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Abstract. We prove a hybrid fixed point theorem for the product of two operators in a lattice-
ordered Banach algebra and apply to nonlinear hybrid quadratic integral equations of mixed type
for proving the existence of maximal and minimal positive integrable solutions under certain mixed
conditions of Lipschitzicity and monotonicity of the nonlinear functions. Our main existence result
is illustrated with a numerical example as well as with an application to IVPs of nonlinear first-order
discontinuous quadratically perturbed ordinary differential equations.
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1 Introduction

It is well known that the existence theory of nonlinear problems constitutes the major
and core part of the nonlinear analysis. Therefore, several operator theoretic techniques
are developed and used from the subject of nonlinear functional analysis for the purpose.
The existence theorems for nonlinear both continuous and discontinuous standard, that is,
nonlinearly perturbed linear differential and integral equations are available in the litera-
ture and obtained under continuity, Caratheodory- and Chandrabhan-type conditions by
using the classical analytic, topological, and algebraic fixed point principles, respectively.
See Granas and Dugundji [16], Heikkilä and Lakshmikantham [18], Dhage [3–6] and ref-
erences therein. But the case with nonlinear hybrid differential equations is different, and
existence results have been obtained only for continuous hybrid differential and integral
equations by using the hybrid fixed point principles on the lines of Krasnoselskii [19] and
Dhage [4–6, 10, 11], and no existence result is so far proved for nonlinear discontinuous
hybrid differential and integral equations. Therefore, it is of interest to obtain existence
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results for discontinuous hybrid differential and integral equations, which is the main
motivation of the present work. In the present discussion, we establish a hybrid fixed point
theorem for product of two operators in a lattice-ordered Banach algebra and apply to
nonlinear discontinuous quadratically perturbed hybrid integral equations of mixed type
for proving the existence of maximal and minimal integrable solutions. Before going to
the main hybrid fixed point theorems, we give some preliminaries, which we needed in
what follows.

2 Preliminaries

Let E denote a Banach algebra with norm ‖·‖. We introduce an partial-order relation
4 in E so that the partially ordered set (E,4) becomes a lattice. Thus, the triplet
(E, ‖·‖,4) is called a partially lattice-ordered Banach algebra. If the partial-order relation
4 is defined by the positive cone K in the partially ordered Banach algebra E, then the
triplet (E, ‖·‖,4) is simply called a lattice-ordered Banach algebra. Note that a nonempty
closed convex subset K of the Banach algebra E is called a cone if it satisfies

(i) K +K ⊆ K,
(ii) λK ⊆ K for λ ∈ R with λ > 0, and

(iii) {−K} ∩K = {0}.

Again, K is called positive cone if

(iv) K ◦K ⊆ K.

Moreover, if the norm ‖·‖ satisfies the property that ‖x‖ 6 ‖y‖ whenever x, y ∈ K with
x 4 y, then (E, ‖·‖,K) is called a Banach lattice algebra. It is known that every Banach
lattice algebra is lattice-ordered Banach algebra, but the converse is not necessarily true.
Below we state a couple of classical fixed point theorems, which we need in what follows.
To state first analytical fixed point theorem, we need the following definitions.

Definition 1. A function ψ : R+ → R+ is said to be a D-function if it is upper
semicontinuous and nondecreasing satisfying ψ(0) = 0. The set of all D-functions on
R+ is denoted by D.

Definition 2. An operator T : E → E is said to be a D-Lipschitzian if there exists
a D-function ψT ∈ D such that

‖T x− T y‖ 6 ψT
(
‖x− y‖

)
for all x, y ∈ E. If ψT (r) = kr, then T is called a Lipschitz operator on E with Lipschitz
constant k. Again, if 0 6 k < 1, T is called a linear contraction operator on E with
contraction constant k. Further, if ψT (r) < r for r > 0, then T is called a nonlinear
D-contraction on E with contraction D-function ψT .

Our first analytical or geometrical fixed point theorem is as follows.
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Theorem 1. (See [5, 6].) Let E be a Banach space, and let A : E → E be a nonlinear
D-contraction. Then A has a unique fixed point ξ∗, and the sequence {An(x)}+∞n=0 of
successive iterations converges to ξ∗ for each x ∈ E.

To state second algebraic fixed point theorem, we need the following definition.

Definition 3. A mapping T on a lattice (L,4) into itself is called isotone increasing if it
preserve the partial-order relation 4, that is, if x, y ∈ L with x 4 y, then T x 4 T y.

Theorem 2. (See [20].) Let (L,4) be a partially ordered set, and let T : L → L be
a mapping. Suppose that

(a) T is isotone increasing, and
(b) (L,4) is a complete lattice.

Then FT = {u ∈ L: T u = u} 6= ∅, and (FT ,4) is a complete lattice.

Below in the present paper, we combine Theorems 1 and 2 and prove a hybrid fixed
point theorem involving the product of two operators satisfying hybrid, that is, mixed
Lipschitz- and isotonicity-type conditions in a partially lattice-ordered Banach algebra.

3 Hybrid fixed point principles

The hybrid fixed point theory involving the sum and product of two continuous opera-
tors using and without using the partial order appears in Dhage [10, 11] and references
therein. In this section, we discuss the hybrid fixed point principles for product of the
two continuous and discontinuous operators in a partially lattice-ordered Banach algebra.
Throughout the rest of this paper, unless otherwise mentioned, let E denote the partially
lattice-ordered Banach algebra. Let A,B : E → E be two operators and consider the
hybrid operator equation

AxBx = x. (1)

If the operators A and B are positive and isotone increasing, then the operator T defined
by T x = AxBx is isotone increasing, and by Theorem 2, the operator equation (1) has
a solution, and the set of all solutions is a complete lattice. Note that an operator T on
E is positive if T x � 0, T x 6= 0 for all x ∈ E. Therefore, it is of interest to prove the
solution of the operator equation (1) when both the operators A and B are not positive
and isotone increasing on E.

Theorem 3. Let (E, ‖·‖,K) be a partially lattice-ordered Banach algebra, and letA,B :
E → E be two nonlinear operators. Suppose that

(a) A is nonlinear D-Lipschitzian with D-function ψA,
(b) (I/A)−1 exists, where (I/A)x = x/(Ax), Ax 6= 0,

and I is the identity operator on E,
(c) (I/A)−1B is isotone increasing,
(d) B is bounded with bound MB = sup{‖Bx‖, x ∈ E},
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(e) MB ψA(r) < r, r > 0, and
(f) (E,4) is a complete lattice.

Then FAB = {u ∈ E: AuBu = u} 6= ∅, and (FAB,4) is a complete lattice.

Proof. If the operator A or B is zero, then zero vector is the solution of the operator
equation (1) trivially. Therefore, we assume that none ofA and B is zero on E. Define an
operator T on E by

T =

(
I

A

)−1
B. (2)

We show that T is well defined and maps E into itself. Let y ∈ E be fixed element and
define an operator Ay on E by

Ay(x) = AxBy.
Let x1, x2 ∈ E be arbitrary. Then from (3) and hypothesis (a), it follows that∥∥Ay(x1)−Ay(x2)

∥∥ 6
∥∥Ax1 −Ax2∥∥∥∥B(y)∥∥ 6MB ψA

(
‖x1 − x2‖

)
,

where ψA is a D-function satisfying MBψA(r) < r, r > 0. This shows that Ay is
a nonlinear D-contraction operator on E. Now, by an application of Theorem 1, there is
a unique point y′ ∈ E such that

Ay(y
′) = y′ or Ay′By = y′. (3)

From (3) we obtain

By =
y′

Ay′
=

(
I

A

)
y′. (4)

Now, by hypothesis (b), (I/A)−1 exists, so operating with (I/A)−1 on both sides of the
operator equation (4), we get(

I

A

)−1
By = y′ or T y = y′.

Therefore, the mapping T is well defined and maps E into itself. By hypotheses (c),
T is isotone increasing on the complete lattice E into itself. Now the desired conclusion
follows by an application of Theorem 2.

Remark 1. We note that the operator T = (I/A)−1B is isotone increasing if the opera-
tors A and B are positive and isotone increasing on E, however, the converse may not be
true. Now, the operator T is positive on E if T x ∈ K for each x ∈ E. To see the above
assertion, let (

I

A

)−1
Bx = x1 and

(
I

A

)−1
By = y1. (5)

Form first expression in (5) we obtain

Bx =

(
I

A

)
x1 =⇒ Bx =

x1
Ax1

.
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Therefore, we obtain
Ax1Bx = x1. (6)

Similarly, we have
Ay1By = y1. (7)

Let x 4 y. Then from (6) and (7) we obtain

x1 4 y1 ⇐⇒ Ax1Bx 4 Ay1 By,

and the later inequality holds if both A and B are positive and isotone increasing on E
(see Dhage [4]).

Next, we prove a hybrid fixed point theorem for product of two operators in a partially
lattice-ordered Banach algebra, which is applicable to nonlinear integral equations of
mixed type for proving various aspects of the integrable solutions.

Theorem 4. Let S be a nonempty subset of a lattice-ordered Banach algebra (E, ‖·‖,K),
and let A : E → K and B : S → K be two nonlinear isotone increasing operators.
Suppose that

(a) A is nonlinear D-Lipschitzian with D-function ψA,
(b) (I/A)−1 exists, where (I/A)x = x/Ax, Ax 6= 0, and I is the identity operator

on E,
(c) B is bounded with bound MB = sup{‖Bx‖, x ∈ E},
(d) MB ψA(r) < r, r > 0,
(e) AxBy = x ⇒ x ∈ S for all y ∈ S, and
(f) (S,4) is a complete lattice.

Then FAB = {u ∈ E: Au,Bu = u} 6= ∅, and (FAB,4) is a complete lattice.

Proof. If the operator A or B is zero, then zero vector is the solution of the operator
equation (1). Therefore, we assume that none of A and B is zero on their respective
domains of definition. Let y ∈ S be fixed element and consider the operator Ay on E
defined by

Ay(x) = AxBy.
Then proceeding as in the proof of Theorem 3, it is proved that there exists a unique

element y′ ∈ E such that
Ay(y

′) = Ay′By = y′.

Now, by hypothesis (d), we have that y′ ∈ S. Next, we consider an operator T on S
defined by (2), which maps an element y of S into the unique fixed point y′ of the operator
Ay , that is, T y = y′. It is easy to see that T is well defined and maps S into itself. Now
proceeding as in the proof of Theorem 3, it is shown that T is isotone increasing on S,
and (S,4) is a complete lattice in view of hypothesis (e). Hence, the desired conclusion
follows by an application of Theorem 2.

Remark 2. Condition (e) is weaker than

(c′) AxBy ∈ S for all y ∈ S,

https://www.journals.vu.lt/nonlinear-analysis
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which is generally used in the hybrid fixed point theorems on the lines of Krasnoselskii
[19] and Dhage [5]. Also, see Dhage [10] and references therein.

The following result easily follows from the definitions of positive cone K and the
closure of the subsets of Banach algebra E.

Lemma 1. A nonempty, closed, and bounded subset S of a complete lattice-ordered
Banach algebra (E, ‖·‖,K) is a complete lattice.

Theorem 5. Let S be a nonempty, closed, and bounded subset of a complete lattice-
ordered Banach algebra (E, ‖·‖,K), and let A : E → K and B : S → K be two non-
linear isotone increasing operators. Suppose that

(a) A is nonlinear D-Lipschitzian with D-function ψA,
(b) (I/A)−1 exists, where (I/A)x = x/Ax, Ax 6= 0,

and I is the identity operator on E,
(c) B is bounded with bound MB = sup{‖Bx‖, x ∈ E},
(d) MB ψA(r) < r, r > 0, and
(e) AxBy = x ⇒ x ∈ S for all y ∈ S.

Then the hybrid operator equation (1) has a positive solution in S, and the set of all
positive solutions in S is a complete lattice.

Proof. Since S is a closed and bounded subset of the complete lattice-ordered Banach
algebra E, by Lemma 1, (S,4) is a complete lattice. Moreover, from hypothesis (d) it
follows that S ∩ K 6= ∅ because K is a positive cone in E. Thus, the operators A and
B satisfy all the conditions of Theorem 4. Hence, the hybrid operator equation (1) has
a positive solution in S and the set of all positive solutions in S is a complete lattice.

The above Theorem 5 is an improvement of the following new Dhage-type hybrid
fixed point theorem involving the product of two continuous and discontinuous operators
in a lattice-ordered Banach algebra.

Corollary 1. Let S be a nonempty, closed and bounded subset of a complete lattice-
ordered Banach algebra (E, ‖·‖,K) and let A : E → K and B : S → K be two
nonlinear isotone increasing operators. Suppose that

(a) A is Lipschitz operator with Lipschitz constant α,
(b) (I/A)−1 exists, where (I/A)x = x/Ax, Ax 6= 0,

and I is the identity operator on E,
(c) B is bounded with bound MB = sup{‖Bx‖, x ∈ E},
(d) αMB < 1, and
(e) AxBy = x ⇒ x ∈ S for all y ∈ S.

Then the hybrid operator equation (1) has a positive solution in S, and the set of all
positive solutions in S is a complete lattice.

In the following section, we consider the nonlinear hybrid integral equation of quadratic
type for the application of Corollary 1 under suitable conditions.

Nonlinear Anal. Model. Control, 29(6):1106–1119, 2024
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4 Hybrid quadratic integral equations

The origin of the quadratic differential equations appears in the works of Dhage [4] and
discussed for different aspects of the solutions via operator theoretic techniques in Banach
algebra developed by Dhage [4–7]. In the beginning, the development of the subject was
slow, but recently, this topic has gained momentum and growing very rapidly. Several
fixed point principles involving the sum and product of two and three operators in Banach
algebras have been formulated by Dhage for this purpose, and since then, several non-
linear quadratic differential and integral equations have been studied in the literature for
existence and other aspects of the solutions. Here we discuss a nonlinear hybrid quadratic
integral equation (in short, HQIE) for minimal and maximal integrable positive solutions
under mixed Lipschitz and Chandrabhan conditions on the nonlinearities involved in the
problem.

Given a closed and bounded interval J = [0, T ] in the real line R, we consider the
nonlinear HQIE of the type

x(t) =
[
f
(
t, x(t)

)](
q(t) +

t∫
0

g
(
s, x(s)

)
ds

)
, t ∈ J, (8)

where the functions q : J → R, f, g : J × R → R satisfy certain hybrid, that is, mixed
conditions of Lipschitz and Chandrabhan to be specified later.

Definition 4. A function x ∈ L1(J,R) is said to be a solution of the HQIE (1) if it
satisfies the equations in (1) on J , where L1(J,R) is the space of all Lebesgue integrable
function defined on J .

We place problem (8) in the function space BM (J,R) of real-valued measurable and
bounded functions defined on J . The multiplication “·” of two elements x, y ∈ BM (J,R)
is defined by

(x · y)(t) = x(t)y(t), t ∈ J.

We define a supremum norm ‖·‖ in BM (J,R) by

‖x‖BM = sup
t∈J

∣∣x(t)∣∣. (9)

Clearly, BM (J,R) is a Banach algebra with respect to the above multiplication and the
norm in it. Next, we introduce an partial-order relation 4 in BM (J,R) with the help of
the positive cone K given by

K =
{
x ∈ BM (J,R): x(t) > 0 for almost all t ∈ J

}
.

Thus,
x 4 y ⇐⇒ y − x ∈ K, (10)

r equivalently,
x 4 y ⇐⇒ x(t) 6 y(t) a.e. t ∈ J. (11)

https://www.journals.vu.lt/nonlinear-analysis
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The details of cones and partial-order relations appear in Guo and Lakshmikantham
[17] and Heikkilä and Lakshmikantham [18]. It is known that BM (J,R) is a complete
lattice-ordered Banach algebra with respect to the norm and partial-order relation defined
by (9) and (11), respectively. See Birkhoff [2] and Dhage [3] and references therein. Here
we do not assume both the nonlinear functions involved in Eq. (8) to be continuous, but
satisfy certain measurability and integrability conditions. We need the following definition
in what follows (see Dhage [8] and Dhage and Patil [14]).

Definition 5. A function f : J × R→ R is said to be Chandrabhan if

(i) the map t 7→ f(t, x) is measurable for each x ∈ R, and
(ii) the map x 7→ f(t, x) is monotone nondecreasing for almost every t ∈ J .

Furthermore, a Chandrabhan function f(t, x) is called L1
r-Chandrabhan if

(iii) there exists a function hr ∈ L1(J,R) such that∣∣f(t, x)∣∣ 6 hr(t), a.e. t ∈ J,

for all x ∈ R with |x| 6 r.

Again, a Chandrabhan function f(t, x) is called L1
R-Chandrabhan if

(iii) there exists a function h ∈ L1(J,R) such that∣∣f(t, x)∣∣ 6 h(t), a.e. t ∈ J,

for all x ∈ R.

Finally, a Chandrabhan function f(t, x) is called R-Chandrabhan if

(iv) there exists a number Mf ∈ R such that∣∣f(t, x)∣∣ 6Mf , a.e. t ∈ J,

for all x ∈ R.

Remark 3. Note that the relation between the above types of functions goes as follows:

• R-Chandrabhan⇒ L1
R-Chandrabhan⇒ L1

r-Chandrabhan,

however, the reverse implication may not hold.

Proposition 1. Let f(t, x) be a Chandrabhan function on J ×R. Then the superposition
operator F given by Fx(t) = f(t, x(t)), t ∈ J , monotonically maps the space L1(J,R)
into itself if and only if f satisfies the growth condition∣∣f(t, x)∣∣ 6 a(t) + b|x|

for almost every t ∈ J and x ∈ R, where a ∈ L1(J,R), and b > 0 is a real number.

Proof. The proof of proposition is similar to a result that given in Krasnoselsdkii [19] for
Caratheódory functions f on J×R into R. See also Banas [1] and references therein.
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In the special case when b = 0 in above Proposition 1, we obtain the following useful
result for our further discussion.

Lemma 2. (See [7–9].) If f(t, x) is Chandrabhan, then the function t 7→ f(t, x(t))
is measurable for each x ∈ L1(J,R). Moreover, if f(t, x) is L1

R-Chandrabhan, then
f(·, x(·)) is Lebesgue integrable on J for each x ∈ L1(J,R).

Lemma 3. (See [2,15].) A nonempty closed and bounded subset S of the complete Banach
lattice (L1(J,R),4) is a complete lattice.

In the following section, we prove our main existence result for maximal and minimal
positive integrable solutions of the HQIE (8) on J via lattice theoretic hybrid fixed point
theorem developed in this paper.

5 Existence of extremal solutions

We consider the following set of hypotheses in what follows.

(H1) The function q is measurable, positive, and bounded on J .
(H2) The function f is positive and R-Chandrabhan on J × R.
(H3) The map x 7→ x/f(t, x) is bijective for each t ∈ J .
(H4) There exists a constant α > 0 such that∣∣f(t, x)− f(t, y)∣∣ 6 α|x− y|, a.e. t ∈ J,

for all x, y ∈ R.
(H5) The function g is positive and L1

r-Chandrabhan on J × R.

Theorem 6. Assume that hypotheses (H1)–(H5) hold. If α(‖q‖BM +‖hr‖L1)< 1, then
the HQIE (8) has maximal and minimal positive integrable solutions defined on J .

Proof. Set E = BM (J,R). Define a subset S of the complete lattice (BM (J,R),4) by

S =
{
x ∈ BM (J,R): ‖x‖BM 6 r

}
, (12)

where
r =Mf

(
‖q‖BM + ‖hr‖L1

)
.

Clearly, S is a nonempty, closed, and bounded subset of the complete lattice Banach
algebra BM (J,R), and so, by Lemma 3, (S,4) is again a complete lattice. Define two
operators A on E and B on S by

Ax(t) = f
(
t, x(t)

)
, t ∈ J,

and

Bx(t) = q(t) +

t∫
a

g
(
s, x(s)

)
ds, t ∈ J. (13)

https://www.journals.vu.lt/nonlinear-analysis
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Then the HQIE (8) is transformed into an operator equation as

Ax(t)Bx(t) = x(t), t ∈ J.

We show that A defines a mapping A :BM (J,R) → K. Now, by hypothesis (H2),
the function f is positive and bounded on J × R. Moreover, f(t, x) is monotone non-
decreasing in x for each t ∈ J . So the superposition operator A defined by Ax(t) =
f(t, x(t)) is monotone positive, nondecreasing and maps an element of BM (J,R) into
the cone K. As a result, we have that Ax ∈ K for all x ∈ BM (J,R). Similarly, the
integral on right hand of Eq. (13) exists in view of hypothesis (H5). Moreover, the integral
is continuous and hence measurable on J . The sum of two measurable positive functions
is again measurable and positive function on J . Moreover,

‖Bx‖ 6 ‖q‖BM + ‖hr‖L1

for all x ∈ S. Hence, Bx ∈ K for all x ∈ S. Next, we show that A and B are positive
and isotone increasing on their respective domains of definition. Let x, y ∈ BM (J,R) be
such that x 4 y. Then we have

Ax(t) = f
(
t, x(t)

)
6 f

(
t, y(t)

)
= Ay(t)

for almost every t ∈ J . This shows that Ax 4 Ay almost everywhere on J . Conse-
quently, A is an isotone increasing on E. Similarly, it can be proved that the operator B
is also an isotone increasing on S.

Next, since by hypothesis (H3), the map x 7→ x/f(t, x) is bijective for each t ∈ J ,
the mapping x 7→ (I/A)x is also bijective, so the operator (I/A)−1 exists on S, where I
is the identity operator on E. Next, we show thatA is a Lipschitz operator on BM (J,R).
Let x, y ∈ BM (J,R). Then, by hypothesis (H3), we get∣∣Ax(t)−Ay(t)∣∣ 6 ∣∣f(s, x(s))− f(s, y(s))∣∣

6 α
∣∣x(s)− y(s)∣∣ 6 α‖x− y‖BM .

Taking the supremum over t on both sides of above inequality, we get

‖Ax−Ay‖BM 6 α‖x− y‖BM

for all x, y ∈ BM (J,R). This shows that A is a Lipschitz operator on BM (J,R) with
Lipschitz constant α. Next, we show that condition (d) of Corollary 1 is satisfied. Here
we have

MB = sup
x∈S
‖Bx‖ 6 ‖q‖BM + ‖h‖L1 .

Therefore, αMB 6 α[‖q‖BM + ‖h‖L1 ] < 1. Finally, we show that condition (e) of
Corollary 1 is satisfied. Let y ∈ BM (J,R) be arbitrary and consider the operator equation
x = AxBy for some x ∈ BM (J,R). Then we have x(t) = Ax(t)By(t) for all t ∈ J .
Now, by hypotheses (H4) and (H5), we obtain∣∣x(t)∣∣ = ∣∣Ax(t)∣∣∣∣By(t)∣∣ 6 ‖Ax‖BM ‖By‖BM

6Mf

[
‖q‖BM + ‖hr‖L1

]
6 r

Nonlinear Anal. Model. Control, 29(6):1106–1119, 2024
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for all t ∈ J . Taking the supremum over t in the above inequality, we obtain ‖x‖BM 6 r
whence x ∈ S. Thus, all conditions of Corollary 1 are satisfied. Hence, the HQIE (8) has
a solution in S ∩K ⊂ BM (J,R), and the set FAB of all solutions is a complete lattice.
As every function x ∈ BM (J,R) is Lebesgue integrable, the HQIE (8) has a positive
integrable solution, and the set of all such solutions is a complete lattice. Hence, ∧FAB
and ∨FAB both exist and are respectively the maximal and minimal positive integrable
solutions of the HQIE (8) defined on J . This completes the proof.

Example 1. Let J = [0, 1] ⊂ R and consider the HQIE of the type

x(t) =
[
f1
(
t, x(t)

)](
t2 +

t∫
0

[
1 + tanhx(s)

]
ds

)
(14)

for all t ∈ [0, 1], where

f1(t, x) =

{
1 if x 6 0,

1 + 1
4 tan

−1 x if x > 0.

Set f(t, x) = f1(t, x), q(t) = t2, and g(t, x) = 1 + tanhx for all t ∈ [0, 1] and x ∈ R.
Now, the function q is positive and continuous, so it is measurable bounded on [0, 1]× R
with bound ‖q‖BM = 1. Next, the functions f(t, x) and g(t, x) are positive, continuous,
and bounded on [0, 1] × R with bounds Mf = 3 and h ≡ Mg = 2, respectively. Also,
the functions x 7→ f1(t, x) = f(t, x) and x 7→ 1 + tanhx = g(t, x) are monotone
nondecreasing for each t ∈ [0, 1]. Therefore, the functions f and g are L1

R-Chandrabhan
on [0, 1] × R. Next, the map 7→ x/f1(t, x) is bijective for each t ∈ [0, 1]. Furthermore,
the function f(t, x) satisfies Lipschitz condition on [0, 1] × R. To see this, let x, y ∈ R.
Then by Lagrange’s mean value theorem, we obtain∣∣f(t, x)− f(t, y)∣∣ = 1

4

∣∣tan−1 x− tan−1 y
∣∣ 6 1

4
|x− y|

for all t ∈ [0, 1]. Therefore, f satisfies the Lipschitz condition with Lipschitz constant
α = 1/4. Finally, we have

α
(
‖q‖BM + ‖h‖L1

)
=

1

4
(1 + 2) =

3

4
< 1.

Thus, all hypotheses (H1)–(H5) of Theorem 6 are satisfied with α < 1/4. Hence, the
HQIE (14) has minimal and maximal positive integrable solutions defined on J in the
closed subset S of BM ([0, 1],R) given by S = {x ∈ BM ([0, 1],R): ‖x‖BM 6 9}.

6 An application

In this section, we apply our main existence theorem of the previous section to a hybrid
quadratic differential equation for proving the existence of maximal and minimal positive
solutions under suitable conditions.

https://www.journals.vu.lt/nonlinear-analysis
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Let J = [0, T ] be a closed and bounded interval in R and consider the hybrid quadratic
differential equation (in short HQDE) of the type

d

dt

(
x(t)

f(t, x(t))

)
= g
(
t, x(t)

)
, a.e. t ∈ J,

x(0) = x0 > 0,

(15)

where the function f : J×R → R\{0} is continuous, and the function g : J×R → R
is discontinuous, and they satisfy certain Lipschitz- and Chandrabhan-type hybrid condi-
tions.

Definition 6. A function x ∈ C(J,R) is said to be a solution of the HQDE (12) if

(i) the map t 7→ x(t)/f(t, x(t)) is absolutely continuous on J , and
(ii) x satisfies the equations in (15),

where C(J,R) is the space of continuous real-valued functions defined on J .

The differential problem (15) is well known and is a perturbed differential equation
with a quadratic perturbation of second type (see Dhage [9]). The HQDE (15) has already
been discussed for existence and existence of extremal solutions between the given lower
and upper solutions via HFPTs due to Dhage [5] under continuity and Caratheodory-
type conditions. See Dhage and O’Regan [13] and Dhage and Lakshmikantham [12] and
references therein. Here we discuss the HQDE (15) for existence of maximal and minimal
integrable solutions without assuming the existence of lower and upper solutions as well
as without continuity conditions of any type.

Lemma 4. Assume that hypothesis (H3) holds. If h ∈ L1(J,R), then the HQDE

d

dt

(
x(t)

f(t, x(t))

)
= h(t), a.e. t ∈ J,

x(0) = x0 > 0

is equivalent to the nonlinear quadratic integral equation

x(t) =
[
f
(
t, x(t)

)]( x0
f(0, x0)

+

t∫
0

h(s) ds

)
, t ∈ J.

Theorem 7. Assume that hypotheses (H1)–(H5) hold. If

α

(∣∣∣∣ x0
f(0, x0)

∣∣∣∣+ ‖h‖L1

)
< 1,

then the HQDE (15) has maximal and minimal positive solutions defined on J .

Proof. By Lemma 4, the HQDE (15) is equivalent to the nonlinear hybrid quadratic
integral equation (in short, HQIE),

x(t) =
[
f
(
t, x(t)

)]( x0
f(0, x0)

+

t∫
0

g
(
s, x(s)

)
ds

)
, t ∈ J.
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Set E = BM (J,R). Let q(t) = x0/f(0, x0). Then q(t) > 0 for all t ∈ J because
x0 > 0 and f is positive on J ×R. Also, q is measurable function on J . Now the desired
conclusion follows by an application of Theorem 6.

Example 2. Given a closed and bounded interval J = [0, 1], consider the first-order
ordinary HQDE

d

dt

(
x(t)

f2(t, x(t))

)
= 2 + tan−1 x(t), a.e. t ∈ [0, 1],

x(0) = 1,

where

f2(t, x) =

{
1
5 if x 6 0,
1
5 (1 +

x
1+x ) if x > 0.

Set f(t, x) = f2(t, x), x0 = 1, and g(t, x) = 2 + tan−1 x for t ∈ [0, 1] and x ∈ R.
Then it can be shown in an analogous way of Example 1 that the functions f and g satisfy
all hypotheses (H1)–(H5) of Theorem 7, and hence the HQDE (15) has maximal and
minimal positive soltions defined on [0, 1].

Remark 4. The nonlinear discontinuous hybrid differential equations considered in this
paper for applications of new hybrid fixed point theorem is a very simple one. However,
other complex nonlinear hybrid differential equations with integer or fractional order may
also be considered for the analysis of existence of extremal solutions. Some of the results
in this directions will be reported elsewhere.
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