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Abstract. In this study, we define a new fuzzy contraction principle, namely, the concept of
ξ-α-η-ΓF -mappings, and prove the existence and uniqueness of the fixed point for such class
of mappings. To further demonstrate the validity of our results, we furnish an application to
neutral fractional integro-differential equations with nonlocal conditions. The presented results
unify, generalize, and enhance a number of prior findings in the literature.
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1 Introduction

The appeal of fuzzy sets theory has grown consistently since Zadeh’s seminal work [24]
in 1965. The theoretical concept of fuzzy sets has evolved into an essential and insightful
modeling tool. As a result, theory, as well as applications in the areas of logic, topology,
and analysis, have advanced extensively with many applications in the domains of com-
puter science and engineering. One of the challenging problems in fuzzy topology is com-
ing up with an appropriate and consistent definition of fuzzy metric. This issue has been
dealt with by many investigators in a number of approaches. Kramosil and Michaelek [9]
created the first formulation of fuzzy metric space (FMS), which was further improved
by George and Veeramani [2], who also demonstrated that each fuzzy metric produces
Hausdorff topology. An important theoretical advancement at the moment is the method
for creating contraction mapping in fuzzy metric spaces. Grabiec [3] originally used
the Banach and Edelstein principles to fuzzy metric spaces in 1988. Fuzzy contractive
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mappings were first initiated by Gregori and Sapena [4]. In recent years, a number of
researchers attempted to generalize the Banach contraction idea by altering and adjusting
the contraction criteria; see [1, 5, 7, 8, 10, 12–15, 17, 22].

Following that, various types of fuzzy contractive conditions were established by
Tirado [21], Gregori et al. [4], and Mihet [11]. Wardowski [23] developed a new powerful
contraction principle in usual metric spaces termed as F -contraction and demonstrated
some related fixed point theorems. In a FMS, fuzzy F -contraction is a new type of
condition that was just presented by Huang et al. [6]. This class is significantly simpler
than the F -contraction since it just has one requirement that the function F be strictly
increasing. Patel and Radenović [17] presented a family of functions called a class of
Γ -functions, such as an implicit function, and presented a direct generalization of the
fuzzy F -contraction that was established in [6] and established fixed-point theorems by
taking into account α-ΓF -fuzzy contractive criteria in a complete FMS, the α-admissi-
bility property, and a weaker continuity condition.

2 Preliminaries

In this section, we discuss some essential concepts in order to render our study self-
contained.

Definition 1. (See [20].) An operation g : [0, 1] × [0, 1] → [0, 1] is called a continuous
t-norm if ([0, 1],g) is an Abelien topological monoid such that cg 1 = c for all c ∈ [0, 1]
and cg a 6 ℵg ℘ whenever c 6 ℵ and a 6 ℘ for all c, a,ℵ, ℘ ∈ [0, 1].

Example 1.

(i) cgm a = min{c, a};
(ii) cgP a = c · a.

Definition 2. (See [2].) The triple (K, ϑ,g) is called a FMS if K is a nonempty set, g is
a continuous t-norm, and ϑ is a fuzzy set on K2 × (0,+∞) satisfying:

(MS1) ϑ(c, a,=) > 0;
(MS2) ϑ(c, a,=) = 1 if and only if c = a;
(MS3) ϑ(c, a,=) = ϑ(a, c,=);
(MS4) ϑ(c, v,=) g ϑ(v, a, ℘) 6 ϑ(c, a,=+ ℘);
(MS5) ϑ(c, a, ·) : (0,+∞)→ [0, 1] is continuous.

Here c, a, v ∈ K and =, ℘ > 0.

One may consider the value of ϑ(c, a,=) as the degree of nearness of c and a w.r.t.
the variable =.

Example 2. (See [2].) Assume that (K, d) is a metric space and let

ϑ(c, a,=) =
λ=α

λ=α + νd(c, a)
, λ, ν, α ∈ R+.

Then (K, ϑ,gm) is a FMS.
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Lemma 1. (See [3].) ϑ(c, a, ·) is nondecreasing for all c, a in K.

Definition 3. (See [2].) Let (K, ϑ,g) be a FMS, and let {cn} ⊆ K be a sequence in K
and a ∈ K. We say that:

(i) {cn} converges to c ∈ V if limn→+∞ ϑ(cn, c,=) = 1 for all = > 0;
(ii) {cn} is a Cauchy if for each ℘ ∈ (0, 1) and = > 0, there exists n0 ∈ N such that

ϑ(cn, cm,=) > 1− ℘ for each n,m > n0;
(iii) (K, ϑ,g) is complete (CFMS) if all Cauchy sequence is convergent in K.

Definition 4. (See [22].) Let F : (0,+∞)→ R be a function fulfilling:

(F1) F is strictly increasing, i.e., s < = implies F (s) < F (=) for each s,= > 0;
(F2) for each sequence {sn} in R+, limn→+∞ sn = 0 iff limn→+∞ F (sn) = −∞;
(F3) there exists k ∈ (0, 1) such that lims→0+ s

k · F (s) = 0.

F stands for the family of all functions F that fulfill the requirements (F1)–(F3).

Wardowski [22] initiated in 2012 the following contraction principle in a metric space
(K, d).

Definition 5. (See [22].) A mapping G : K → K is called an F-contraction on K if there
exist F ∈ F and τ > 0 such that for all c, a ∈ K with d(Gc,Ga) > 0, we have

τ + F
(
d(Gc,Ga)

)
6 F

(
d(c, a)

)
.

In a recent paper, Huang et al. [6] developed the idea of fuzzy F -contraction in a FMS.

Definition 6. (See [6].) Let (K, ϑ,g) be a FMS, and let F ∈ ΛF . The mapping G :
K → K is called fuzzy F -contraction if there exists τ ∈ (0, 1) such that

τ · F
(
ϑ(Gc,Ga,=)

)
> F

(
ϑ(c, a,=)

)
, (1)

where ΛF stands for the set of all functions F : [0, 1] → (0,+∞) fulfilling: for all
s,= ∈ [0, 1], s < = implies F (s) < F (=). Thus, F is strictly increasing on [0, 1].

Definition 7. (See [19].) Let G be a self-mapping on K, and let α : K × K → [0,+∞)
be a function. G is an α-admissible mapping if

c, a ∈ K, α(c, a) > 1 =⇒ α(Gc,Ga) > 1.

Definition 8. (See [18].) Let G be a self-mapping on K, and let α, η : K×K → [0,+∞)
be two functions. G is an α-admissible mapping w.r.t. η if

c, a ∈ K, α(c, a) > η(c, a) =⇒ α(Gc,Ga) > η(Gc,Ga).

If η(c, a) = 1, then Definition 8 yields Definition 7. Additionally, if we assume that
α(c, a) = 1 in Definition 8, then G is called η-subadmissible.
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Definition 9. (See [13].) The function ξ : (0, 1] × (0, 1] → R is an FZ-simulation
function if:

(ξ1) ξ(1, 1) = 0;
(ξ2) ξ(c, a) < 1/a− 1/c for all c, a ∈ (0, 1);
(ξ3) if {cn}, {an} are sequences in (0, 1] such that limn→+∞ cn=limn→+∞ an<1,

then limn→+∞ sup ξ(cn, an) < 0.

The set of all FZ-simulation functions is denoted by FZ .

Let ΛFZ be the collection of all functions ξ : (0, 1]× (0, 1]→ R fulfilling (ξ1), (ξ3),
and (ξ2′) instead of (ξ2):

(ξ2′) ξ(c, a) 6 1/a− 1/c for all c, a ∈ (0, 1).

Recently, Devi Patel et al. [17] initiated a new type of mappings like an implicit
function called Γ -function.

Definition 10. (See [17].) Let ΛΓ denote the set of all continuous functions Γ : R4
+ → R

fulfilling: for all =1,=2,=3,=4 ∈ R+ with max(=1,=2,=3,=4) = 1, there exists τ ∈
(0, 1) such that Γ (=1,=2,=3,=4) = τ .

Example 3. (See [17].) Let Γi : (R+)4 → R, i = 1, 2, be defined by

(i) Γ1(=1,=2,=3,=4) = τ + ω loge max{=1,=2,=3,=4}, where ω ∈ R+;
(ii) Γ2(=1,=2,=3,=4) = τ/max{=1,=2,=3,=4}.

Here Γi ∈ ΛΓ for i = 1, 2.

3 Main results

In this section, we define the concept of a ξ-α-η-ΓF -fuzzy contractive mapping.

Definition 11. Let (K, ϑ,g) be a FMS, and let a mapping G : K → K. Furthermore,
suppose that α, η : K×K → [0,+∞) are two functions. G is said to be a ξ-α-η-ΓF -fuzzy
contractive mapping on K if for c, a ∈ K with η(c,Gc) 6 α(c, a) and ϑ(Gc,Ga,=) > 0,
we have

ξ
(
Γ
[
ϑ(c,Gc,=), ϑ(a,Ga,=), ϑ(c,Ga,=), ϑ(a,Gc,=)

]
× F

(
ϑ(Gc,Ga,=)

)
, F
(
ϑ(c, a,=)

))
> 0, (2)

where Γ ∈ ΛΓ , ξ ∈ ΛFZ , and F ∈ ΛF .

We need the following lemma to prove our main results.

Lemma 2. (See [6].) Let (K, ϑ,g) be a FMS, and let {cn} be a sequence in K such that
for each n ∈ N,

lim
=→0+

ϑ(cn, cn+1,=) > 0,
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and for any = > 0,
lim

n→+∞
ϑ(cn, cn+1,=) = 1.

If {cn} is not a Cauchy sequence in K, then there exist ε ∈ (0, 1), =0 > 0, and two
sequences of positive integers {nk}, {mk}, nk > mk > k, k ∈ N, such that the sequences{

ϑ(cmk
, cnk

,=0)
}
,
{
ϑ(cmk

, cnk+1,=0)
}
,
{
ϑ(cmk−1, cnk

,=0

)}
,{

ϑ(cmk−1, cnk+1,=0)
}
,
{
ϑ(cmk+1, cnk+1,=0)

}
tend to 1− ℘ as k → +∞

Theorem 1. Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping satisfying the
following assertions:

(i) G is α-admissible w.r.t. η;
(ii) G is a ξ-α-η-ΓF -fuzzy contractive mapping;

(iii) there exists c0 ∈ K such that α(c0,Gc0) > η(c0,Gc0);
(iv) G is an α-η-continuous map.

Then G has a fixed point. Moreover, G has a unique fixed point whenever α(c, a) > η(c, c)
for all c, a ∈ Fix(G).

Proof. Let c0 ∈ K such that α(c0,Gc0) > η(c0,Gc0). For c0 ∈ K, we define the sequence
{cn} by cn+1 = Gnc0 = Gcn for all n ∈ N. Now, since G is α-admissible w.r.t. η, then

α(c0, c1) = α(c0,Gc0) > η(c0,Gc0) = η(c0, c1),

by continuing this process, we have

η(cn−1, cn) 6 α(cn−1, cn)

for all n ∈ N. Furthermore, let n0 ∈ N such that cn0 = Gcn0 , then cn0 is fixed point of
G, and nothing to prove.

Assume that cn 6= cn+1 or ϑ(cn, cn+1,=) ∈ [0, 1) for all n ∈ N. Since G is an
ξ-α-η-ΓF -contractive mapping and thus we use c = cn−1 and a = cn in (2), we obtain

0 6 ξ
(
Γ
[
ϑ(cn−1,Gcn−1,=), ϑ(cn,Gcn,=), ϑ(cn−1, Gcn,=), ϑ(cn,Gcn−1,=)

]
× F

(
ϑ(Gcn−1,Gcn,=)

)
, F
(
ϑ(cn−1, cn,=)

))
6 F−1

(
ϑ(cn−1, cn,=)

)
−
(
Γ
[
ϑ(cn−1,Gcn−1,=), ϑ(cn,Gcn,=), ϑ(cn−1,Gcn,=), ϑ(cn,Gcn−1,=)

]
× F

(
ϑ(Gcn−1,Gcn,=)

))−1
.

Hence,

Γ
[
ϑ(cn−1,Gcn−1,=), ϑ(cn,Gcn,=), ϑ(cn−1,Gcn,=), ϑ(cn,Gcn−1,=)

]
× F

(
ϑ(Gcn−1,Gcn,=)

)
> F

(
ϑ(cn−1, cn,=)

)
.
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Since max(ϑ(cn−1, cn,=), ϑ(cn, cn+1,=), ϑ(cn−1, cn+1,=), ϑ(cn, cn,=)) = 1, by
definition of Γ -function, there exists τ ∈ (0, 1) such that

Γ
(
ϑ(cn−1, cn,=), ϑ(cn, cn+1,=), ϑ(cn−1, cn+1,=), ϑ(cn, cn,=)

)
= τ.

Therefore,
τ · F

(
ϑ(cn, cn+1,=)

)
> F

(
ϑ(cn−1, cn,=)

)
.

We have

F
(
ϑ(cn, cn+1,=)

)
> τ · F

(
ϑ(cn, cn+1,=)

)
> F

(
ϑ(cn−1, cn,=)

)
. (3)

Since F is a strictly increasing function,

ϑ(cn, cn+1,=) > ϑ(cn−1, cn,=).

Thus, the sequence {ϑ(cn, cn+1,=)}, = > 0, is a strictly increasing bounded from above,
and thus sequence {ϑ(cn, cn+1,=)}, = > 0, is convergent. In other words, there exists
a(=) ∈ [0, 1] such that

lim
n→+∞

ϑ(cn, cn+1,=) = `(=) (4)

for any = > 0 and n ∈ N. It follows that

ϑ(cn, cn+1,=) < `(=) (5)

by (4) and (5), for any = > 0, we have

lim
n→+∞

F
(
ϑ(cn, cn+1,=)

)
= F

(
`(=)− 0

)
. (6)

We have to show that `(=) = 1. Assume that `(=) < 1 for some = > 0, and by taking
limit as n→ +∞ in (3) and using (6), we obtain

F
(
`(=)− 0

)
> τ · F

(
`(=)− 0

)
> F

(
`(=)− 0

)
.

This is a contradiction with F (`(=)− 0) > 0. Therefore,

lim
n→+∞

ϑ(cn, cn+1,=) = 1.

Next, we have to prove that {cn} is a Cauchy sequence. Suppose that {cn} is not
a Cauchy sequence. By using the Lemma 2, then there exist ℘ ∈ (0, 1), =0 > 0, and
sequences {cmk

} and {cnk
} such that

lim
k→+∞

ϑ(cmk
, cnk

,=0) = 1− ℘. (7)
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Again, with c = cmk
and a = cnk

in (2), we have

0 6 ξ
(
Γ
[
ϑ(cmk

, cmk+1,=), ϑ(cnk
, cnk+1,=), ϑ(cmk

, cnk+1,=), ϑ(cnk
, cmk+1,=)

]
× F

(
ϑ(cmk+1, cnk+1,=)

)
, F
(
ϑ(cmk

, cnk
,=)
))

6 F−1
(
ϑ(cmk

, cnk
,=)
)

−
(
Γ
[
ϑ(cmk

, cmk+1,=), ϑ(cnk
, cnk+1,=), ϑ(cmk

, cnk+1,=), ϑ(cnk
, cmk+1,=)

]
× F

(
ϑ(cmk+1, cnk+1,=)

))−1
.

Thus,

Γ
[
ϑ(cmk

, cmk+1,=), ϑ(cnk
, cnk+1,=), ϑ(cmk

, cnk+1,=), ϑ(cnk
, cmk+1,=)

]
× F

(
ϑ(cmk+1, cnk+1,=)

)
> F

(
ϑ(cmk

, cnk
,=)
)
.

Letting limit as k → +∞, we have

lim
k→+∞

Γ
[
ϑ(cmk

, cmk+1,=), ϑ(cnk
, cnk+1,=), ϑ(cmk

, cnk+1,=), ϑ(cnk
, cmk+1,=)

]
× F

(
ϑ(cmk+1, cnk+1,=)

)
> lim
k→+∞

F
(
ϑ(cmk

, cnk
,=)
)
, (8)

which means

Γ
(

1, 1, lim
k→+∞

ϑ(cmk
, cnk+1,=), lim

k→+∞
ϑ(cnk

, cmk+1,=)
)

× lim
k→+∞

F
(
ϑ(cmk+1, cnk+1,=)

)
> lim
k→+∞

F
(
ϑ(cmk

, cnk
,=)
)
.

Since

max
(

1, 1, lim
k→+∞

ϑ(cmk
, cnk+1,=), lim

k→+∞
ϑ(cnk

, cmk+1,=)
)

= 1,

there exists τ ∈ (0, 1) such that

Γ
(

1, 1, lim
k→+∞

ϑ
(
cmk

, cnk+1,=
)
, lim
k→+∞

ϑ(cnk
, cmk+1,=)

)
= τ.

Using (7) and (8) implies that

τ · F
(
(1− ℘)− 0

)
> F

(
(1− ℘)− 0

)
.

Additionally,

F
(
(1− ℘)− 0

)
> τ · F

(
(1− ℘)− 0

)
> F

(
(1− ℘)− 0

)
.
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This is a contraction with F ((1 − ℘) − 0) > 0. Thus, the sequence {cn} is a Cauchy
sequence in K. Since (K, ϑ,g) is CFMS, then there exists c∗ ∈ K such that

lim
n→+∞

cn = c∗.

Let us prove that c∗ is a fixed point of G. Since G is an α-η-continuous and η(cn−1, cn) 6
α(cn−1, cn) for all n ∈ N. Then limn→+∞ ϑ(Gcn,Gc∗,=) = 1 implies ϑ(c∗,Gc∗,=) =
1, that is, c∗ = Gc∗.

Let c, a ∈ Fix[G] such that c 6= a, by Eq. (2),

0 6 ξ
(
Γ
[
ϑ(c,Gc,=), ϑ(a,Ga,=), ϑ(c,Ga,=), ϑ(a,Gc,=)

]
· F
(
ϑ(Gc,Ga,=)

)
,

F
(
ϑ(c, a,=)

))
= ξ
(
Γ
[
ϑ(c, c,=), ϑ(a, a,=), ϑ(c, a,=), ϑ(a, c,=)

]
· F
(
ϑ(c, a,=)

)
, F
(
ϑ(c, a,=)

))
6 F−1(ϑ(c, a,=))

−
(
Γ
[
ϑ(c, c,=), ϑ(a, a,=), ϑ(c, a,=), ϑ(a, c,=)

]
· F
(
ϑ(c, a,=)

))−1
.

Thus,

Γ
[
ϑ(c, c,=), ϑ(a, a,=), ϑ(c, a,=), ϑ(a, c,=)

]
· F
(
ϑ(c, a,=)

)
> F

(
ϑ(c, a,=)

)
,

that is,
Γ
[
1, 1, ϑ(c, a,=), ϑ(a, c,=)

]
· F
(
ϑ(c, a,=)

)
> F

(
ϑ(c, a,=)

)
.

Since max(1, 1, ϑ(c, a,=), ϑ(a, c,=)) = 1, there exists τ ∈ (0, 1) such that

Γ
(
1, 1, ϑ(c, a,=), ϑ(a, c,=)

)
= τ.

Thus, we can deduce above

τ · F
(
ϑ(c, a,=)

)
> F

(
ϑ(c, a,=)

)
.

This implies that

F
(
ϑ(c, a,=)

)
> τ · F

(
ϑ(c, a,=)

)
> F

(
ϑ(c, a,=)

)
,

which is a contradiction. Thus, G has a unique fixed point.

We can deduce the following corollaries.

Corollary 1. Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping satisfying the
following assertions:

(i) G is α-admissible w.r.t. η;
(ii) if, for c, a ∈ K with α(c, a) > η(c,Gc) and ϑ(Gc,Ga,=) > 0, we have

ξ
(
τ · F

(
ϑ(Gc,Ga,=)

)
, F
(
ϑ(c, a,=)

))
> 0,

where c 6= a, τ ∈ (0, 1), ξ ∈ ΛFZ , and F ∈ ΛF .;
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(iii) there exists c0 ∈ K such that α(c0,Gc0) > η(c0,Gc0);
(iv) G is an α-η-continuous;

Then G has a fixed point. Moreover, G has a unique fixed point whenever α(c, a) > η(c, c)
for all c, a ∈ Fix(G).

Corollary 2. (See [17].) Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping
satisfying the following assertions:

(i) G is α-admissible w.r.t. η;
(ii) if, for c, a ∈ K with α(c, a) > η(c,Gc) and ϑ(Gc,Ga,=) > 0, we have

τ · F
(
ϑ(Gc,Ga,=)

)
> F

(
ϑ(c, a,=)

)
,

where c 6= a, τ ∈ (0, 1), and F ∈ ΛF ;
(iii) there exists c0 ∈ K such that α(c0,Gc0) > η(c0,Gc0);
(iv) G is α-η-continuous.

Then G has a fixed point. Moreover, G has a unique fixed point whenever α(c, a) > η(c, c)
for all c, a ∈ Fix(G).

The following results are obtained by applying η(c, a) = 1 to Definition 11.

Definition 12. Let (K, ϑ,g) be a FMS, a mapping G : K → K, andα : K×K → [0,+∞)
be a function. G is said to be a ξ-α-ΓF -fuzzy contractive mapping on K if, for c, a ∈ K
with 1 6 α(c, a) and ϑ(Gc,Ga,=) > 0, we have

ξ
(
Γ
[
ϑ(c,Gc,=), ϑ(a,Ga,=), ϑ(c,Ga,=), ϑ(a,Gc,=)

]
× F

(
ϑ
(
Gc,Ga,=)

)
, F
(
ϑ(c, c,=)

))
> 0,

where Γ ∈ ∆Γ and F ∈ ΛF .

Theorem 2. Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping satisfying the
following assertions:

(i) G is α-admissible;
(ii) G is a ξ-α-ΓF -fuzzy contractive mapping;

(iii) there exists c0 ∈ K such that α(c0,Gc0) > 1;
(iv) G is α-continuous.

Then G has a fixed point. Moreover, G has a unique fixed point inK whenever α(c, a) > 1
for all c, a ∈ Fix(G).

Proof. The proof is similar to that of Theorem 1.

Corollary 3. Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping satisfying the
following assertions:

(i) G is α-admissible;
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(ii) if, for c, a ∈ K with α(c, a) > 1 and ϑ(Gc,Ga,=) > 0, we have

ξ
(
τ · F

(
ϑ(Gc,Ga,=)

)
, F
(
ϑ(c, a,=)

))
> 0,

where c 6= a, τ ∈ (0, 1) and F ∈ ΛF ;
(iii) there exists c0 ∈ K such that α(c0,Gc0) > 1;
(iv) G is α-continuous.

Then G has a fixed point. Moreover, G has a unique fixed point inK whenever α(c, a) > 1
for all c, a ∈ Fix(G)

In the next theorem, we omit the continuity hypothesis of G.

Theorem 3. Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping satisfying the
following assertions:

(i) G is α-admissible w.r.t. η;
(ii) G is a ξ-α-η-ΓF -fuzzy contractive mapping;

(iii) there exists c0 ∈ K such that α(c0,Gc0) > η(c0,Gc0);
(iv) if {cn} is a sequence in K such that α(cn, cn+1) > η(cn, cn+1) with cn → c as

n→ +∞, then

η
(
Gcn,G2cn

)
6 α(Gcn, c) or η

(
G2cn,G3cn

)
6 α

(
G2cn, c

)
holds for all n ∈ N.

Then G has a fixed point. Moreover, G has a unique fixed point whenever α(c, a) > η(c, c)
for all c, a ∈ Fix(G).

Proof. Let c0 ∈ K such that α(c0,Gc0) > η(c0,Gc0). Similarly to the proof of the
Theorem 1, we can conclude that

α(cn, cn+1) > η(cn, cn+1) and cn → c∗ as n→ +∞,

where cn+1 = Gcn. By assumption (iv), either

η
(
Gcn,G2cn

)
6 α(cn+1, c

∗) or η(G2cn,G3cn) 6 α(G2cn, c∗)

holds for all n ∈ N. This implies that

η(cn+1, cn+2) 6 α(cn+1, c
∗) or η(cn+2, cn+3) 6 α(cn+2, c

∗)

holds for all n ∈ N. Equivalently, there exists a subsequence {cnk
} of {cn} such that

η(cnk
, cnk+1) 6 α(cnk

, c∗),

and by (2), we obtain

0 6 ξ
(
Γ
[
ϑ(cnk

, Gcnk
,=), ϑ(c∗,Gc∗,=), ϑ(cnk

,Gc∗,=), ϑ(c∗,Gcnk
,=)
]

× F
(
ϑ(Gcnk

,Gc∗,=)
)
, F
(
ϑ(cnkk

c∗,=)
))
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6 F−1(ϑ(cnk
c∗,=))

−
(
Γ
[
ϑ(cnk

,Gcnk
,=), ϑ(c∗,Gc∗,=), ϑ(cnk

,Gc∗,=)ϑ(c∗,Gcnk
,=)
]

× F
(
ϑ(Gcnk

,Gc∗,=)
))−1

.

Thus,

Γ
[
ϑ(cnk

,Gcnk
,=), ϑ(c∗,Gc∗,=), ϑ(cnk

,Gc∗,=), ϑ(c∗,Gcnk
,=)
]

× F
(
ϑ(Gcnk

,Gc∗,=)
)

> F
(
ϑ(cnk

c∗,=)
)
,

which implies for any = > 0,

F
(
ϑ(Gcnk

,Gc∗,=)
)
> τ · F

(
ϑ(Gcnk

,Gc∗,=)
)
> F

(
ϑ(cnk

, c∗,=)
)
.

Since F is a strictly increasing function,

ϑ(Gcnk
,Gc∗,=) > ϑ(cnk

, c∗,=).

Taking limit as k → +∞ in the above inequality, we obtain ϑ(c∗,Gc∗,=) = 1, that
is, c∗ = Gc∗. The uniqueness of the fixed point can be proved as in the case of Theo-
rem 1.

Corollary 4. Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping satisfying the
following assertions:

(i) G is α-admissible w.r.t. η;
(ii) if, for c, a ∈ K with α(c, a) > η(c,Gc) and ϑ(Gc,Ga,=) > 0, we have

ξ
(
τ · F

(
ϑ(Gc,Ga,=)

)
, F (ϑ(c, a,=)

))
> 0,

where c 6= a, τ ∈ (0, 1), ξ ∈ ΛFZ , and F ∈ ΛF ;
(iii) there exists c0 ∈ K such that α(c0,Gc0) > η(c0,Gc0);
(iv) if {cn} is a sequence in K such that α(cn, cn+1) > η(cn, cn+1) with cn → c as

n→ +∞, then

η
(
Gc,G2cn

)
6 α(Gcn, c) or η

(
G2cn,G3cn

)
6 α

(
G2cn, c

)
holds for all n ∈ N .

Then G has a fixed point. Moreover, G has a unique fixed point whenever α(c, a) > η(c, c)
for all c, a ∈ Fix(G).

Corollary 5. (See [17].) Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping
satisfying the following assertions:

(i) G is α-admissible w.r.t. η;
(ii) if, for c, a ∈ K with α(c, a) > η(c,Gc) and ϑ(Gc,Ga,=) > 0, we have

τ · F
(
ϑ(Gc,Ga,=)

)
> F

(
ϑ(c, a,=)

)
,

where c 6= a, τ ∈ (0, 1), and F ∈ ΛF ;
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(iii) there exists c0 ∈ K such that α(c0,Gc0) > η(c0,Gc0);
(iv) if {cn} is a sequence in K such that α(cn, cn+1) > η(cn, cn+1) with cn → c as

n→ +∞, then

η
(
Gc,G2cn

)
6 α(Gcn, c) or η

(
G2cn,G3cn

)
6 α

(
G2cn, c

)
holds for all n ∈ N .

Then G has a fixed point. Moreover, G has a unique fixed point whenever α(c, a) > η(c, c)
for all c, a ∈ Fix(G).

When we consider η(c, a) = 1 in Theorem 3 and Corollary 5, we obtain the following.

Theorem 4. Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping satisfying the
following assertions:

(i) G is α-admissible;
(ii) G is a ξ-α-ΓF -fuzzy contractive mapping;

(iii) there exists c0 ∈ K such that α(c0,Gc0) > 1;
(iv) if {cn} is a sequence in K such that α(cn, cn+1) > 1 with cn → c as n → +∞,

then α(cn, c) > 1 or α(cn+1, c) > 1 holds for all n ∈ N.

Then G has a fixed point. Moreover, G has a unique fixed point whenever α(c, a) > 1 for
all c, a ∈ Fix(G).

Proof. Let c0 ∈ K such that α(c0,Gc0) > 1. Similarly to Theorem 3, we can conclude
that

α(cn, cn+1) > 1 and cn → c∗ as n→ +∞,
where cn+1 = Gcn. By assumption (iv), α(Gcn, c) > 1 holds for all n ∈ N. Equivalently,
there exists a subsequence {cnk

} of {cn} such that α(cnk
, c) > 1, and by definition of

ξ-α-ΓF -fuzzy contractive mapping, we deduce that

0 6 ξ
(
Γ
[
ϑ(cnk

,Gcnk
,=), ϑ(c∗,Gc∗,=), ϑ(cnk

,Gc∗,=), ϑ(c∗,Gcnk
,=)
]

× F
(
ϑ(Gcnk

,Gc∗,=)
)
, F
(
ϑ(cnk

, c∗,=)
))

6 F−1(ϑ(cnk
, c∗,=)

)
−
(
Γ
[
ϑ(cnk

,Gcnk
,=), ϑ(c∗,Gc∗,=), ϑ(cnk

,Gc∗,=), ϑ(c∗,Gcnk
,=)
]

× F
(
ϑ(Gcnk

,Gc∗,=)
))−1

.

Thus,

Γ
[
ϑ(cnk

,Gcnk
,=), ϑ(c∗,Gc∗,=), ϑ(cnk

,Gc∗,=), ϑ(c∗,Gcnk
,=)
]

× F
(
ϑ(Gcnk

,Gc∗,=)
)

> F
(
ϑ(cnk

, c∗,=)
)
.

Then

F
(
ϑ(Gcnk

,Gc∗,=)
)
> τ · F

(
ϑ(Gcnk

,Gc∗,=)
)
> F

(
ϑ(cnk

, c∗,=)
)
.
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Since F is strictly increasing function,

ϑ(Gcnk
,Gc∗,=) > ϑ(cnk

, c∗,=).

Taking limit k → +∞ in above inequality, we find

ϑ(c∗,Gc∗,=) = 1, that is, c∗ = Gc∗.

Uniqueness follows from the above Theorem 1.

Corollary 6. Let (K, ϑ,g) be a CFMS. Let G : K → K be a self-mapping satisfying the
following assertions:

(i) G is α-admissible;
(ii) if, for c, a ∈ K with α(c, a) > 1 and ϑ(Gc,Ga,=) > 0, we have

ξ
(
τ · F

(
ϑ(Gc,Ga,=)

)
, F
(
ϑ(c, a,=)

))
> 0,

where c 6= a, τ ∈ (0, 1) and F ∈ ΛF ;
(iii) there exists c0 ∈ K such that α(c0,Gc0) > 1;
(iv) if {cn} is a sequence in K such that α(cn, cn+1) > 1 with cn → c as n → +∞,

then either α(Gcn, c) > 1 or α(G2cn, c) > 1 holds for all n ∈ N.

Then G has a fixed point Moreover, G has a unique fixed point whenever α(c, a) > 1 for
all c, a ∈ Fix(G).

4 Application

In this section, we prove the existence theorem of solutions to nonlinear fractional differ-
ential equations as an application of Corollary 6. We address the problem of existence of
solutions to the nonlinear fractional differential equation [16]

CDp
{
CDqc(=) + f

(
=, c(=)

)}
= g
(
=, c(=)

)
+

=∫
0

K
(
=, s, c(s)

)
ds,

c(0) =

m∑
j=1

βjc(σj), c(1) =

n∑
i=1

αic(ξi),

(9)

where 0 < σj < ξi < 1, 0 < p, q < 1, βj , αi ∈ R, j = 1, 2, . . . ,m, i = 1, 2, . . . , n.
CDp, CDq are the Caputo fractional derivatives, f , g, K, are given functions with f, g ∈
C([0, 1]× R,R) and K ∈ C(D × R,R), where D = {(=, s), = ∈ [0, 1], s ∈ [0, 1]}.

Taking into account (K, ‖·‖∞), where K = C([0, 1],R) is the Banach space of
continuous function from [0, 1] into R equipped with the supremum norm

‖c‖∞ = sup
=∈[0,1]

∣∣c(=)
∣∣.
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Let (K, ϑ,gp) be the CFMS, where ϑ is defined by

ϑ(c, a,=) =
(
1− exp−=

)‖c−a‖∞ for all c, a ∈ K and = > 0.

For a continuous function g : R+ → R, the fractional-order Caputo derivative β is
given by

CDβg(=) =
1

Γ(n− β)

=∫
0

(=− s)n−β−1gn(s) ds

(n− 1 < β < n, n = [β] + 1), where [β] denote the integer part of the real number β.
Now we state the following existence theorem.

Theorem 5. Suppose that:
(i) There exist a function δ : R× R→ R and τ ∈ (0, 1) such that∣∣f(=, c(=)

)
− f

(
=, a(=)

)∣∣ 6 L1|c− a|,∣∣g(=, c(=)
)
− g
(
=, a(=)

)∣∣ 6 L2|c− a|,∣∣K(=, s, c(s))−K(=, s, a(s)
)∣∣ 6 L3|c− a|,

and τ 6 1/(LΛ) with L = max{L1, L2, L3} and

Λ =
1

Γ (q + 1)
+

1

Γ (q + p+ 1)
+

1

Γ (q + p+ 2)

+ λ̄1

[
1

Γ (q + 1)
+

1

Γ (q + p+ 1)
+

1

Γ (q + p+ 2)

+

n∑
i=1

|αi|
(

ιqi
Γ (q + 1)

+
ιp+qi

Γ (q + p+ 1)
+

ιp+q+1
i

Γ (q + p+ 2)

)]

+ λ̄2

m∑
j=1

|βj |
(

σqj
Γ (q + 1)

+
σp+qj

Γ (q + p+ 1)
+

σp+q+1
j

Γ (q + p+ 2)

)
,

where

λ̄1 =
1

|k|

(
|ρ1|+

|ρ2|
Γ (q + 1)

)
, λ̄2 =

1

|k|

(
|ρ3|+

|ρ4|
Γ (q + 1)

)
,

ρ1 =

m∑
j=1

βjσ
q
j

Γ (q + 1)
, ρ2 = −1 +

m∑
j=1

βj ,

ρ3 =
1

Γ (q + 1)
−

n∑
i=1

αiι
q
i

Γ (q + 1)
, ρ4 = 1−

n∑
i=1

αi,

k = ρ2ρ3 − ρ1ρ4 6= 0;
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(ii) There exists c0 ∈ K such that δ(c0(=),Gc0(=)) > 0 for all = ∈ [0, 1], where the
operator G : K → K is defined by

Gc(=)

=

=∫
0

(=− s)q+p−1

Γ (q + p)
g
(
s, c(s)

)
ds+

=∫
0

(=− s)q+p−1

Γ (q + p)

s∫
0

K
(
s, ι, c(ι)

)
dιds

−
=∫

0

(=− s)q−1

Γ (q)
f
(
s, c(s)

)
ds− λ1(=)

[
n∑
i=1

αi

( ηi∫
0

(ηi − s)q+p−1

Γ (q + p)
g
(
s, c(s)

)
ds

+

ηi∫
0

(ηi − s)q+p−1

Γ (q + p)

s∫
0

K
(
s, ι, c(ι)

)
dι ds−

ηi∫
0

(ηi − s)q−1

Γ (q)
f
(
s, c(s)

)
ds

)

−
1∫

0

(1− s)q+p−1

Γ (q + p)
g
(
s, c(s)

)
ds−

1∫
0

(1− s)q+p−1

Γ (q + p)

s∫
0

K
(
s, ι, c(ι)

)
dιds

+

1∫
0

(1− s)q−1

Γ (q)
f
(
s, c(s)

)
ds

]
+ λ2(=)

m∑
j=1

βj

[ σj∫
0

(
(σj − s)q−1

Γ (q)
f
(
s, c(s)

)

− (σj − s)q+p−1

Γ (q + p)
g
(
s, c(s)

)
− (σj − s)q+p−1

Γ (q + p)

s∫
0

K
(
s, ι, c(ι)

)
dι

)
ds

]
,

where

λ1(=) =
1

k

(
ρ1 −

ρ2=q

Γ (q + 1)

)
, λ2(=) =

1

k

(
ρ3 −

ρ4=q

Γ (q + 1)

)
, = ∈ [0, 1];

(iii) For each = ∈ [0, 1] and c, a ∈ K, δ(c(=), a(=)) > 0 implies δ(Gc(=),
Ga(=)) > 0;

(iv) If {cn} is a sequence in K such that cn → c in K and δ(cn, cn+1) > 0 for all
n ∈ N, then δ(cn, c) > 0 for all n ∈ N. Then (9) has at least one solution.

Proof. It is well known that c ∈ K is a solution of (9) if and only if c ∈ K is a solution of
the integral equation

c(=) =

=∫
0

(=− s)q+p−1

Γ (q + p)
g
(
s, c(s)

)
ds+

=∫
0

(=− s)q+p−1

Γ (q + p)

s∫
0

K
(
s, ι,=(ι)

)
dι ds

−
=∫

0

(=− s)q−1

Γ (q)
f
(
s, c(s)

)
ds− λ1(=)

[
n∑
i=1

αi

( ηi∫
0

(ηi − s)q+p−1

Γ (q + p)
g
(
s, c(s)

)
ds
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+

ηi∫
0

(ηi − s)q+p−1

Γ (q + p)

s∫
0

K
(
s, ι, c(ι)

)
dι ds−

ηi∫
0

(ηi − s)q−1

Γ (q)
f
(
s, c(s)

)
ds

)

−
1∫

0

(1− s)q+p−1

Γ (q + p)
g
(
s, c(s)

)
ds−

1∫
0

(1− s)q+p−1

Γ (q + p)

s∫
0

K
(
s, ι, c(ι)

)
dιds

+

1∫
0

(1− s)q−1

Γ (q)
f
(
s, c(s)

)
ds

]
+ λ2(=)

m∑
j=1

βj

[ σj∫
0

(
(σj − s)q−1

Γ (q)
f
(
s, c(s)

)

− (σj − s)q+p−1

Γ (q + p)
g
(
s, c(s)

)
− (σj − s)q+p−1

Γ (q + p)

s∫
0

K
(
s, ι, c(ι)

)
dι

)
ds

]
,

where = ∈ [0, 1].
Hence, problem (9) is equivalent to find c∗ ∈ K, which is a fixed point of G. Now, let

c, a ∈ K such that δ(c(=), a(=)) > 0 for all = ∈ [0, 1]. By (1), we find∥∥Gc(=)− Ga(=)
∥∥
∞

= sup

[ =∫
s

(=− s)q+p−1

Γ (q + p)

s∫
0

∣∣K(s, ι, c(ι))−K(s, ι, a(ι)
)∣∣dι ds

+

=∫
0

(=− s)q+p−1

Γ (q + p)

∣∣g(s, c(s))− g(s, a(s)
)∣∣ds

+

=∫
0

(=− s)q−1

Γ (q)

∣∣f(s, c(s))− f(s, a(s)
)∣∣ds

+
∣∣λ1(=)

∣∣{ n∑
i=1

αi

ηi∫
0

(
(ηi − s)q+p−1

Γ (q + p)

s∫
0

∣∣K(s, ι, c(ι))−K(s, ι, a(ι)
)∣∣dι

+
(ηi − s)q+p−1

Γ (q + p)

∣∣g(s, c(s))− g(s, a(s)
)∣∣

+
(ηi − s)q−1

Γ (q)

∣∣f(s, c(s))− f(s, a(s)
)∣∣) ds

+

1∫
0

(1− s)q−1

Γ (q)

∣∣f(s, c(s))− f(s, a(s)
)∣∣ds

+

1∫
0

(1− s)q+p−1

Γ (q + p)

∣∣g(s, c(s))− g(s, a(s)
)∣∣ds
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+

1∫
0

(1− s)q+p−1

Γ (q + p)

s∫
0

∣∣K(s, ι, c(ι))−K(s, ι, a(ι)
)∣∣ dιds

}

+
∣∣λ2(=)

∣∣ m∑
j=1

βj

σj∫
0

((
σj − s

)q+p−1
Γ (q + p)

s∫
0

∣∣K(s, ι, c(ι))−K(s, ι, a(ι)
)∣∣dι

+
(σj − s)q−1

Γ (q)

∣∣f(s, c(s))− f(s, c(s))∣∣
+

(σj − s)q+p−1

Γ (q + p)

∣∣g(s, c(s))− g(s, a(s)
)∣∣) ds

]

6 LΛ‖c− a‖∞ 6
‖c− a‖∞

τ
.

Thus, for each c, a ∈ K with δ(c(=)− a(=)) > 0 for all = ∈ [0, 1], we have

∥∥Gc(=)− Ga(=)
∥∥
∞ 6

‖c− a‖∞
τ

. (10)

Moreover it is known that, for all = ∈ [0, 1], we have

0 6
(
1− exp−=

)
6 1. (11)

Using (10) and (11), we get(
1− exp−=

)τ ·‖Gc(=)−Ga(=)‖∞ >
(
1− exp−=

)‖c−a‖∞
,

τ · log(1−exp−=)
(
1− exp−=

)‖Gc(=)−Ga(=)‖∞ > log(1−exp−=)
(
1− exp−=

)‖c−a‖∞
.

Hence, (
log(1−exp−=)

(
1− exp−=

)‖c−a‖∞)−1
>
(
τ · log(1−exp−=)

(
1− exp−=

)‖Gc(=)−Ga(=)‖∞)−1
.

Therefore, (
log(1−exp−=)

(
1− exp−=

)‖c−a‖∞)−1
−
(
τ · log(1−exp−=)

(
1− exp−=

)‖Gc(=)−Ga(=)‖∞)−1 > 0.

Now, consider the functions ξ : (0, 1] × (0, 1] → R and F : R+ → R+ defined by
ξ(c, a) = 1/a − 1/c for all a, c ∈ (0, 1) and F (z) = log(1−exp−=)(z) for each = > 0
such that F ∈ ΛF . The above inequality implies that

ξ
(
τ · F

(
ϑ(Gc,Ga,=)

)
, F
(
ϑ(c, a,=)

))
> 0
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for all c, a ∈ K with ϑ(Gc,Ga,=) > 0. Therefore, G is an ξ-α-ΓF -contractive mapping.
Then, by using assumption (iii) of Theorem 5, α(c, a) > 1 implies δ(c(=), a(=)) > 0,
which implies δ(Gc(=),Ga(=))) > 0, which gives that α(Gc,Ga) > 1 for all c, a ∈ K.
Therefore, G is α-admissible. Applying assumption (ii) of Theorem 5, there exists c0 ∈ K
such that α(c0,Gc0) > 1. Finally, by assumption (iv) of Theorem 5, if {cn} be a sequence
in K such that α(cn, cn+1) > 1 for all n ∈ N implies δ(cn, cn+1) > 0 for all n ∈ N, then
δ(cn, c) > 0 for all n ∈ N implies α(cn, c) > 1 for all n ∈ N. Hence, condition (iv) of
Corollary 6 holds true.

By Corollary 6, we conclude the existence of c∗ ∈ K such that c∗ = Gc∗ and c∗ is the
solution of problem (9).
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