = 1). For supercritical Hopf bifurcation, the equilibrium point is a stable
strong focus when β < 0, a stable weak focus when β = 0, and an unstable focus when
β > 0, respectively. It is not difficult to see that there is a small limit cycle x2 + y2 = β
when β > 0 is sufficiently small, which tends to the equilibrium point as β decreases
monotonically to 0 and disappears as β < 0. Note that a small limit cycle is invariant
under the topological equivalence, so the differential system (3) also has a limit cycle
when β > 0, which disappears as β decreases through 0.

The similar arguments show that when subcritical Hopf bifurcation takes place, the
limit cycle occurs for β < 0 and disappears as β increases through 0. For more details on
Hopf bifurcation, one can read Chapters 3 and 5 of the book [3].
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3 Proof of Theorem 1

For the differential system (1), we perform a translation (x, y, z) 7→ (x − 1, y, z) trans-
forming the differential system (1) to the following system

ẋ = y,

ẏ = −2x+ ay − bz − 3x2 − x3,
ż = c(y − z)

(5)

and the equilibrium point O1 = (1, 0, 0) to the origin. For the differential system (5),
denoting by x = (x, y, z)T, we have

A =

 0 1 0
−2 a −b
0 c −c


and

B(x,x) =
(
0,−6x2, 0

)T
,

C(x,x,x) =
(
0,−6x3, 0

)T
.

When a = 19/10 and b = 5/2, the characteristic polynomial of A is

P (λ) = λ3 −
(
19

10
− c
)
λ2 +

(
2 +

3

5
c

)
λ+ 2c.

Assume that P (λ) has a pair of nonreal eigenvalues λ1,2 = α ± ωi 6= 0, where ω 6= 0
can be regarded as a function in α. Then α = 0 if and only if P (±ωi) = 0, which is
equivalent to the following equalities:

2c+

(
19

10
− c
)
ω2 = 0,

(
2 +

3

5
c

)
− ω2 = 0.

Thus we obtain
30c2 − 57c− 190 = 0. (6)

That is, only when the positive number c takes the positive root

c0 =

√
26049 + 57

60
∈ (2.5, 3.85)

of Eq. (6), P (λ) has a pair of imaginary eigenvalues λ1,2 = ±ω0i and one real eigenvalue
λ3 = (−

√
26049 + 57)/60 < 0, where ω0 =

√√
26049 + 257/10.

One can get the unit complex eigenvector q corresponding to λ1, i.e.,

q =



√
19(1200+i(57

√√
26049+257−

√
26049(

√
26049+257)))

5
√

961−
√
26049(

√
26049+57)

4
√
19(57+

√
26049+6i

√√
26049+257)√

961−
√
26049(

√
26049+57)

4
√
19√

961−
√
26049
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and the corresponding adjoint eigenvector

p =



√
961−

√
26049(

√
26049+57)(1200−i(57

√√
26049+257−

√
26049(

√
26049+257)))

960(−1129
√
19+19

√
1371(3+i

√√
26049+257))

−
√

961−
√
26049(

√
26049+57)(57+

√
26049−6i

√√
26049+257)

96(−1129
√
19+19

√
1371(3+i

√√
26049+257))

25
√

961−
√
26049(

√
26049+57)

16(−1129
√
19+19

√
1371(3+i

√√
26049+257))

 .

So we have the following equations by formulae (2):

C(q,q,q) =
(
0,−6q21q1, 0

)T
,

B(q,q) =
(
0,−6q21 , 0

)T
,

B(q,q) = (0,−6q1q1, 0)T,

B
(
q, A−1B(q,q)

)
=
(
0,−6q21q1A−112 , 0

)T
,

B
(
q, (2ω0iI −A)−1B(q,q)

)
=
(
0,−6q21q1(2ω0iI −A)−112 , 0

)T
,

where q1 is the first component of q, A−112 = −1/2 is the element at the first row and the
second column in A−1,

(2ω0iI −A)−112

=
25(−12

√√
26049 + 257 + i(

√
26049 + 57))

3(771
√√

26049 + 257 + 3
√

26049(
√
26049 + 257)− 50i(

√
26049 + 57))

is the element at the first row and the second column in (2ω0iI − A)−1, and I is the
identity matrix of order 3.

Finally, we obtain the first Lyapunov coefficient for α = 0 as follows:

l1(0) = −
1

2ω0
Re
(
6p2q

2
1q1
(
2 + (2ω0iI −A)−112

))
= −

√
961−

√
26049(

√
26049 + 57)2

383794
√
26049 + 67795058

≈ −0.0103959,

where p2 is the second component of p. In addition, the derivative of α = Re(λ1,2) with
respect to c at c = c0 is equal to

(−8617329501
√
2
√
19+54580536746)

√
1371+168911609193

√
2−54483320262

√
19

(24309705600
√
2
√
19−154613493438)

√
1371+51422299200

√
2−11733728814

√
19

≈ −0.36 < 0.

Thus the real part of nonreal eigenvalues λ1,2 is positive for c<c0 and negative for c>c0.
This means that a supercritical Hopf bifurcation takes place for parameter α = Re(λ1,2)
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when α = 0 at the equilibrium point O1 = (1, 0, 0). More precisely, on the center
manifold, the equilibrium point O1 is a stable strong focus without any period orbits
around O1 for c > c0 and is an unstable strong focus for c < c0 with a small limit cycle
around O1. While for c = c0, it is a stable weak focus of order 1. The proof is finished.

The same Hopf bifurcation also takes place at the equilibrium pointO−1 = (−1, 0, 0)
under the symmetry (x, y, z)→ (−x,−y,−z). So there is also a limit cycle around O−1
when c < c0. That is, the two limit cycles around O±1 = (±1, 0, 0) respectively appear
simultaneously as c < c0 and disappear simultaneously as c > c0.

4 Conclusions

In this paper, we prove the numerical results of [9] by applying the theory of Hopf bifurca-
tion, which provide the existence of two period orbits surrounding the equilibrium points
(±1, 0, 0) respectively when c < 3.55. Furthermore, we obtain the exact bifurcation value
c0, which is close to 3.64.
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