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Abstract. This paper presents an implicit scheme for a representation of nonexpansive mappings
on a closed convex subset of a smooth uniformly convex Banach space with respect to a left-regular
sequence of means defined on a subset of l∞(S). The main results are to establish an existence
theorem of a sunny nonexpansive retraction and to create an algorithm for finding a common fixed
point of a representation of nonexpansive mappings in Banach spaces.
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1 Introduction

The nonlinear ergodic theorem established by Baillon [2] in a Hilbert space for finding
nonexpansive retractions is as follows. Let C denotes a nonempty closed convex subset
of a Hilbert space H , and T denotes a nonexpansive mapping of C into itself. If Fix(T ),
the set of fixed points of T , is nonempty, then for each x ∈ C, the Cesaro means
Snx = (1/n)

∑n
k=1 T

kx converge weakly to some y ∈ Fix(T ). In this theorem, setting
y = Px for each x ∈ C, P represents a nonexpansive retraction of C onto Fix(T ) such
that PTn = TnP = P for all positive integers n and Px ∈ co{Tnx, n = 1, 2, . . . }
for each x ∈ C. Takahashi [17] further established the existence of such retractions,
termed as ergodic retractions, for noncommutative semigroups of nonexpansive mappings
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in a Hilbert space: If S is an amenable semigroup, C is a closed convex subset of a Hilbert
space H , and S = {Ts, s ∈ S} is a nonexpansive semigroup on C such that Fix(S) 6= ∅,
then there exists a nonexpansive retraction P from C onto Fix(S) such that PTt =
TtP = P for each t ∈ S and Px ∈ co{Ttx, t ∈ S} for each x ∈ C. These findings
were extended to uniformly convex Banach spaces for commutative semigroups in [9]
and for amenable semigroups in [11, 12]. For further related results, readers are directed
to works such as [6–8, 15]. In this paper, we establish an existence theorem for finding
sunny nonexpansive retractions in a smooth and reflexive Banach space.

This paper presents an implicit scheme for a representation of nonexpansive mappings
on a closed convex subset of a smooth and uniformly convex Banach space and is a contri-
bution to ongoing research in functional analysis [4, 5, 7, 8, 13, 14, 16]. The study focuses
on establishing an existence theorem for a sunny nonexpansive retraction and devising
an algorithm to compute common fixed points for this representation. Throughout this
paper, unless otherwise stated, S will denote a semigroup, E is a Banach space, C is
a nonempty closed convex subset ofE, andE∗ is the dual space ofE. Our main theorems
elucidate the conditions under which such retractions exist and provide insights into
their uniqueness. We also explore the convergence properties of implicit sequences in
the context of this representation. Overall, this work contributes to offering practical
implications for computing fixed points in various mathematical contexts.

1.1 Preliminaries

A mapping T : C → C is called nonexpansive, provided ‖Tx − Ty‖ 6 ‖x − y‖ for
all x, y ∈ C, and a mapping g is a β-contraction on E, provided ‖g(x) − g(y)‖ 6
β‖x − y‖, x, y ∈ E, with 0 6 β < 1. Let 〈·, ·〉 denote the pairing between E and E∗.
The normalized duality mapping J from E into E∗ for an element x ∈ E is defined as

J(x) =
{
g ∈ E∗: 〈x, g〉 = ‖x‖2 = ‖g‖2

}
.

Let the single-valued normalized duality mapping be denoted by j, and suppose that U =
{x ∈ E: ‖x‖ = 1}. Now E is called smooth, provided the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ U . From Corollary 2.6.9 in [1] a Banach space E is smooth, pro-
vided the mapping J : E → E∗ is single valued. The strong convergence (respectively,
the weak convergence) of a sequence {xn} to x in E is denoted by xn → x (respectively,
xn ⇀ x), and also, the weak∗ convergence of a sequence {x∗n} to x∗ in E∗ is denoted
by x∗n

∗
⇀ x∗. The duality mapping J is called weakly sequentially continuous if xn ⇀ x

implies Jxn
∗
⇀ Jx [1].

A family S = {Ts, s ∈ S} of mappings from C into itself is called a representation
of S, provided:

(i) Tstx = TsTtx for all s, t ∈ S and x ∈ C;
(ii) for every s ∈ S, the mapping Ts : C → C is nonexpansive.
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The set of common fixed points of S is denoted by Fix(S), i.e., Fix(S)=
⋂
s∈S{x∈C:

Tsx = x}.
The space of all bounded real-valued functions defined on S with supremum norm

is denoted by l∞(S). Also, ls and rs in l∞(S) are defined as (ltg)(s) = g(ts) and
(rtg)(s) = g(st) for all s ∈ S, t ∈ S, and g ∈ l∞(S).

Suppose that X is a subspace of l∞(S) containing 1, and let X∗ be its topological
dual space. An element m of X∗ is said to be a mean on X , provided ‖m‖ = m(1) = 1.
For m ∈ X∗ and g ∈ X , mt(g(t)) is often written instead of m(g). Suppose that X is
left invariant (respectively, right invariant), i.e., lt(X) ⊂ X (respectively, rt(X) ⊂ X)
for each s ∈ S. A mean m on X is called left invariant (respectively, right invariant),
provided m(ltg) = m(g) (respectively, m(rtg) = m(g)) for each t ∈ S and g ∈ X .
X is called left (respectively, right) amenable if X possesses a left- (respectively, right-)
invariant mean. Now X is amenable if X is both left and right amenable.

Let D be a directed set in X , and let {mα, α ∈ D} [1, p. 5, Sect. 1.1]. A net
{mα, α ∈ D} of means on X is called left regular, provided

lim
α∈D
‖l∗tmα −mα‖ = 0

for every t ∈ S, where l∗t is the adjoint operator of lt.
Let E be a reflexive Banach space. Let g be a function on S into E such that the weak

closure of {g(s), s ∈ S} is weakly compact, and suppose that X is a subspace of l∞(S)
containing all the functions s → 〈g(s), x∗〉 with x∗ ∈ E∗. We know from [9] that, for
any m ∈ X∗, there exists a unique element gm in E such that 〈gm, x∗〉 = ms〈f(s), x∗〉
for all x∗ ∈ E∗. We denote such a gm by

∫
g(s) dm(s). Moreover, if m is a mean on X ,

then from [10]
∫
g(s) dm(s) ∈ cl(co{g(s), s ∈ S}), where cl(co{g(s), s ∈ S}) denotes

the closure of the convex hull of {g(s), s ∈ S}.

Remark 1. From Theorem 4.1.6 in [18] every uniformly convex Banach space is strictly
convex and reflexive.

Remark 2. For details on retractions and sunny nonexpansive retract concepts, we refer
the reader to [1, 18]. We know from [1, 18] that if E is a smooth Banach space, F is
a nonempty convex subset of E, G is a nonempty subset of F , and R is a retraction from
F onto G, then R is sunny and nonexpansive if and only if for each x ∈ F and z ∈ G,〈

x−Rx, J(z −Rx)
〉
6 0.

Remark 3. For details on demiclosed mappings at a point and the Opial condition for
a vector space, we refer the reader to [1, 18].

In this paper, we denote by Br an open ball of radius r centered at 0, and for ε > 0
and a mapping T : C → C, we denote by Fε(T ;G) the set of ε-approximate fixed points
of T for a subset G of C, i.e., Fε(T ;G) = {x ∈ G: ‖x− Tx‖ 6 ε}.

https://www.journals.vu.lt/nonlinear-analysis
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2 Main results

In this section, our goal is to prove a strong convergence scheme for a representation of
nonexpansive mappings. The following two results, Theorems 1 and 2, will enable us to
prove Theorem 3.

Theorem 1. Let S be a semigroup and E be a real smooth and reflexive Banach space,
and suppose that C is a nonempty closed convex subset of E. Let X be a left-invariant
subspace of l∞(S) such that 1 ∈ X , and t 7→ 〈Ttx, x∗〉 belongs to X for each x ∈ C
and x∗ ∈ E∗. Assume that X is left amenable, and let S = {Ts : C → C, s ∈ S} be
a representation of S of nonexpansive mappings such that Fix(S) 6= ∅. If J is weakly
sequentially continuous, then Fix(S) is a sunny nonexpansive retract of C, and the sunny
nonexpansive retraction of C onto Fix(S) is unique.

Proof. From Theorem 3.2.8 in [1] E satisfies the Opial condition. Consider a sequence
zn in C as follows:

zn =
1

n
x+

(
1− 1

n

)
Tµzn (n ∈ N),

where x ∈ C is fixed, and µ is a left-invariant mean on X . We claim the mapping Nn
given by

Nnz :=
1

n
x+

(
1− 1

n

)
Tµz (z ∈ C)

is a contraction. To see this, put βn = (1−1/n). Then 0 6 βn < 1 (n ∈ N), and we have

‖Nnz −Nny‖ =
(
1− 1

n

)
‖Tµz − Tµy‖

6

(
1− 1

n

)
‖z − y‖ = βn‖z − y‖.

Therefore, by the Banach contraction principle [18], there exists a unique point zn ∈ C
such that Nnzn = zn. Note, we have

lim
n→∞

‖zn − Tµzn‖ = 0. (1)

Now, we show that {zn} is bounded. Let p ∈ Fix(S). From (ii) of Theorem 2.1
in [15] Tµp = p, and we have

‖zn − p‖2 =

〈
1

n
x+

(
1− 1

n

)
Tµzn − p, J(zn − p)

〉
=

1

n

〈
x− p, J(zn − p)

〉
+

〈(
1− 1

n

)
(Tµzn − Tµp), J(zn − p)

〉
6

(
1− 1

n

)
‖zn − p‖2 +

1

n

〈
x− p, J(zn − p)

〉
.
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Thus,
‖zn − p‖2 6

〈
x− p, J(zn − p)

〉
. (2)

Hence,
‖zn − p‖ 6 ‖x− p‖.

That is, the sequence {zn} is bounded.
We next show that the weak limit set of {zn} (denoted by ωω{zn}) is a subset of

Fix(S). Let x∗ ∈ ωω{zn}, and let {znj
} be a subsequence of {zn} such that znj

⇀ x∗.
We need to show that x∗ ∈ Fix(S). Note from Corollary 5.2.10 in [1], I−Tt is demiclosed
at zero for each t ∈ S. Hence, from (1) we conclude that x∗ ∈ Fix(S). Therefore,
ωω{zn} ⊆ Fix(S).

Now note since {zn} is bounded and E is reflexive, from Theorem 1.9.21 in [1]
{zn} is a weakly compact subset of E. Hence, by Proposition 1.7.2 in [1], we can
select a subsequence {znj

} of {zn} such that {znj
} weakly converges to a point z.

Consequently, z ∈ Fix(S). Let {zni
} and {znj

} be subsequences of {zn} such that {zni
}

and {znj} converge weakly to y and z, respectively. Therefore, y, z ∈ Fix(S). Since J is
weakly sequentially continuous, from (2) we have that {zni} and {znj} converge strongly
to y and z, respectively, since from (2) we have

lim
i→∞

‖zni
− y‖2 6 lim

i→∞

〈
x− y, J(zni

− y)
〉

=
〈
x− y, J(y − y)

〉
= 0.

Hence, zni
→ y and, similarly, znj

→ z. Now, for each z ∈ Fix(S) and n ∈ N,〈
zn − x, J(zn − z)

〉
6 0 (3)

since for each z ∈ Fix(S), we have〈
zn − x, J(zn − z)

〉
=

〈
1

n
x+

(
1− 1

n

)
Tµzn − x, J(zn − z)

〉
= (n− 1)

〈
Tµzn − zn, J(zn − z)

〉
= (n− 1)

〈
Tµzn − Tµz, J(zn − z)

〉
+ (n− 1)

〈
z − zn, J(zn − z)

〉
6 (n− 1)

(
‖Tµzn − Tµz‖‖zn − z‖ − ‖zn − z‖2

)
6 (n− 1)

(
‖zn − z‖2 − ‖zn − z‖2

)
= 0.

Further, ∣∣〈zni
− x, J(zni

− z)
〉
−
〈
y − x, J(y − z)

〉∣∣
=
∣∣〈zni

− x, J(zni
− z)

〉
−
〈
y − x, J(zni

− z)
〉

+
〈
y − x, J(zni

− z)
〉
−
〈
y − x, J(y − z)

〉∣∣
6
∣∣〈zni

− y, J(zni
− z)

〉∣∣+ ∣∣〈y − x, J(zni
− z)− J(y − z)

〉∣∣
6 ‖zni

− y‖
∥∥J(zni

− z)
∥∥+ ∣∣〈y − x, J(zni

− z)− J(y − z)
〉∣∣

6 ‖zni
− y‖M +

∣∣〈y − x, J(zni
− z)− J(y − z)

〉∣∣,
https://www.journals.vu.lt/nonlinear-analysis
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where M is an upper bound for {J(zni
− z)}i∈N. Hence, we have

lim
i→∞

〈
zni − x, J(zni − z)

〉
=
〈
y − x, J(y − z)

〉
. (4)

Now, since J is weakly sequentially continuous, from (4) and (3) we have〈
y − x, J(y − z)

〉
= lim
i→∞

〈
zni
− x, J(zni

− z)
〉
6 0.

Similarly, 〈z − x, J(z − y)〉 6 0, and thus, we have

‖y − z‖2 =
〈
y − z, J(y − z)

〉
=
〈
y − x, J(y − z)

〉
+
〈
x− z, J(y − z)

〉
=
〈
y − x, J(y − z)

〉
+
〈
z − x, J(z − y)

〉
6 0,

so y = z. Thus, {zn} weakly converges to an element of Fix(S).
Therefore, a mapping P of C into itself can be defined by Px = weak − limn zn.

Then, since Px ∈ Fix(S) and J is weakly sequentially continuous, we have from (2) that

lim
n→∞

‖zn − Px‖2 6 lim
n→∞

〈
x− Px, J(zn − Px)

〉
=
〈
x− Px, J(Px− Px)

〉
= 0.

Hence, zn → Px. Then from the condition that the duality mapping is weakly sequen-
tially continuous we have, for each z ∈ Fix(S),〈

x− Px, J(z − Px)
〉
= lim
n→∞

〈
zn − x, J(zn − z)

〉
6 0. (5)

It follows from Lemma 5.1.6 in [18] that P is a sunny nonexpansive retraction of C onto
Fix(S). We note that P is unique. Indeed, letR be another sunny nonexpansive retraction
of C onto Fix(S). Then from [18, p.199] we have, for each x ∈ C and z ∈ Fix(S),〈

x−Rx, J(z −Rx)
〉
6 0. (6)

Putting z = Rx in (5) and z = Px in (6), we have 〈x − Px, J(Rx − Px)〉 6 0 and
〈x − Rx, J(Px − Rx)〉 6 0, and hence, 〈Rx − Px, J(Rx − Px)〉 6 0. This implies
Rx = Px, so the proof is completed.

Theorem 2. Let S be a semigroup and E be a real uniformly convex and smooth Banach
space, and suppose that C is a nonempty closed convex subset of E. Suppose that S =
{Ts, s ∈ S} is a representation of S of nonexpansive mappings from C into itself such
that Fix(S) 6= ∅. Let X be a left-invariant subspace of l∞(S) such that 1 ∈ X , and
t 7→ 〈Ttx, x∗〉 belongs to X for each x ∈ C and x∗ ∈ E∗. If µ is a left-invariant mean
on X and if J is weakly sequentially continuous, then Fix(Tµ) = Tµ(C) = Fix(S), and
there exists a unique sunny nonexpansive retraction from C onto Fix(S).

Nonlinear Anal. Model. Control, 29(5):878–889, 2024
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Proof. Let ε > 0 be arbitrary. From Theorem 3.2.8 in [1] E satisfies the Opial condition.
Consider t ∈ S and let x ∈ C. Let p be an arbitrary element of Fix(S). Set D = {y ∈
C: ‖y − p‖ 6 ‖x − p‖}. Note that D is a bounded closed convex set, x ∈ D, and
Tt(D) ⊂ D. Using Theorem 1.2 and Corollary 1.1 in [3], since µ is left invariant, as in
the proof of Theorem 1 in [11], we have that

Tµx ∈ Fε(Tt;D).

Therefore, we have TtTµx = Tµx, and hence, Fix(Tµ) = Tµ(C) = Fix(S). The
remaining part is similar to that in the proof of Theorem 1.

In what follows, the index set for n is the natural numbers, i.e., n ∈ N+.

Theorem 3. Let S be a semigroup and E be a real uniformly convex and smooth Banach
space, and suppose C is a nonempty closed convex subset of E. Suppose that S =
{Ts, s ∈ S} is a representation of S of nonexpansive mappings on C into itself such that
the weak closure of {Ttx, t ∈ S} is weakly compact for each x ∈ C and Fix(S) 6= ∅.
Let X be a left-invariant subspace of l∞(S) such that 1 ∈ X , and t 7→ 〈Ttx, x∗〉 belongs
to X for each x ∈ C and x∗ ∈ E∗. Suppose that {µn} is a left-regular sequence of
means on X and that f is an α-contraction on C. Let εn be a sequence in (0, 1) such
that limn εn = 0, and let the duality mapping J be weakly sequentially continuous. Then
there exists a unique sunny nonexpansive retraction P of C onto Fix(S) and x ∈ C such
that the following sequence {zn}, generated by

zn = εnf(zn) + (1− εn)Tµn
zn (n ∈ N), (7)

strongly converges to Px.

Proof. From Theorem 3.2.8 in [1]E satisfies the Opial condition, and from Theorem 2.2.8
in [1] E is reflexive. The proof will be divided into six steps.

Step 1. The existence of the element zn (satisfying (7)) in C.
This follows immediately from the fact that for every n ∈ N, the mapping Nn, given

by

Nnx := εnf(x) + (1− εn)Tµn
x (x ∈ C),

is a contraction since if we put βn=(1+εn(α− 1)), then 06βn<1 (n∈N), and we have

‖Nnx−Nny‖ 6 εn
∥∥f(x)− f(y)∥∥+ (1− εn)‖Tµnx− Tµny‖

6 εnα‖x− y‖+ (1− εn)‖x− y‖
=
(
1 + εn(α− 1)

)
‖x− y‖

= βn‖x− y‖.

Therefore, by the Banach contraction principle [18], there exists a unique point zn ∈ C
such that Nnzn = zn.

https://www.journals.vu.lt/nonlinear-analysis
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Step 2. {zn} is bounded.
Let p ∈ Fix(S). From (ii) of Theorem 2.1 in [15] Tµnp = p for each n ∈ N, and we

have

‖zn − p‖2 =
〈
εnf(zn) + (1− εn)Tµn

zn − p, J(zn − p)
〉

= εn
〈
f(zn)− f(p), J(zn − p)

〉
+ εn

〈
f(p)− p, J(zn − p)

〉
+
〈
(1− εn)

(
Tµnzn − Tµnp

)
, J(zn − p)

〉
6 εnα‖zn − p‖2 + (1− εn)‖zn − p‖2 + εn

〈
f(p)− p, J(zn − p)

〉
.

Thus,

‖zn − p‖2 6
1

1− α
〈
f(p)− p, J(zn − p)

〉
,

so,

‖zn − p‖ 6
1

1− α
∥∥f(p)− p∥∥.

That is, the sequence {zn} is bounded.

Step 3. limn→∞ ‖zn − Ttzn‖ = 0 for all t ∈ S. Let t ∈ S and p be an arbitrary
element of Fix(S). SetD = {y ∈ C: ‖y−p‖ 6 ‖f(p)−p‖/(1−α)}. We note thatD is
a bounded closed convex set, {zn} ⊂ D, and Tt(D) ⊂ D. Let ε > 0. From Theorem 1.2
in [3] there exists a δ > 0 such that

cl
(
coFδ(Tt;D)

)
+Bδ ⊂ Fε(Tt;D). (8)

From Corollary 1.1 in [3] there is a natural number N such that∥∥∥∥∥ 1

N + 1

N∑
i=0

Ttisy − Tt

(
1

N + 1

N∑
i=0

Ttisy

)∥∥∥∥∥ 6 δ (9)

for s ∈ S and y ∈ D. LetM0 = ‖f(p)−p‖/(1−α)+‖p‖. Therefore, supy∈D‖y‖6M0.
From the condition that {µn} is strongly left regular there is a N0 ∈ N such that
‖µn − l∗tiµn‖ 6 δ/M0 for n > N0 and i = 1, 2, . . . , N . Therefore, as in the proof
of Theorem 3 in [11], we have

sup
y∈D

∥∥∥∥∥Tµny −
∫

1

N + 1

N∑
i=0

Ttisyµn(s) dµn

∥∥∥∥∥
6 max
i=1,2,...,N

‖µn − l∗tiµn‖(M0) 6 δ (n > N0). (10)

Hence from Theorem 2.1 in [15] we have∫
1

N + 1

N∑
i=0

Ttisyµn(s) dµn ∈ cl

(
co

{
1

N + 1

N∑
i=0

Tti(Tsy), s ∈ S

})
. (11)

Nonlinear Anal. Model. Control, 29(5):878–889, 2024
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Therefore, it follows from (9)–(11) that

Tµn
y =

∫
1

N + 1

N∑
i=0

Ttisyµn(s) dµn +

(
Tµn

y −
∫

1

N + 1

N∑
i=0

Ttisyµn(s) dµn

)

∈ cl

(
co

{
1

N + 1

N∑
i=0

Ttisy, s ∈ S

})
+Bδ

⊂ cl
(
coFδ(Tt;D)

)
+Bδ ⊂ Fε(Tt;D)

for all y ∈ D and n > N0. Thus, we have lim supn→∞ supy∈D ‖Tt(Tµny)−Tµny‖ 6 ε.
Since ε > 0 is arbitrary, we conclude that

lim sup
n→∞

sup
y∈D

∥∥Tt(Tµny)− Tµny
∥∥ = 0. (12)

Suppose that t ∈ S and ε > 0. Then there is a δ > 0, which satisfies (8). Take
L0 = 2‖f(p) − p‖/(1 − α). Since limn εn = 0, from (12) there is a natural number
N1 such that Tµny ∈ Fδ(Tt;D) for all y ∈ D and εn < δ/(2L0) for all n > N1. Since
p ∈ Fix(S) and {zn} ⊂ D, we have

εn
∥∥f(zn)− Tµn

zn
∥∥

6 εn
(∥∥f(zn)− f(p)∥∥+ ∥∥f(p)− p∥∥+ ∥∥Tµn

p− Tµn
zn
∥∥)

6 εn
(
α‖zn − p‖+

∥∥f(p)− p∥∥+ ‖zn − p‖)
6 εn

(
1 + α

1− α
∥∥f(p)− p∥∥+ ∥∥f(p)− p∥∥)

= εnL0 6
δ

2

for all n > N1. It can also be observed that

zn = εnf(zn) + (1− εn)Tµnzn

= Tµnzn + εn
(
f(zn)− Tµnzn

)
∈ Fδ(Tt;D) +Bδ/2 ⊆ Fδ(Tt;D) +Bδ

⊆ Fε(Tt;D)

for all n > N1. Thus, ‖zn − Ttzn‖ 6 ε (n > N1). Since ε > 0 is arbitrary, we have
limn→∞ ‖zn − Ttzn‖ = 0.

Step 4. The weak limit set of {zn}, which is denoted by ωω{zn}, is a subset of Fix(S).
Let x∗ ∈ ωω{zn}, and let {znj

} be a subsequence of {zn} such that znj
⇀ x∗. We

need to show that x∗ ∈ Fix(S). From Corollary 5.2.10 in [1] I−Tt is demiclosed at zero
for each t ∈ S, and hence, from Step 3 we conclude that x∗ ∈ Fix(S).

Step 5. The existence of a unique sunny nonexpansive retraction P of C onto Fix(S),
and x ∈ C, which satisfies

Γ := lim sup
n

〈
x− Px, J(zn − Px)

〉
6 0. (13)
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Let µ be a cluster point of {µn}. It is clear that µ is an invariant mean. Hence, by
Theorem 2, there exists a unique sunny nonexpansive retraction P of C onto Fix(S). By
the Banach contraction mapping principle fP has a unique fixed point x ∈ C. We now
prove that

Γ := lim sup
n

〈
x− Px, J(zn − Px)

〉
6 0.

Since E is reflexive, it follows from Step 2 and Theorem 1.9.21 in [1] that {zn} is
weakly compact. Hence, from the definition of Γ and Proposition 1.7.2 in [1] we can
choose a subsequence {znj

} of {zn} with the following properties:

(i) limj〈x− Px, J(znj − Px)〉 = Γ ;
(ii) {znj

} weakly converges to a point z;

and using Step 4, we have z ∈ Fix(S). Since E is smooth, by the weakly sequentially
continuity of J , we have

Γ = lim
j

〈
x− Px, J(znj − Px)

〉
=
〈
x− Px, J(z − Px)

〉
6 0.

Step 6. {zn} strongly converges to Px.
We begin by showing that for each n ∈ N,

‖zn − Px‖2 6
2

1− α
〈
x− Px, J(zn − Px)

〉
. (14)

To see first note, since fPx = x, we have (f − I)Px = x − Px. Now from [18, p. 99]
we have, for each n ∈ N,

εn(α− 1)‖zn − Px‖2

>
[
εnα‖zn − Px‖+ (1− εn)‖zn − Px‖

]2 − ‖zn − Px‖2
>
[
εn
∥∥f(zn)− f(Px)∥∥+ (1− εn)‖Tµnzn − Px‖

]2 − ‖zn − Px‖2
> 2
〈
εn
(
f(zn)− f(Px)

)
+ (1− εn)(Tµnzn − Px)− (zn − Px), J(zn − Px)

〉
= −2εn

〈
(f − I)Px, J(zn − Px)

〉
= −2εn

〈
x− Px, J(zn − Px)

〉
,

and so,

‖zn − Px‖2 6
2

1− α
〈
x− Px, J(zn − Px)

〉
.

Therefore, from (13), (14) and that the fact that Px ∈ Fix(S) we have

lim sup
n
‖zn − Px‖2 6

2

1− α
lim sup

n

〈
x− Px, J(zn − Px)

〉
6 0.

That is, zn → Px.
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