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Abstract. In this paper, an age-space structured disease model with age-dependent relapse rate is
investigated. We first prove the well-posedness of the model including the existence and uniqueness
of the solution, positivity, and boundedness. By performing the Laplace transformation to renewal
equation, we derive the next generation operator, whose spectral radius is defined as the basic
reproduction number. By checking the distribution of the roots of the characteristic equation,
exploring the strong persistence property of the solution and designing the Lyapunov functionals,
we establish the local and global dynamics of the model.

Keywords: age-space structured model, basic reproduction number, threshold dynamics, global
asymptotic stability.

1 Introduction and derivation of the model

Relapse phenomenon of disease exists widely in animal and human diseases such as
tuberculosis, human herpes virus infection [15, 22]. It directly threatens public health
and increases the burdens of patients due to reactivation or reinfection. A clinical study
in [9] estimates that approximately 7.5% of tuberculosis patients was had previous tu-
berculosis. On the other hand, it is also argued in [5] that tuberculosis patients infected
with HIV are easier to relapse. Mathematical models can help us understand the long-
time disease dynamics as investigation such models may provide guides and suggestions
for disease control. At time t, let S(t), I(t), and R(t) be, respectively, the numbers
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of susceptible, infectious, and recovered individuals. In an earlier and standard model
[19] for herpes infections in human and animal populations formulated by a susceptible-
infectious-recovered-infectious (SIRI) structure, it is assumed that recovered individuals
return back to the infectious individuals due to the reactivation of latent infection. The
authors established the threshold-type result that the basic reproduction number (BRN)
is the key threshold value that determines whether the disease dies out or not. Further,
the authors in [14] extended the model in [19] by incorporating more general incidence
functions and obtained the same threshold result.

In order to investigate the different consequences of distinct settings on relapse period,
van den Driessche and Zou [21] designed a step function distribution for the constant
relapse period and formulated a delay differential equation (DDE) SIRI model but without
considering the exposed class. It is also revealed in [21] that BRN is the key threshold
value, and a constant relapse period is not the reason of sustained oscillations.

It should be mentioned in [21] that the proportion of recovered individuals coming
from infectious individuals with recovery rate γ was formulated by

R(t) =

t∫
0

γI(ξ)e−d(t−ξ)P (t− ξ) dξ with R(0) = 0,

where P (t) stands for the fraction that after time t, recovered individuals are still re-
maining in the recovered class, and d represents the death rate of recovered individuals.
Differentiating the above equation gives

dR(t)

dt
= −dR(t) + γI(t) +

t∫
0

γI(ξ)e−d(t−ξ)dtP (t− ξ) dξ.

With the different settings for P (t), for example, a negative exponential, compact support,
and a step function, the model in [21] will reduce to an ODE model, a DDE model with
finite distributed delay, and a DDE model with a single delay, respectively. In the mean
time, P (t) was also used in [21] for representing the probability that an exposed individual
still remains in the exposed class. In a setting for P (t) with a step function, van den
Driessche, Wang, and Zou [20] formulated a DDE model and studied the threshold-type
results. Especially, the authors in [11] resolved the global stability problem of endemic
equilibrium even for general nonlinear incidence function. The models in [20, 21] have
been extended to be multigroup disease models with general exposed distribution and
relapse or with general relapse distribution and latency involving heterogeneity (see, for
example, [26]).

Considering the fact that the relapse rate for recovery individuals varies from one to
one, Liu et al. [10] introduced age-dependent relapse rate to model the waiting time for the
risk of activation for tuberculosis and herpes virus infection. Denote byR(t, a) the density
of recovered individuals at time t with relapse age a > 0, then M(t) =

∫∞
0
R(t, b) db

represents the total number of recovered individuals. Assuming that the age-dependent
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relapse rate of recovered individuals is given by the function r(a) ∈ L∞+ (0,+∞), the rate
of change of R(t, a) in [10] is given by

∂R(t, a)

∂t
+
∂R(t, a)

∂a
= −

(
µR + r(a)

)
R(t, a) with R(t, 0) = kI(t),

where µR represents the natural death rate. In [10], the threshold-type results relying on
the BRN were established by appealing to the integrated semigroup theory, persistence
theory in infinite dimensional dynamical system, and Lyapunov functionals. A similar
formulation for recovered individuals with age-dependent relapse rate can be found in
[25]. It should be noted in [10, 25] that relapse phenomenon was described by partial
differential equation (PDE) with age-dependent relapse rate instead of DDE with general
relapse distribution.

Reaction–diffusion epidemic models have been widely adopted to model the spatial
dynamics of infectious disease. It is widely accepted that reaction–diffusion equations
for disease dynamics are meaningful and important for demonstrating the spatial het-
erogeneity in disease transmission, although more theoretic analysis tools are needed.
Unlike in [10, 25], where the rate of change of R(t, a) is dominated by a first-order PDE,
here we allow reaction–diffusion equation of R(t, a) in a bounded domain Ω ⊂ R with
smooth boundary ∂Ω. We introduce the spatial variable x ∈ Ω and let S := S(t, x) and
I := I(t, x) be, respectively, the spatial densities of susceptible and infectious individuals
at location x ∈ Ω and time t, dispersing across habitat with diffusion coefficients dS and
dI . Following from the standard argument on structured population and spatial diffusion
[13], the density of recovered individuals at time t and x ∈ Ω with relapse age a > 0,
denoted by R := R(t, a, x), fulfills(

∂

∂t
+

∂

∂a

)
R = dR∆R−

(
µR + r(a)

)
R, t > 0, x ∈ Ω,

R(t, 0, x) = kI, t > 0, x ∈ Ω,

where dR is the diffusion coefficient. To make things not to be complicated, we use the
simple growth term for susceptible individuals with the recruitment rate λ and death rate
µS , and the interactions between susceptible and infectious individuals fulfill the mass
action infection mechanism with disease transmission rate β > 0. For the biologically
significant, we denote by

S(0, x) = φ1(x), I(0, x) = φ2(x), R(0, a, x) = φ3(a, x), a > 0, x ∈ Ω,

the initial data for susceptible, infectious, and recovered individuals at time t = 0, and
r+ := ess supa>0 r(a) < +∞, the essential upper bounds of r(a) ∈ L∞+ (0,+∞). Let
n be the outward normal on ∂Ω. We impose the following no flux condition on the
boundary:

∂W
∂n

= 0, W = S, I,R, t > 0, x ∈ ∂Ω, (1)
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where means that no populations across the boundary of the domain. With these prepara-
tions, we shall investigate the following model:

∂S

∂t
= dS∆S + λ− µSS − βSI,

∂I

∂t
= dI∆I + βSI − (µI + k)I +

∞∫
0

r(a)R da,

(
∂

∂t
+

∂

∂a

)
R = dR∆R−

(
µR + r(a)

)
R,

R(t, 0, x) = kI

(2)

for t > 0, x ∈ Ω and boundary condition (1).
For convenience, we let Π(a) = e−

∫ a
0
[µR+r(σ)]dσ , and let Γ3(a, x, y) be the Green

function of dR∆ subject to (1). An application of the standard argument of characteristics
to solve the third equation in (2) leads to

R =

Π(a)
∫
Ω
Γ3(a, x, y)kI(t− a, y) dy, t− a > 0, x ∈ Ω,

Π(a)
Π(a−t)

∫
Ω
Γ3(t, x, y)φ3(a− t, y) dy, a− t > 0, x ∈ Ω.

(3)

Let (dS , dI , dR) = (d1, d2, d3). With the help of (3), we substitute (3) into the I
equation of (2), which results in the following coupled system:

∂S

∂t
= d1∆S + λ− µSS − βSI,

∂I

∂t
= d2∆I + βSI − (µI + k)I + F1 + F2,

F1 =

t∫
0

r(a)Π(a)

∫
Ω

Γ3(a, x, y)kI(t− a, y) dy da,

F2 =

+∞∫
t

r(a)
Π(a)

Π(a− t)

∫
Ω

Γ3(t, x, y)φ3(a− t, y) dy da

(4)

for t > 0 and x ∈ Ω.
Our main motivation of this paper is to resolve the question that whether the threshold-

type results as those in [10, 25] can be preserved in the reaction–diffusion model with
age-dependent relapse rate. To this end, we give a detailed analysis of the well-posedness
of the model in Section 2. In Section 3, the BRN is derived through seeking the next
generation operator. By checking the distribution of the roots of the characteristic equa-
tion, we will investigate the local dynamics of the model in Section 4. Section 5 is spent
on studying the strong persistence property of the model. By designing the Lyapunov
functionals, the global attractivity of the equilibria is obtained in Section 6. Section 7
ends the paper with a brief conclusion and some discussions.
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2 Well-posedness of the model

This section is spent on investigating the positivity, existence and uniqueness, and bound-
edness of the solution of reformulated system (4). Before going into details, we define the
appropriate phase space for (4). Let X := C(Ω̄,R) be the space of continuous functions
with usual norm ‖ϕ‖X = max{|ϕ|}, ϕ ∈ X, and positive cone X+. Let Y := L1(R+,X)
be the Lebesgue measure space with the norm ‖ϕ‖Y :=

∫ +∞
0
‖ϕ(a)‖X da, ϕ ∈ Y, and

positive cone Y+. Denote by Γi (i = 1, 2) the Green functions of di∆ (i = 1, 2) subject
to (1). By a standard argument as in [16, Thm. 1.5] and [17, Cor. 7.2.3], the Laplace
operator di∆ (i = 1, 2) subject to (1) generates a strongly positive and compact semigroup
on X+: (

Ti(t)[φ]
)
(x) =

∫
Ω

Γi(t, x, y)φ(y) dy, i = 1, 2.

It then follows from the properties of Γi that∥∥Ti(t)φ∥∥X 6
∫
Ω

Γi(t, x, y) dy ‖φ‖X = ‖φ‖X. (5)

Further, T (t) = (T1(t), T2(t)) : X+×X+ → X+×X+, t > 0, forms a strongly con-
tinuous semigroup.

The well-posedness result of (4) is stated as follows.

Theorem 1. For each φ ∈ X+×X+, system (4) has a unique global nonnegative classical
solution (S, I), which is defined on [0,+∞)×Ω. Further, the semiflow generated by (4)

Φ[φ](t) =
(
S(t, ·), I(t, ·)

)
, t > 0,

admits a global compact attractor in X+ × X+.

The assertions in Theorem 1 will be verified by the following lemmas.

Lemma 1. Let φ ∈ X+ × X+. (S, I) is the unique solution of system (4) on [0, T ) × Ω̄
with T > 0.

Proof. Directly solving the S and I equation of (4) gives

S = FS +

t∫
0

e−µS(t−s)
∫
Ω

Γ1(t− s, x, y)
(
λ− βS(s, y)I(s, y)

)
dy ds

=: F1(S, I)(t, x),

I = FI +

t∫
0

e−(µI+k)(t−s)
∫
Ω

Γ2(t− s, x, y)
[
B(S, I)(s, y)

]
dy ds

=: F2(S, I)(t, x),

where FS := FS(t, x) = e−µSt
∫
Ω
Γ1(t, x, y)φ1(y) dy, FI := FI(t, x) = e−(µI+k)t∫

Ω
Γ2(t, x, y)φ2(y) dy, and B(S, I)(s, y) = βS(s, y)I(s, y) + F1(s, y) + F2(s, y).
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For T > 0, we set XT := C([0, T ],X) with ‖ψ‖XT
:= sup06t6T ‖ψ(t, ·)‖X, ψ ∈ XT ,

and WT := XT × XT with ‖(ψ1, ψ2)‖WT
:= ‖ψ1‖XT

+ ‖ψ2‖XT
, (ψ1, ψ2) ∈WT . Let

F
(
ψ1

ψ2

)
:=

(
F1(ψ1, ψ2)
F2(ψ1, ψ2)

)
, ψ1, ψ2 ∈WT . (6)

Next, we show that (4) has a unique solution on [0, T ] × Ω through verifying that F :
WT →WT has a fixed point. For any (S′, I ′), (S′′, I ′′) ∈WT , we have

‖βS′I ′ − βS′′I ′′‖XT
6 β

(
‖I ′‖XT

‖S′ − S′′‖XT
+ ‖S′′‖XT

‖I ′ − I ′′‖XT

)
.

By (5), we obtain∥∥F1(S′, I ′)−F1(S′′, I ′′)
∥∥
XT

6

t∫
0

e−µS(t−s) ds ‖βS′I ′ − βS′′I ′′‖XT

6
β(1− e−µSt)

µS

(
‖I ′‖XT

‖S′ − S′′‖XT
+ ‖S′′‖XT

‖I ′ − I ′′‖XT

)
6 g1(T )

∥∥∥∥(S′I ′
)
−
(
S′′

I ′′

)∥∥∥∥
WT

,

where

g1(T ) :=
β(1− e−µST )

µS
max

(
‖I ′‖XT

, ‖S′′‖XT

)
.

Note that for any 0 < T∗ < T , we can regard (S′, I ′), (S′′, I ′′) as functions in WT∗ ,
and

g1(T∗) =
β(1− e−µST∗)

µS
max

(
‖I ′‖XT∗

, ‖S′′‖XT∗

)
6
β(1− e−µST∗)

µS
max

(
‖I ′‖XT

, ‖S′′‖XT

)
=

1− e−µST∗

1− e−µST
g1(T ),

and thus, g1(T∗) → 0 as T∗ → +0. Hence, without loss of generality, we select T > 0
small enough as a new initial time such that g1(T ) < 1 (regarding T∗ such that g(T∗) < 1
as a new T ). In a similar manner,∥∥B(S′, I ′)−B(S′′, I ′′)

∥∥
XT

6 sup
06s6T

{
‖βS′I ′ − βS′′I ′′‖XT

+

s∫
0

kr(a)

∫
Ω

Γ3(a, x, y)‖I ′ − I ′′‖XT
Π(a) dy da

}
6 β

(
‖I ′‖XT

‖S′ − S′′‖XT
+ ‖S′′‖XT

‖I ′ − I ′′‖XT

)
+ M‖I ′ − I ′′‖XT

,
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where M = kr+T , and hence,∥∥F2(S′, I ′)−F2(S′′, I ′′)
∥∥
XT

6 g2(T )

∥∥∥∥(S′I ′
)
−
(
S′′

I ′′

)∥∥∥∥
WT

,

g2(T ) :=
(1− e−(µI+k)T )

(µI + k)
max

{
β‖I ′‖XT

, β‖S′′‖XT
+ M

}
.

Similar to the case of g1, we can set sufficiently small initial time T ensuring that
g2(T ) < 1. Consequently, we obtain∥∥∥∥(S′I ′

)
−F

(
S′′

I ′′

)∥∥∥∥
WT

6 max
{
g1(T ), g2(T )

}∥∥∥∥(S′I ′
)
−
(
S′′

I ′′

)∥∥∥∥
WT

.

As max{g1(T ), g2(T )} < 1, the operator F admits a unique fixed point in WT in the
sense that F is a strict contraction map in WT . Thus, the local existence of solution (S, I)
of system (4) directly follows.

The following result indicates that the solution of (4) is positive.

Lemma 2. For each φ ∈ X+×X+, the solution of (4) is positive for (t, x) ∈ (0, T )×Ω,
that is, S(t, x) > 0, I(t, x) > 0 for all (0, T )×Ω.

Proof. We first show that S(t, x) > 0 for (t, x) ∈ (0, T )×Ω. Denote QT = (0, T ]×Ω
and ST = (0, T ] × ∂Ω. We proceed it indirectly and suppose that S(t, x) is a negative
solution. Hence, there exists (t1, x∗) ∈ QT such that S(t1, x∗) = 0 and S′(t1, x∗) 6 0.
However, from the S equation of (4) and strong maximum principle we get S′(t1, x∗) =
dS∆S(t1, x∗) +λ > 0, a contradiction. Meanwhile, if S(t′1, x

′
∗) = 0 for some (t′1, x

′
∗) ∈

ST , then by the Hopf boundary lemma, we can get ∂S(t′1, x
′
∗)/∂n < 0, a contradiction.

We next verify the positivity of I on (t, x) ∈ [0, T )×Ω by appealing to the arguments
on Picard sequences. We first set

I0 = FI +

t∫
0

e−(µI+k)(t−s)
∫
Ω

Γ2(t− s, x, y)F2(s, y) dy ds > 0.

Assume that In > 0, n ∈ N. Due to the positivity of β, k, Π(·), and Γi (i = 2, 3), it is
obvious that

In+1 = I0 +

t∫
0

e−(µI+k)(t−s)
∫
Ω

Γ2(t− s, x, y)βS(s, y)In(s, y) dy ds

+

t∫
0

e−(µI+k)(t−s)
∫
Ω

Γ2(t− s, x, y)

s∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)kIn(s− b, z) dz dbdy ds

> 0.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Age-space structured disease model with relapse 921

It remains to investigate the convergence of the sequence {In}∞0 as n→∞ by setting

Ĩn = e−ρtIn, ρ ∈ R+.

It is readily seen that

Ĩn+1 = e−ρtI0 + β

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)e−ρtS(t− s, y)In(t− s, y) dy ds

+ k

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

t−s∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)e−ρtIn(t− s− b, z) dz dbdy ds

= e−ρtI0 + β

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)e−ρsS(t− s, y)Ĩn(t− s, y) dy ds

+ k

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

t−s∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)e−ρ(s+b)Ĩn(t− s− b, z) dz dbdy ds.

Let
I]n = max

(t,x)∈[0,T ]×Ω
Ĩn(t, x), n ∈ N.

By elementary calculation, then we have

∥∥I]n+1 − I]n
∥∥
∞ 6 βS+

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)e−ρs dy ds
∥∥I]n − I]n−1

∥∥
∞

+ k

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

t−s∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)e−ρ(s+b) dz dbdy ds
∥∥I]n − I]n−1

∥∥
∞

6
βS+ρ+ kr+

ρ(µI + k + ρ)

∥∥I]n − I]n−1
∥∥
∞,

where S+ = maxt∈[0,T ] ‖S(t, ·)‖XT
. After passing the iteration, we have∥∥I]n+1 − I]n

∥∥
∞ 6Mρ

∥∥I]n − I]n−1
∥∥
∞ 6 · · · 6Mn

ρ

∥∥I]1 − I]0
∥∥
∞,
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where Mρ = (βS+ρ+ kr+)/ρ(µI + k + ρ). It is easy to see that

‖I]m − I]n‖∞ 6
Mn
ρ

1−Mρ
‖I]1 − I

]
0‖∞, m, n ∈ N.

As a result, we can select a sufficiently small ρ > 0 such that Mρ < 1 ensuring that
‖I]m − I]n‖∞ → 0 as n → ∞. This tells us that limn→∞ In(t, x) = I(t, x) on (t, x) ∈
[0, T ) × Ω. The positivity of I directly follows from the positivity of In. This proves
Lemma 2.

We are now in a position to confirm that the solution (S, I) of (4) exists globally. We
shall confirm this by checking that the solution is bounded in [0, T ).

Lemma 3. For each φ ∈ X+ × X+, the solution (S, I) of (4) is bounded in [0, T ).

Proof. It is well known that

∂w

∂t
= dw∆w + λ− µSw, x ∈ Ω, t > 0,

∂w

∂n
= 0, x ∈ ∂Ω, t > 0,

admits a unique positive steady state w∗ = λ/µS , which is globally attractive in X. By
the standard comparison principle, S is bounded above by λ/µS .

Assume for the contrary that I is unbounded, that is, there exist t∗ > 0 and
x∗ ∈ Ω such that limt→t∗ I(t, x∗) = +∞. Then by S-equation of (4), we know that
limt→t∗ ∂tS(t, x∗) = −∞. Hence, S(t, x∗) becomes negative near the t∗, a contradiction
with the positivity of S. Hence, I is bounded in [0, T ).

Based on the above lemmas, we now briefly prove Theorem 1.

Proof of Theorem 1. From Theorem 1 we establish the local existence and uniqueness of
the solution (S, I) of (4). Lemma 2 confirms that the solution (S, I) of (4) is positive.
By Lemma 3, the solution (S, I) of (4) is bounded in [0, T ). Hence, the first assertion in
Theorem 1 holds directly. The second assertion is a direct consequence of applying the
general results in [8, Thm. 2.4.6]. This proves Theorem 1.

3 Basic reproduction number and equilibria

Obviously, system (4) admits a disease-free equilibrium E0 = (S0, 0), where S0 =
λ/µS . Linearizing (4) at E0, we obtain

∂S

∂t
= d1∆S + λ− µSS − βS0I,

∂I

∂t
= d2∆I + βS0I − (µI + k)I + F1

for t > 0 and x ∈ Ω, where F1 is defined in (4).

https://www.journals.vu.lt/nonlinear-analysis
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Next, we consider only the infectious disease compartment and solve it directly, yield-
ing that

I = FI + βS0

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)I(t− s, y) dy ds

+ k

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

t−s∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)I(t− s− b, z) dz dbdy ds. (7)

Note that (7) is a renewal equation. Performing Laplace transformation to (7) gives

∞∫
0

e−ωtI(t, x) dt = βS0

∞∫
0

e−ωt
t∫

0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)I(t− s, y) dy dsdt

+

∞∫
0

e−ωt
t∫

0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

t−s∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)I(t− s− b, z) dz dbdy dsdt

:= Ψ1(x) + Ψ2(x).

After passing multiple interchanging the order of integration, one will get

Ψ1(x) = βS0

∞∫
0

e−(µI+k)se−ωs
∫
Ω

Γ2(s, x, y)

∞∫
0

e−ωtI(t, y) dtdy ds

and

Ψ2(x) = k

∞∫
0

e−(µI+k)se−ωs
∫
Ω

Γ2(s, x, y)

∞∫
0

r(b)Π(b)e−ωb

×
∫
Ω

Γ3(b, y, z)

∞∫
0

e−ωtI(t, z) dtdz dbdy ds.

By letting ω = 0, we have

∞∫
0

I(t, x) dt = βS0

∞∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

∞∫
0

I(t, y) dtdy ds
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+ k

∞∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

∞∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)

∞∫
0

I(t, z) dtdz dbdy ds.

This allows us to define

L[ϕ](x) := βS0

∞∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)ϕ(y) dy ds

+ k

∞∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

∞∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)ϕ(z) dz dbdy ds (8)

for ϕ ∈ X. By [27], L is called the next-generation operator, and its spectral radius is
referred as the BRN of (4) denoted by R0 := r(L).

In order to get the explicit expression of R0, we need prove the following result.

Lemma 4. L is strictly positive and compact.

Proof. Clearly, L is positive. Let ψn = L[ϕn], where {ϕn}n∈N, n ∈ N, is a bounded
sequence in X in the sense that for some B > 0, |ϕn|X 6 B. For all x ∈ Ω,

ψn(x) 6 βS0

∞∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y) dy dsB

+ k

∞∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

∞∫
0

r(b)Π(b)

∫
Ω

Γ3(b, y, z) dz dbdy dsB.

This proves the uniform boundedness of {ψn}n∈N. Further, for x, x̃ ∈ Ω with |x−x̃| < δ,
we have

∣∣ψn(x)− ψn(x̃)
∣∣ 6 βS0B

∞∫
0

e−(µI+k)s

∫
Ω

∣∣Γ2(s, x, y)− Γ2(s, x̃, y)
∣∣dy da

+ kB

∞∫
0

e−(µI+k)s

∫
Ω

∣∣Γ2(s, x, y)− Γ2(s, x̃, y)
∣∣ ∞∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z) dz dbdy ds.
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Due to the uniform continuity of Γ2, we can choose ε > 0 such that∣∣Γ2(s, x, y)− Γ2(s, x̃, y)
∣∣ 6 µSε(µI + k)

(βλ+ kµSQ)B|Ω|
,

where Q =
∫∞
0
r(b)Π(b) db. This leads to |ψn(x) − ψn(x̃)| < ε, that is, ψn(x)n∈N is

equicontinuous. Hence, L is compact. This proves Lemma 4.

Further, from Krein–Rutman theorem [2, Thm. 3.2] we substitute ϕ(x) ≡ [~] > 0
into (8) and use

∫
Ω
Γi(·, x, y) = 1 (i = 2, 3) obtaining that

L[~] = βS0

∞∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y) dy ds[~]

+ k

∞∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

∞∫
0

r(b)Π(b)

∫
Ω

Γ3(b, y, z) dz dbdy ds[~]

= βS0

∞∫
0

e−(µI+k)s ds[~] + k

∞∫
0

e−(µI+k)s

∞∫
0

r(b)Π(b) dbds[~].

Hence, R0 can be obtained by

R0 = βS0

∞∫
0

e−(µI+k)s ds+ k

∞∫
0

e−(µI+k)s

∞∫
0

r(b)Π(b) dbds =
βS0 + kQ

µI + k
. (9)

Note that this R0 is similar to the one obtained in [6, 12]. We next claim that if R0 > 1,
then there exists a positive space-independent equilibrium for (2), denoted by E∗ =
(S∗, I∗, R∗(a)), which fulfills

0 = λ− µSS∗ − βS∗I∗, 0 = βS∗I∗ − (µI + k)I∗ +

+∞∫
0

r(a)R∗(a) da,

dR∗(a)

da
= −

(
µR + r(a)

)
R∗(a), R∗(0) = kI∗.

(10)

In fact, from the last two equations of (10) we have

R∗(a) = kI∗Π(a).

This, combined with the second equation of (10), gives that

S∗ =
λ

µS + βI∗
=
µI + k − kQ

β
. (11)

Consequently, by the first equation of (10) and the expression of R0, we have

I∗ =
µS(µI + k)(R0 − 1)

β(µI + k − kQ)
.
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4 Local stability of equilibria

Clearly, system (2) admits a disease-free equilibriumE0 = (S0, 0, 0). We shall prove that
the equilibria of system (2) are locally asymptotically stable (LAS) in terms of the sign of
R0 − 1.

Theorem 2. Let R0 be defined by (9). Then we have:

(i) If R0 < 1, then E0 is LAS;
(ii) If R0 > 1, then E∗ is LAS.

Proof. We begin with the proof of (i). It is crucial to determine the characteristic equation
of E0. To this end, we linearize (2) around E0 = (S0, 0, 0) obtaining that

∂S

∂t
= d1∆S − µSS − βS0I,

∂I

∂t
= d2∆I + βS0I − (µI + k)I +

∞∫
0

r(a)R da,(
∂

∂t
+

∂

∂a

)
R = d3∆R−

(
µR + r(a)

)
R,

R(t, 0, x) = kI(t, x).

(12)

By [3], we let ζj (j = 1, 2, . . . ) be the eigenvalues of −∆ with (1), i.e., ∆z(x) =
−ζiz(x). Plugging (eηt(φ(x), ψ(x), ξ(a, x)) into (12) gives

ηφ(x) = −d1ζiφ(x)− µSφ(x)− βS0ψ(x),

ηψ(x) = −d2ζiψ(x) + βS0ψ(x)− (µI + k)ψ(x) +

∞∫
0

r(a)ξ(a, x) da,

ηξ(a, x) +
∂ξ(a, x)

∂a
= −d3ζiξ(a, x)−

(
µR + r(a)

)
ξ(a, x),

ξ(0, x) = kψ(x).

(13)

Directly solving ξ(a, x) of (13) and substituting it into the second equation of (13) allow
us to rewrite (13) in terms of (φ(x), ψ(x)). Then we have∣∣∣∣η + d1ζi + µS βS0

0 C(η, ζi)

∣∣∣∣ = 0,

C(η, ζi) := η + d2ζi − βS0 + µI + k − k
∞∫
0

r(a)e−ηaΠ̃(a) da

and Π̃(a) = e−d3ζiaΠ(a). Then we only pay attention to the roots of C(η, ζi) = 0, that is,

1 =
βS0 + k

∫∞
0
r(a)e−ηae−d3ζiaΠ(a) da

η + d2ζi + µI + k
.
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If we assume that C(η, ζi) = 0 admits an eigenvalue η with Re(η) > 0, we then have

1 =

∣∣∣∣βS0 + k
∫∞
0
r(a)e−ηae−d3ζiaΠ(a) da

η + d2ζi + µI + k

∣∣∣∣
6
βS0 + k

∫∞
0
r(a)Π(a) da

µI + k
=
βS0 + kQ

µI + k
= R0,

a contradiction with R0 < 1. It then follows that all the real eigenvalues of C(η, ζi) = 0
are negative. On the other hand, if we let η = m± ni with m > 0 and n > 0 be a pair of
complex roots of C(η, ζi) = 0, it follows that

1 =

∣∣∣∣βS0(m+ d2ζi + µI + k) + k(m+ d2ζi + µI + k)H1 − knH2

(m+ d2ζi + µI + k)2 + n2

∣∣∣∣
6
βS0(m+ d2ζi + µI + k) + k(m+ d2ζi + µI + k)H1

(m+ d2ζi + µI + k)2

6
βS0 + k

∫∞
0
r(a)Π(a) da

µI + k
= R0,

where H1 =
∫∞
0
r(a)e−ma cos(na)Π̃(a) da and H2 =

∫∞
0
r(a)e−ma sin(na)Π̃(a) da.

This again results in a contradiction with R0 < 1. This proves (i).
We next prove (ii). Linearizing (2) around E∗ = (S∗, I∗, R∗(a)), we obtain

∂S

∂t
= d1∆S − µSS − βS∗I − βSI∗,

∂I

∂t
= d2∆I + βS∗I + βSI∗ − (µI + k)I +

∞∫
0

r(a)R da,(
∂R

∂t
+

∂

∂a

)
R = d3∆R−

(
µR + r(a)

)
R,

R(t, 0, x) = kI.

(14)

Substituting eηt(φ1(x), ψ1(x), ξ1(a, x)) into (14), we obtain

ηφ1(x) = −d1ζiφ1(x)− µSφ1(x)− βS∗ψ1(x)− βI∗φ1(x),

ηψ1(x) = −d2ζiψ1(x) + βS∗ψ1(x) + βI∗φ1(x)− (µI + k)ψ1(x)

+

∞∫
0

r(a)ξ1(a, x) da,

ηξ1(a, x) +
∂ξ1(a, x)

∂a
= −d3ζiξ1(a, x)−

(
µR + r(a)

)
ξ1(a, x),

ξ1(0, x) = kψ1(x).

(15)

Directly solving ξ1(a, x) of (15) and substituting it into the second equation of (15)
allow us to rewrite (15) in terms of (φ1(x), ψ1(x)). Hence, it is sufficient to consider
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the following characteristic equation:

(η + d1ζi + µS)βS∗

+ (η + d1ζi + µS + βI∗)
[
kH3(η)− d2ζi − (η + µI + k)

]
= 0, (16)

where H3(η) =
∫∞
0
r(a)e−ηaΠ̃(a) da. Furthermore, (16) can also be rewritten as

η+d1ζi+µS

η+d1ζi+µS+βI∗ · βS
∗ + kH3(η)− d2ζi

η + µI + k
= 1. (17)

Assume that Re(η) > 0, it then follows that |H3(η)| 6 Q. This, together with |(η +
d1ζi + µS)/(η + d1ζi + µS + βI∗)| < 1 and (11), implies that∣∣∣∣ η+d1ζi+µS

η+d1ζi+µS+βI∗ · βS
∗ + kH3(η)− d2ζi

η + µI + k

∣∣∣∣ < βS∗ + kQ

µI + k
= 1,

which leads to a contradiction with (17). That is to say, all the real eigenvalues of (17) are
negative. If we let η = m± ni with m > 0 and n > 0 be a pair of complex roots (17), it
follows that ∣∣∣∣ η+d1ζi+µS

η+d1ζi+µS+βI∗ · βS
∗ + kH3(η)− d2ζi

η + µI + k

∣∣∣∣
<
βS∗ + k

∫∞
0
r(a)e−ηaΠ̃(a) da

η + µI + k

=
βS∗(m+ µI + k) + k(m+ µI + k)H1 − knH2

(m+ µI + k)2 + n2

<
βS∗ + k

∫∞
0
r(a)Π(a) da

µI + k
= 1,

a contradiction with (17). This proves (ii).

5 Disease persistence

By [18, Sect. 9.4], we will establish the dynamics of the solution of system (2) when
R0 > 1. Let us first introduce the following conclusion about the solution of system (2),
whose proof method is similar to [4, Lemma 5.1], which will not be repeated here.

Lemma 5. Let φ = (φ1, φ2, φ3) ∈ X+×X+×Y+. System (2) admits a continuous semi-
flow, which is written by Θ(t, φ1, φ2, φ3) := (S(t, ·), I(t, ·), R(t, ·, ·)) ∈ X+ ×X+ ×Y+

for all t > 0.

Let D := {(φ1, φ2, φ3) ∈ X+ × X+ × Y+: φ2 > 0 for some x ∈ Ω}. Following the
idea of [1, Lemma 6.1], we obtain the following conclusion.
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Lemma 6. Assume that R0 > 1. Then there exists a ε1 > 0 such that I(t, ·) with φ2 ∈ D
satisfies lim supt→∞ |I(t, ·)|X > ε1.

Proof. Since R0 > 1, we can choose ε1 > 0 such that

βλ

βε1 + µS

(
1− e−(µS+βε1)t

) ∞∫
0

e−(µI+k)s ds

+ k

∞∫
0

e−(µI+k)s

∞∫
0

r(b)Π(b) dbds > 1. (18)

We proceed the assertion indirectly and assume that there is t̂ > 0 such that I 6 ε1
for t > t̂, x ∈ Ω. By (18), there is sufficiently large t̂1 > t̂ and small θ > 0 such that

R̃ :=
βλ

βε1 + µS

(
1− e−(µS+βε1)h

) ∞∫
0

e−(µI+k)se−θs ds

+ k

∞∫
0

e−(µI+k)se−θs
∞∫
0

r(b)Π(b)e−θb dbds > 1, (19)

where h = t̂1 − t̂. On the other hand, for all t > t̂1, x ∈ Ω, ∂S/∂t > d1∆S + λ −
βε1S − µSS. From the standard comparison principle we then have

S > e−(µS+βε1)(t−t̂)
∫
Ω

Γ1(t− t̂, x, y)S(t̂, y) dy +
λ

βε1 + µS
(1− e−(µS+βε1)(t−t̂))

>
λ

βε1 + µS

(
1− e−(µS+βε1)h

)
for all t > t̂1, x ∈ Ω. With the help of Lemma 5, we let t̂1 be the initial time. Hence,

I >
βλ

βε1 + µS

(
1− e−(µS+βε1)h

) t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)I(t− s, y) dy ds

+ k

t∫
0

e−(µI+k)s

∫
Ω

Γ2(s, x, y)

t−s∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)I(t− s− b, z) dz dbdy ds. (20)

Due to the fact that
∫∞
0

e−θtI(t, x) dt < +∞ for any x ∈ Ω, we can find a x̃ ∈ Ω
ensuring that

∞∫
0

e−θtI(t, x̃) dt = min
x∈Ω

∞∫
0

e−θtI(t, x) dt.
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This, together with (20), tells us that

∞∫
0

e−θtI(t, x̃) dt >
βλ

βε1 + µS

(
1− e−(µS+βε1)h

)

×
+∞∫
0

e−θt
t∫

0

e−(µI+k)s

∫
Ω

Γ2(s, x̃, y)I(t− s, y) dy dsdt

+ k

+∞∫
0

e−θt
t∫

0

e−(µI+k)s

∫
Ω

Γ2(s, x̃, y)

t−s∫
0

r(b)Π(b)

×
∫
Ω

Γ3(b, y, z)I(t− s− b, z) dz dbdy dsdt,

:= Ψ3 + Ψ4.

After passing multiple interchanging the order of integration, one will get

Ψ3 =
βλ

βε1 + µS

(
1− e−(µS+βε1)h

)
×
∞∫
0

e−(µI+k)se−θs
∫
Ω

Γ2(s, x̃, y)

∞∫
0

e−θtI(s, y) dtdy d

and

Ψ4 = k

∞∫
0

e−(µI+k)se−θs
∫
Ω

Γ2(a, x̃, y)

∞∫
0

r(b)Π(b)e−θb
∫
Ω

Γ3(b, y, z)

×
∞∫
0

e−θtI(t, z) dtdz dbdy ds.

Consequently,
∞∫
0

e−θtI(t, x̃) dt > R̃

∞∫
0

e−θtI(t, x̃) dt. (21)

In virtue of (19), inequality (21) leads to a contradiction. This proves Lemma 6.

Following the idea of [7, Thm. 1] and Lemma 6, then we have the strong |·|X-persistence
result about the solution of system (4), whose proof method is similar to [4, Prop. 5.3]
and [24, Lemma 4.5], which will not be repeated here.

Lemma 7. If R0 > 1, then lim inft→∞ |I(t, ·)|X > ε2 for any (φ1, φ2) ∈ D.
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6 Global dynamics

This section is spent on designing the Lyapunov functionals to solve the global attractivity
of equilibria of system (2). We further can conclude that the equilibria of system (2) are
globally asymptotically stable (GAS) in terms of the sign of R0−1. For ease of notations,
we always use

G(u, v) = u− v − v ln
u

v
for u, v ∈ R+.

Clearly, G(u, v) = 0 if and only if u = v.

Theorem 3. For any (φ1, φ2, φ3) ∈ D. The following statements hold true:
(i) If R0 < 1, then E0 is GAS;

(ii) If R0 > 1, then E∗ is GAS.

Proof. We first prove (i). Let us set L1
E0

= G(S, S0). Then differentiating L1 along the
solution of (2) yields

∂L1
E0

∂t
= d1

(
1− S0

S

)
∆S − µS

(S − S0)2

S
+ βS0I − βSI. (22)

Let L2
E0

= I . Then the derivative of L2
E0

along the solution of (2) is just the I equation
of (2), namely,

∂L2
E0

∂t
= d2∆I + βSI − (µI + k)I +

∞∫
0

r(a)R(t, a, x) da. (23)

We further set L3
E0

=
∫∞
0
Ψ(a)R da, where Ψ(a) will be determined later. With the help

of (3), we rewrite L3
E0

as

L3
E0

=

t∫
0

Ψ(r)Π(r)

∫
Ω

Γ3(r, x, y)kI(t− r, y) dy dr

+

∞∫
t

Ψ(r)
Π(r)

Π(r − t)

∫
Ω

Γ3(t, x, y)φ3(r − t, y) dy dr

=

t∫
0

Ψ(t− a)Π(t− a)

∫
Ω

Γ3(t− a, x, y)kI(a, y) dy da

+

∞∫
0

Ψ(a+ t)
Π(a+ t)

Π(a)

∫
Ω

Γ3(t, x, y)φ3(a, y) dy da.

Then we have

∂L3
E0

∂t
= Ψ(0)kI +

∞∫
0

[
Ψ ′(a)−

(
µR + r(a)− d3∆

)
Ψ(a)

]
R da. (24)
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Let us define a Lyapunov functional for E0 as

LE0
(t) =

∫
Ω

3∑
i=1

LiE0
dx.

This, combined with (22), (23) and (24), gives

dLE0
(t)

dt
=

∫
Ω

{
d1

(
1− S0

S

)
∆S − µS

(S − S0)2

S
+ βS0I − βSI

}
dx

+

∫
Ω

{
d2∆I + βSI − (µI + k)I +

∞∫
0

r(a)R(t, a, x) da

}
dx

+

∫
Ω

{
Ψ(0)kI +

∞∫
0

[
Ψ ′(a)−

(
µR + r(a)− d3∆

)
Ψ(a)

]
R da

}
dx

=

∫
Ω

d1
(S − S0)∆S

S
dx−

∫
Ω

µS
(S − S0)2

S
dx

+

∫
Ω

d2∆I dx+

∫
Ω

[
βS0I + Ψ(0)kI(t, x)− (µI + k)I

]
dx

+

∫
Ω

∞∫
0

[
r(a) + Ψ ′(a)−

(
µR + r(a)− d3∆

)
Ψ(a)

]
R da dx. (25)

We are now in a position to define

Ψ(a) =

∞∫
a

r(θ)
Π(θ)

Π(a)
dθ.

Obviously, Ψ ′(a) = −r(a) + (µR + r(a))Ψ(a) and Ψ(0) =
∫∞
0
r(a)Π(a) da = Q.

Hence, (25) becomes

dLE0
(t)

dt
= −d1

∫
Ω

|∇S|2

S2
dx− µS

∫
Ω

(S − S0)2

S
dx+

∫
Ω

(µI + k)(R0 − 1)I dx.

If R0 < 1, then by the invariance principle [23, Thm. 4.2] and Theorem 2, E0 is GAS
in D. This proves (i).

We next prove (ii). Let L1
E∗ = G(S, S∗). With the aid of λ = µSS

∗ + βS∗I∗, we
can obtain the derivative of L1

E∗ as follows:

∂L1
E∗

∂t
= d1

(
1− S∗

S

)
∆S − µS

S
(S − S∗)2 + βS∗I∗

(
1− SI

S∗I∗
− S∗

S
+

I

I∗

)
. (26)
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Let L2
E∗ = G(I, I∗). This, together with βS∗I∗+

∫∞
0
r(a)R∗(a) da = (µI+k)I∗, gives

that the derivative of L2
E∗ satisfies

∂L2
E∗

∂t
=

(
1− I∗

I

)(
d2∆I + βSI − βS∗I − I

I∗

∞∫
0

r(a)R∗(a) da+

∞∫
0

r(a)R da

)

= d2

(
1− I∗

I

)
∆I + βS∗I∗

(
1 +

SI

S∗I∗
− S

S∗
− I

I∗

)

+

∞∫
0

r(a)R∗(a)

(
1− I

I∗
− I∗R

IR∗(a)
+

R

R∗(a)

)
da. (27)

We further set L3
E∗ =

∫∞
0
Θ(a)G(R,R∗(a)) da, where Θ(a) will be determined later.

By direct calculation of the derivative of L3
E∗ , we obtain

∂L3
E∗

∂t
= −

∞∫
0

Θ(a)

(
1− R∗(a)

R

)(
∂R

∂a
− d3∆R+

(
µR + r(a)

)
R

)
da

= d3

∞∫
0

Θ(a)

(
1− R∗(a)

R

)
∆R da

−
∞∫
0

Θ(a)

(
1− R∗(a)

R

)
∂R

∂a
da−

∞∫
0

Θ(a)

(
1− R∗(a)

R

)[
µR + r(a)

]
R da.

Recall that

R∗(a)
∂

∂a

(
g

(
R

R∗(a)

))
=

(
1− R∗(a)

R

)
∂R

∂a
+

(
1− R∗(a)

R

)[
µR + r(a)

]
R,

where g(u) = u−1−lnu for u ∈ R+. This, together with dR∗(a)/da = −[µR+r(a)]×
R∗(a), directly leads to

∂L3
E∗

∂t
= d3

∞∫
0

Θ(a)

(
1− R∗(a)

R

)
∆R da−

∞∫
0

Θ(a)R∗(a)
∂

∂a

(
g

(
R

R∗(a)

))
da

= d3

∞∫
0

Θ(a)

(
1− R∗(a)

R

)
∆R da−Θ(a)R∗(a)g

(
R

R∗(a)

)∣∣∣∣a=∞
a=0

+

∞∫
0

g

(
R

R∗(a)

)(
Θ′(a)−

(
µR + r(a)

)
Θ(a)

)
R∗(a) da. (28)

Let

Θ(a) =

∞∫
a

r(θ)
Π(θ)

Π(a)
dθ.
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Then it satisfies

dΘ(a)

da
=
[
µR + r(a)

]
Θ(a)− r(a), Θ(0) =

∞∫
0

r(a)Π(a) da = Q.

Hence, (28) becomes

∂L3
E∗

∂t
= d3

∞∫
0

Θ(a)

(
1− R∗(a)

R

)
∆R da+Θ(0)R∗(0)g

(
R(t, 0, x)

R∗(0)

)

−Θ(a)R∗(a)g

(
R

R∗(a)

)∣∣∣∣
a=∞

−
∞∫
0

g

(
R

R∗(a)

)
r(a)R∗(a) da.

Note that R∗(0) = kI∗ and R(t, 0, x) = kI , thus

∂L3
E∗

∂t
= d3

∞∫
0

Θ(a)

(
1− R∗(a)

R

)
∆R da−Θ(a)R∗(a)g

(
R

R∗(a)

)∣∣∣∣
a=∞

+ kQI∗g

(
I

I∗

)
+

∞∫
0

r(a)R∗(a)

(
1− R

R∗(a)
+ ln

R

R∗(a)

)
da. (29)

Let us define a Lyapunov functional for E∗ as

LE∗(t) =

∫
Ω

3∑
i=1

LiE∗ dx.

This, combined with (26), (27) and (29), gives

∂(
∑3
i=1 L

i
E∗)

∂t

=
⊗

+βS∗I∗
(

1− SI

S∗I∗
− S∗

S
+

I

I∗

)
+ βS∗I∗

(
1 +

SI

S∗I∗
− S

S∗
− I

I∗

)

+

∞∫
0

r(a)R∗(a)

(
1− I

I∗
− I∗R

IR∗(a)
+

R

R∗(a)

)
da+ kQI∗g

(
I

I∗

)

+

∞∫
0

r(a)R∗(a)

(
1− R

R∗(a)
+ ln

R

R∗(a)

)
da,
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where⊗
= d1

(
1− S∗

S

)
∆S − µS

S
(S − S∗)2 + d2

(
1− I∗

I

)
∆I

+ d3

∞∫
0

Θ(a)

(
1− R∗(a)

R(t, a, x)

)
∆R da−Θ(a)R∗(a)g

(
R(t, a, x)

R∗(a)

)∣∣∣∣
a=∞

.

Note that

kQI∗ =

∞∫
0

r(a)R∗(a) da.

It then follows that

∂(
∑3
i=1 L

i
E∗)

∂t
=
⊗

+βS∗I∗
(

2− S∗

S
− S

S∗

)
+

∞∫
0

r(a)R∗(a)

(
1− ln

I

I∗
− I∗R(t, a, x)

IR∗(a)
+ ln

R(t, a, x)

R∗(a)

)
da

=
⊗
−βI

∗

S
(S − S∗)2 −

∞∫
0

r(a)R∗(a)g

(
I∗R

IR∗(a)

)
da.

Consequently, we have

dLE∗(t)

dt
=

∫
Ω

d1

(
1−S

∗

S

)
∆S dx+

∫
Ω

d2

(
1− I

∗

I

)
∆I dx−

∫
Ω

µS
S

(S − S∗)2 dx

+

∫
Ω

d3

∞∫
0

Θ(a)

(
1−R

∗(a)

R

)
∆R dadx−

∫
Ω

Θ(a)R∗(a)g

(
R

R∗(a)

)∣∣∣∣
a=∞

dx

−
∫
Ω

βI∗

S
(S − S∗)2 dx−

∫
Ω

∞∫
0

r(a)R∗(a)g

(
I∗R

IR∗(a)

)
dadx

= −d1S∗
∫
Ω

|∇S|2

S2
dx− d2I∗

∫
Ω

|∇I|2

I2
dx−

∫
Ω

µS
S

(S − S∗)2 dx

− d3

∞∫
0

Θ(a)R∗(a)

∫
Ω

|∇R|2

R2
dxda−

∫
Ω

Θ(a)R∗(a)g

(
R

R∗(a)

)∣∣
a=∞ dx

−
∫
Ω

βI∗

S
(S − S∗)2 dx−

∫
Ω

∞∫
0

r(a)R∗(a)g

(
I∗R

IR∗(a)

)
dadx 6 0.

Then by the invariance principle [23, Thm. 4.2] and Theorem 2, E∗ is GAS in D. This
proves Theorem 3.
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7 Conclusion and discussion

This paper concerns with the analysis of the threshold-type result of an age-space struc-
tured disease model with age-dependent relapse rate. In contrast to [10,25] where the rate
of change of R(t, a) is controlled by a first-order PDE, we allow the reaction–diffusion
equation for R(t, a) in a bounded domain Ω ⊂ R with smooth boundary ∂Ω.

Mathematically, we first consider the well-posedness of the model (4). In Theorem 1,
the existence of a unique local solution (S, I) to (4) is proved by designing a fixed point
problem that was defined in (6). Then the positivity of the local solution of (4) is verified
(see Theorem 2), where the proof of the positivity of I(t, x) is nontrivial and is achieved
by using the theory of Picard sequences and iteration method. Further, we extend the
solution existence interval from [0, T ) × Ω to [0,+∞) × Ω through proving that the
solution is bounded in [0, T ). By linearizing the model at E0 and performing a Laplace
transform, we can obtain the next-generation operator L (see (8)). Clearly, L is strictly
positive. Further, by the Arzelà–Ascoli theorem, we can show thatL is uniformly bounded
and equicontinuous, that is, L is compact (see Lemma 4). Meanwhile, by the Krein–
Rutman theorem, we are able to determine the explicit expression of BRN R0 when the
positive eigenvector is a constant.

Through the threshold dynamics analysis, R0 is indeed a threshold parameter for
determining whether the disease die out or not, which is useful to guide the disease control
strategies. Especially, Theorem 2 reveals that both E0 and E∗ are LAS in terms of the
sign of R0 − 1. We also confirm that (4) is uniformly persistent through extending the
weak persistence to strong persistence (see Lemmas 6 and 7). Finally, by designing the
Lyapunov functionals, it is readily seen that if R0 < 1, then E0 is GAS, and if R0 > 1,
then E∗ is GAS (see Theorem 3).

Conflicts of interest. The authors declare no conflicts of interest.

References

1. M. Adimy, A. Chekroun, T. Kuniya, Delayed nonlocal reaction–diffusion model for hemato-
poietic stem cell dynamics with Dirichlet boundary conditions, Math Model. Nat. Phenom.,
12(6):1–22, 2017, https://doi.org/10.1051/mmnp/2017078.

2. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces,
SIAM Rev., 18(4):620–709, 1976, https://doi.org/10.1137/1018114.

3. R.S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Mathematical and
Computational Biology, John Wiley & Sons, Chichester, 2003, https://doi.org/10.
1002/0470871296.

4. A. Chekroun, T. Kuniya, An infection age-space structured SIR epidemic model with Neumann
boundary condition, Appl. Anal., 99(11):1972–1985, 2020, https://doi.org/10.
1080/00036811.2018.1551997.

5. C.R. Driver, S.S. Munsiff, J. Li, S.S. Osahan N. Kundamal, Relapse in persons treated for drug-
susceptible tuberculosis in a population with high coinfection with human immunodeficiency

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1051/mmnp/2017078
https://doi.org/10.1137/1018114
https://doi.org/10.1002/0470871296
https://doi.org/10.1002/0470871296
https://doi.org/10.1080/00036811.2018.1551997
https://doi.org/10.1080/00036811.2018.1551997
https://www.journals.vu.lt/nonlinear-analysis


Age-space structured disease model with relapse 937

virus in New York city, Clin. Infect. Dis., 33(10):1762–1769, 2001, https://doi.org/
10.1086/323784.

6. A. Ducrot, P. Magal, Travelling wave solutions for an infection-age structured epidemic model
with external supplies, Nonlinearity, 24(10):2891–2911, 2011, https://doi.org/10.
1088/0951-7715/24/10/012.

7. H.I. Freedman, P. Moson, Persistence definitions and their connections, Proc. Am. Math. Soc.,
109(4):1025–1033, 1990, https://doi.org/10.2307/2048133.

8. J.K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988, https:
//doi.org/10.1090/surv/025.

9. A.D. Harries, N.J. Hargreaves, J.H. Kwanjana, F.M. Salaniponi, Relapse and recurrent
tuberculosis in the context of a National Tuberculosis Control Programme, Trans. R. Soc. Trop.
Med. Hyg., 94(3):247–249, 2000, https://doi.org/10.1016/S0035-9203(00)
90306-7.

10. L. Liu, J. Wang, X. Liu, Global stability of an SEIR epidemic model with age-dependent
latency and relapse, Nonlinear Anal., Real World Appl., 24:18–35, 2015, https://doi.
org/10.1016/j.nonrwa.2015.01.001.

11. S. Liu, S. Wang, L. Wang, Global dynamics of delay epidemic models with nonlinear incidence
rate and relapse, Nonlinear Anal., Real World Appl., 12(1):119–127, 2011, https://doi.
org/10.1016/j.nonrwa.2010.06.001.

12. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability
for an infection-age model, Appl. Anal., 89(7):1109–1140, 2010, https://doi.org/10.
1080/00036810903208122.

13. J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations, Springer,
New York, 1986, https://doi.org/10.1007/978-3-662-13159-6.

14. H.N. Moreira, Y. Wang, Global stability in an S → I → R → I model, SIAM Rev., 39(3):
496–502, 1997, https://doi.org/10.1137/S0036144595295879.

15. National Research Council, Livestock Disease Eradication: Evaluation of the Cooperative
State-Federal Bovine Tuberculosis Eradication Program, National Academies Press, Wash-
ington, 1994, https://doi.org/10.17226/9144.

16. A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations,
Springer, Berlin, 1983, https://doi.org/10.1007/978-1-4612-5561-1.

17. H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive
and Cooperative Systems, AMS, Providence, RI, 1995, https://doi.org/10.1090/
surv/041.

18. H.L. Smith, H.R. Thieme, Dynamical Systems and Population Persistences, AMS, Providence,
RI, 2010, https://doi.org/10.1090/gsm/118.

19. D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM
Rev., 32(1):136–139, 1990, https://doi.org/10.1137/1032003.

20. P. van den Driessche, L. Wang, X. Zou, Modeling diseases with latency and relapse, Math.
Biosci. Eng., 4(2):205–219, 2007, https://doi.org/10.3934/mbe.2007.4.205.

21. P. van den Driessche, X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207(1):
89–103, 2007, https://doi.org/10.1016/j.mbs.2006.09.017.

Nonlinear Anal. Model. Control, 29(5):914–938, 2024

https://doi.org/10.1086/323784
https://doi.org/10.1086/323784
https://doi.org/10.1088/0951-7715/24/10/012
https://doi.org/10.1088/0951-7715/24/10/012
https://doi.org/10.2307/2048133
https://doi.org/10.1090/surv/025
https://doi.org/10.1090/surv/025
https://doi.org/10.1016/S0035-9203(00)90306-7
https://doi.org/10.1016/S0035-9203(00)90306-7
https://doi.org/10.1016/j.nonrwa.2015.01.001
https://doi.org/10.1016/j.nonrwa.2015.01.001
https://doi.org/10.1016/j.nonrwa.2010.06.001
https://doi.org/10.1016/j.nonrwa.2010.06.001
https://doi.org/10.1080/00036810903208122
https://doi.org/10.1080/00036810903208122
https://doi.org/10.1007/978-3-662-13159-6
https://doi.org/10.1137/S0036144595295879
https://doi.org/10.17226/9144
https://doi.org/10.1007/978-1-4612-5561-1
https://doi.org/10.1090/surv/041
https://doi.org/10.1090/surv/041
https://doi.org/10.1090/gsm/118
https://doi.org/10.1137/1032003
https://doi.org/10.3934/mbe.2007.4.205
https://doi.org/10.1016/j.mbs.2006.09.017
https://doi.org/10.15388/namc.2024.29.36098


938 G. Lyu et al.

22. K.E. VanLandingham, H.B. Marsteller, G.W. Ross, F.G. Hayden, Relapse of herpes simplex
encephalitis after conventional acyclovir therapy, JAMA, 259(7):1051–1053, 1988, https:
//doi.org/10.1001/jama.1988.03720070051034.

23. J.A. Walker, Dynamical Systems and Evolution Equations, Plenum Press, New York, 1980,
https://doi.org/10.1007/978-1-4684-1036-5.

24. C. Wang, J. Wang, Analysis of a malaria epidemic model with age structure and spatial
diffusion, SIAM Rev., 72(2):74, 2021, https://doi.org/10.1007/s00033-021-
01511-z.

25. J. Wang, M. Guo, S. Liu, Svir epidemic model with age structure in susceptibility, vaccination
effects and relapse, IMA J. Appl. Math., 82(5):945–970, 1976, https://doi.org/10.
1093/imamat/hxx020.

26. J. Wang, J. Pang, X. Liu, Modelling diseases with relapse and nonlinear incidence of infection:
A multi-group epidemic model, J. Biol. Dyn., 8(1):99–116, 2014, https://doi.org/10.
1080/17513758.2014.912682.

27. W. Wang, X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models,
SIAM J. Appl. Dyn. Syst., 11(4):1652–1673, 2012, https://doi.org/10.1137/
120872942.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1001/jama.1988.03720070051034
https://doi.org/10.1001/jama.1988.03720070051034
https://doi.org/10.1007/978-1-4684-1036-5
https://doi.org/10.1007/s00033-021-01511-z
https://doi.org/10.1007/s00033-021-01511-z
https://doi.org/10.1093/imamat/hxx020
https://doi.org/10.1093/imamat/hxx020
https://doi.org/10.1080/17513758.2014.912682
https://doi.org/10.1080/17513758.2014.912682
https://doi.org/10.1137/120872942
https://doi.org/10.1137/120872942
https://www.journals.vu.lt/nonlinear-analysis

	Introduction and derivation of the model
	Well-posedness of the model
	Basic reproduction number and equilibria
	Local stability of equilibria
	Disease persistence
	Global dynamics
	Conclusion and discussion
	References

