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Abstract. The aim of this paper is to study existence results for a singular problem involving
the p-biharmonic operator and the Hardy potential. More precisely, by combining monotonicity
arguments with the variational method, the existence of solutions is established. By using the Nehari
manifold method, the multiplicity of solutions is proved. An example is also given to illustrate the
importance of these results.
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1 Introduction

The aim of this work is to study the following p-biharmonic problem with singular non-
linearity and Hardy potential:

Itpl” %

where 1 < p < N/2,0 < 6 < 1, and \, p are positive constants. The operators A, and
AZQ, are the p-Laplacian operator and the p-biharmonic operator, respectively, defined by

A2 AP 8 = M) ) forallpe WERRY), ()
v

App = div(|[Ve[P V) and Ao = A(|Ap[P*Ap).
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Singular p-biharmonic problem with the Hardy potential 763

Nonlinear elliptic equations with singularities can model several phenomena like non-
Newtonian fluids and chemical heterogeneity; for more details and other applications, see,
for example, Alsaedi et al. [1], Callegari and Nachman [4], Candito et al. [5, 6], Molica
Bisci and Radulescu [14], Nachman and Callegari [16] Papageorgiou [17], Papageorgiou
et al. [19], and Pimenta and Servadei [20]. In recent years, problems involving p-bihar-
monic operator have been extensively studied; see, for instance, Bhakta [2], Dhifli and
Alsaedi [8], Huang and Liu [12], Molica Bisci and Repovs [15], Sun et al. [23], Wang
and Zhao [26], and Yang et al. [27]. In particular, Dhifli and Alsaedi [8] considered the
analysis of the fibering map on the Nehari manifold sets to prove the existence of multiple
solutions for the following system:

A2p — App + V()02
=M (2)|e|" %0 + a(2)|p|™2¢ forall p € WP (]RN).

Very recently, several researchers have concentrated on the study of singular p-bihar-
monic equations; see Sun et al. [23] and Sun and Wu [24,25], whereas singular problem
involving p-biharmonic operator and Hardy potential has not received that much attention
— we refer the reader to Drissi et al. [10] and Huang and Liu [12] for related work.

Ferrara and Molica Bisci [11] used the variational principle of Ricceri [22] to prove
the multiplicity of solutions for the following problem:

olP%p .
7APQ0:M‘ ||Z|2p +)‘f(za§0) m “Qa

p=Ap=0 on0df2.

Motivated by [11], Huang and Liu [12] considered the following p-biharmonic prob-
lem:

lp|P~2¢p
|z|2P

p=Ap=0 ondf.

AR = ph(z,¢) in 2,

More precisely, they used the invariant sets of descending flows method and proved that
under suitable conditions on the parameter ;1 and the nonlinearity h, such a problem
admits a nontrivial solution that changes sign.

In the present paper, we shall combine variational methods with monotonicity argu-
ments to prove the existence of a nontrivial solution for problem (1). Next, we shall use the
Nehari manifold method to prove the multiplicity of solutions. We note that this problem
is very important since it involves the p-biharmonic operator, the p-Laplacian operator,
a singular nonlinearity, and the Hardy potential.

In the first main result of this paper, we shall assume that

g(z,0) = f(2)h(p) forall (z,¢) € RY xR

and that the functions f, h are measurable and satisfy the following hypotheses.
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(H1) Thereexiste; > 0,1 <r <p < N/2,and s € (p*/(p* —r),p/(p — 7)) such
that
ferr /I RN N LE (RY) and h(p) < cilp|"™! forall p € R.
(H2) There exists M > 0 such that for all (z, p) € RY x R, we have

0 <rf(2)H(p) < f(2)h(p)p forall p| > M

= /th(s) ds
0

(RY) for some 8 € (p*/(p* + 0 — 1),

where

H3) a e LV (p* +0 - HRY) N L
p/(0+p—1)).

The first main result of this paper is the following theorem.

Theorem 1. Suppose that hypotheses (H1)—(H3) hold. Then for all §, u > 0, problem (1)
admits at least one nontrivial weak solution ,,, provided that X\ > 0 is small enough.

In the second main result of this paper, we shall assume the following hypotheses.

(H4) G : RN x R — R, defined by G(z,¢) = [ g(2, s) ds, is a C'-function such
that
G(z,t) =t"G(z,p) forall (z,¢0) € RN xR, t > 0.

Moreover, if ¢ # 0, then G(z,¢) > 0,where 0 <1 -0 <1 <p <r.
(H5) a: RY — (0, 00) satisfies

a € Lp/(6+p=1) (RN).
We note that by hypothesis (H4), we can find M > 0 such that
wg(z,¢0) =rG(z,p) and ’G(z,gp)| < M|p|" forall (z,0) € RN xR, (2)
The second main result of this paper is the following theorem.

Theorem 2. Assume that hypotheses (H4) and (HS) hold. Then there exists u* > 0 such
that for all i € (0, u*), problem (1) admits two nontrivial solutions.

The paper is organized as follows: In Section 2, we shall present some preliminary
material needed in the paper. In Section 3, we shall prove the first main result of this
paper, i.e., the existence of solutions (Theorem 1). In Section 4, we shall study fibering
maps on Nehari manifold sets. In Section 5, we shall prove the second main result of
this paper, i.e., the multiplicity of solutions (Theorem 2). In Section 6, we shall give an
illustrative example.

https://www.journals.vu.lt/nonlinear-analysis
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2 Preliminaries

In this section, we shall present some preliminary material needed in the paper. For other
necessary background facts, we recommend the comprehensive monograph Papageorgiou
et al. [18].

The Hardy potential is related to the following Rellich inequality:

[p(2)IP p

e 2 S (N<p 1)

2

p
A P for all E
N2p)) /’ ¢(2)|"dz forallp € E, (3)
]RN

where E := W2P(RY) is the Sobolev space, which is defined as follows:
W2P(RY) = {p € L?(RY): Ay, |Vy| € LP(RY)}.

For the interested reader, properties of these spaces can be found in Davies and Hinz [7],
Mitidieri [13], and Rellich [21]. According to the Rellich inequality (3), if A satisfies

N(p—1)(N — 2p)>p
p? ’

O</\<< @)

then ||| : E — R, defined by

2)|P 1/p
ol = ([ 180 - AEE 1 gpapas) ™,

2|
RN

isanormin E.
For every 7 € [p,p*], there exists a continuous embedding from E into L"(RY).
On the other hand, if » € (p,p*), then there exists a compact embedding from E into

L7 (RY). Moreover, we have

Selel? < lll|” forallp € Eandr € [p,p*], (5)

where p* = Np/(N — 2p), |¢|, denotes the usual L"(RY)-norm, and S, is the best
Sobolev constant given by

o . Jaw 180(2) P = NELE 1|V (2) P dz
' pew2r (RN)\{0} (Jan lo(2)|m d2)p/m

If ¢ is a positive function on RN and 1 < ¢ < oo, then we can define the weighted
Lebesgue space L (RN, ) by

L7 (RN, ) = {<p : RY — R measurable: /w(z)w(z)rdz < oo}7
RN

Nonlinear Anal. Model. Control, 29(4):762-782, 2024
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endowed with the norm

lelles = (| w<z>1w<z>|"dz)”".

RN

Then L° (RN, ) is a uniformly convex Banach space. Dhifli and Alsaedi [8] have proved
thatif oy € LP"/®"=")(RN) N L (RY) for some s € (p*/(p* —r),p/(p — 7)), then the
embedding W2P?(RYN) < L"(R¥ 1)) is continuous and compact. Moreover, we have

the following estimate:

lellry < 8,07 f

Remark 1. We get an inequality similar to (6) if we replace r by 1 — 6 and f by a. More
precisely, we have

v /- llpll” forallp € E. (6)

1—6 —(1—0 _
/ a(2)]0(2)[ dz < SEOP 1] e son ol
RN

Indeed, from Eq. (5) and the Holder inequality we obtain

. (p"+6-1)/p" . (1-0)/p"
/a(z)|<p(z)’170dz < (/‘a(z)’p /(v +91)dz> (/|u(z)|p dz)
RN RN

RN
—(1-9)/
<S5, PIf

—0
17*/(17*-1-9—1)”90”1 .

3 The proof of Theorem 1

We recall that a function ¢ € F is called a weak solution for problem (1) if, forall v € F,
one has

-2

p
/ (|Ag0p2AgaAv - )\W} + |Vg0|p2Vg0Vv) dz

RN
= /a(z)go_evdz—l—u/g(z,go)vdz.
RN RN

Associated to problem (1), we define the energy functional J,, : & — R by

1 1
Tule) = el = =5 [ al2)e' " az / G (2 0(2)) d. )
]RN

RN
Several lemmas will be needed for the proof of Theorem 1.

Lemma 1. Under hypotheses (H1)-(H3), the functional J, is coercive and bounded from
below on E.

https://www.journals.vu.lt/nonlinear-analysis
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Proof. Let ¢ € E. Assume that hypotheses (H1)—-(H3) hold. Then it follows by (6) and
Remark 1 that

5(0) = Sllell = = [ a2)e 7 dz - /f

RN
(1-0)/p

1 S .

> S|P — =2 - 1=0 _
Sl = =2 laly s so-p el

—(1-0)/p —r/p

1 . I

> - p__~"p* . . 1-6 p*
Slell =gl /e re-n el

Since 0 < 1 — 0 < r < p, we can infer that
Ju(p) = o0.

im
llell—o0

In other words, J,, is indeed coercive and bounded from below on E. This completes the

proof of Lemma 1. O

Lemma 2. Assume that hypotheses (H1)-(H3) hold. Then there exists a nonnegative
nontrivial function ¢ € E such that J,,(t¢) < 0, provided that t > 0 is small enough.

Proof. Lett > 0and ¢ € C(R"). Assume that for some bounded subsets {2 and (21,
we have £2) C supp(¢) C 21 C RV, 0 < ¢ < 1, 0n (2, and ¢ = 1 on §2y. Then by
(H2), we can find K > 0 such that for all (z,t) € RY x R, we have

f()H(t) = Kf(2)[t".
Invoking (H1)-(H3) and Eq. (6), we get

P 1-0
3utt9) = Sl — = [ )60 @z~ [ ()00 d:
RN RN

1—-0
<Thollr - 1= [ @)t dz = urc ol
]RN
<tr<1||¢|p+uf<¢>||r ) i [ ataro0a:
D f 1—6

RN
olion (1 . 1 }
<00t (ol ity ) - g [ atore0a:]
RN

<0 forallte (0, 51/(T+6—1))7

where

1—6

¢ = min( 1 =g Jan a(x)9170 d2

a " el + kgl )
P rf

This completes the proof of Lemma 2. O

Nonlinear Anal. Model. Control, 29(4):762-782, 2024
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We note that according to Lemma 1, we can define the following:

my = Inf Ju(p),

and by Lemma 2, we have m,, < 0.

Lemma 3. The functional J,, attains its global minimizer on E. That is, there exists
0 € E such that
Ju(pp) =m, <O0.

Proof. Let {,} be a minimizing sequence for .J,,, which means that J, () — m,, as
n — oo. Since J,, is coercive, it follows that {¢n} is bounded on E. Indeed, if not, then
up to a subsequence, we can assume that ||, || — oco. Therefore, the coercivity of J,
implies that J,,(¢,,) — oo, which is a contradiction. Hence, {(y, } is bounded. Therefore,
there exist ¢, € E and a subsequence still denoted by {¢,,} such that, as n tends to
infinity, we have

Pn — @, weaklyin F,
©n — ¢, strongly in L™ (RY, f), (8)
©n — @, ae.in RYN.

Since {¢y, } is bounded on E, it follows by the Sobolev embedding theorem that {¢,, } is
bounded on L?" (R™). On the other hand, by Remark 1, we have

_ —(1—0 _
/ a(2) o0 dz < S Plale e oy llonl .

RN

So, by absolute continuity of |a

p*/(p*+0—1)» We can deduce that

{ /a(z)|<pn\1—9dz, ne N}

RN

is equi-absolutely continuous. Therefore, by the Vitali theorem (see Brooks [3]), one has

n—00
RN RN

tim [ a(z)leal"dz = [ a()lou 0 ©)

Finally, by (8) and weak lower semi-continuity of the norm, we obtain
my, S Ju(‘?u) < nh—>Holo Ju(‘?n) =My,

hence,
Ju(pp) =my, <0. (10)

This completes the proof of Lemma 3. O

https://www.journals.vu.lt/nonlinear-analysis
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Now we are ready to present the proof of Theorem 1.

Proof of Theorem 1. From Lemma 3 we see that ,, is a global minimizer for J,,, hence,
¢, satisfies

0 < Ju(pu +to) — Ju(p,) forall (t,¢) € (0,00) x E.
Dividing the above inequality by ¢ > 0 and letting ¢ tend to zero, we obtain

(4 Pusp -
0< /(|A‘Pu|p QA‘PMA‘P )‘W‘HV@MP QV‘PMV‘P> dz
RN

/ a(2)p, pdz — p /f (pu)pdz.

The fact that ¢ is arbitrary in E implies that in the last inequality, we can replace ¢ by
—, so, for any ¢ € F, we get

' Pup —
O=/<|A<pu|p 2A<pHA<p )\W+|V<pu|p 2V<p“V<p> dz
RN

/(% pdz —p /f h(pp)p d.

That is, ¢,, is a weak solution for problem (1). Moreover, from Eq. (10) we see that ¢,, is
nontrivial. This completes the proof of Theorem 1. O

4 Fibering maps on Nehari manifold sets

In order to prove Theorem 2, we first need to study the fibering maps on Nehari manifold
sets. First, let us mention that the functional .J,, defined in Eq. (7) is Fréchet differentiable.
Moreover, for all (¢, %) € E x E, we have

p—2
T (o) = /"QA¢W2A¢Aw A28 1V vovs ) a

- [ate a2 [y pwa
RN RN

It is obvious that J,, is not bounded from below on E. We introduce the following set:
N, ={p € E: J,(¢)p =0}

Note that a function ¢ € E is a weak solution for problem (1) if it satisfies J,(p) = 0,
that is, ¢ is a critical value for J,. Clearly, ¢ € N,, if and only if

nww—/QQWP%u—u/G@w@»w:o. (an
]RN

RN

Nonlinear Anal. Model. Control, 29(4):762-782, 2024
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Lemma 4. The functional J,, is coercive and bounded from below on N ,,.

Proof. Let ¢ € N,,. Then, by Egs. (5), (11) and the Holder inequality, we obtain

1 1 _
50) =l = 75 [ a0z =2 [ Gl d:
RN RN

r—p O0+r—1 1—0
> Y —
> 2ol - T [ el
RN

r—p 0+r—
> el =

pr r(1—6)

Since 0 <1 -6 <1 < p < r,itfollows that J, is coercive and bounded from below on
N,,. This completes the proof of Lemma 4. O

S<9 V2 all, oz p—1y ol 7 (12)

Next, we define a function ¢,, , on [0, 400), introduced in Dribek and PohoZaev [9],
as follows:

1-6 r
Buie(®) 1= 1u(t9) = TllelP = 1 [ a0 dz = B [ 6 p(0) e

RN RN

A simple calculation shows that

@, () =t Hlg||P — 7 / a(2)p' 0 dz — pt" / G(z,¢(2)) dz

RN RN
and

Buo(t) = (0 = D' o]]?

+ 601 / a(z)' 0 dz — p(r — 1)t72 / Gz 0(2)) dz
RN

RN
Since t¢), ,(t) = (J,,(tp), tp), it follows that for t > 0 and ¢ € £\ {0}, we have

¢, ,(t) =0 ifandonlyif tp € N,,.

In particular, ¢ € N, if and only if (;SH S0( ) = 0. On the other hand, it follows by Eq.
(11) that for all ¢ € N one has

& (1) = (p—lgll” + (6 +7r—1) / a(2)¢" dz (13)
RN
—(0+p— D)l — (6 +7—1) / G (2 9(2)) dz. (14)
RN

https://www.journals.vu.lt/nonlinear-analysis
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Now, in order to obtain the multiplicity of solutions, we split IV,, into three parts:

N, ={pe N, \{0}: ¢); (1) >0},

N, ={peN,\{0}: ¢ (1) <0},
and

NS = {p e N\ {0}: ¢ (1) =0}.

In the following lemmas, we shall present some important properties related to the subsets
introduced above.

Lemma 5. Ifu ¢ N, is a local mimimizer for J,, on Ny, then J},(¢) = 0.

Proof. Since ¢ is a minimizer for .J,, under the following constraint

L) = J,(p)p =0,

the Lagrange multipliers theory implies the existence of § € R such that J;, () = I, (¢)¢.
Thus

JL(@)e = (I, (p)p)€ = ¢y, ,(1)E =0.

The fact that ¢ ¢ N, 3 implies that ¢}/ (1) # 0. So, § = 0, which completes the proof of

Lemma 5. O
Lemma 6. There exists g such that if i € (0, po), then the set NS is empty.

Proof. Put

(9+p—1)5:/p< r—op
O+r =DM \(9+r—1Dally/@rpnSs """

Mo =

)

>(rp)/(9+p1)

where M is defined as in Eq. (2), and let 1 € (0, 19). We shall prove that Nﬁ = 0.
Suppose to the contrary and let ¢ € NV 3. Then we have

0=a (1)
— =Dl +6 [z de = ntr - 1) [ Glepla)) s

RN RN

So, it follows from (13) and (14) that

0+p—Dllgl? = u(0+r—1) / Gz p(2)) dz (15)

and :
(r—p)llgl? = O +r—1) / a(2)p"(2) dz. (16)

RN

Nonlinear Anal. Model. Control, 29(4):762-782, 2024
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On the other hand, from (5) and the Holder inequality we get

/G(ZWl*e(Z)dZé </ ‘gp(z)|pdz>(10)/p(/ |a(z)|P/(0+p*1) dz>(9+p1)/1’
Y RN

<lelpllallpposp—1) < S50 lallyposp-llill'

So, it follows from (16) that

O+r—1 _ O+r—1 B
ol = = / a(z)u" () dz < T LU0 all oo ol

r r—op
RN
that is,
O+r—1_,_ 1/(0+p=1)
ol < (500l 1) an
From (5), (2), and (15) we have
0 @+r-1) / @+r— /
P = G z dz
el () dz < M= [ o)l
@+r—1)
Y g/
1 lell”,
hence,
9_,’_ -1 ST/P 1/(r—p)
loll > (Ltp=LS% . (18)
O@+r—1)Mpu
By combining (17) with (18), we obtain p > pg, which gives us the desired contradiction.
This completes the proof of Lemma 6. O

Lemma 7. Let ¢ € E \ {0}. Then there exists 1 > 0 such that for all 0 < p < py,
@, has exactly a local minimum at t1 and a local maximum at ty. That is, tyu € N, j and
tou € N/J_

Proof. Let ¢ € E be such that

/g(z7 ¢)dz >0 and /a(z)gol_g dz > 0.

RN RN

It is easy to see that for all ¢ > 0, we have

) =1 (0 [ a7 a2). (19)

RN

https://www.journals.vu.lt/nonlinear-analysis
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where m,, : [0,00) — R is defined by
ma(t) = 7 el = 7 [ g0
RN
It is not difficult to show that my,(t) = 0 if and only if ¢ = 0 or t = ¢, where

_ O +p—1)|e|” Y=
fo= ((9 +r—Dp fon 9(2,9) dZ) ' (20)

Moreover,

—(0+p—1)/(r—p)
my(to) = (u/g(z,w) dZ>

RN

(NP g\
0+r—1 0+r—1 '

On the other hand, the table of variation of the function m,, is given by

t 0 to o0
m,(t) + 0 —
my(to)
m ()
0 —00

Now, since
0+r—1

0< /a(z)gol*e dz <
r—p

RN

S P allppo4p-n Nl

it follows by (21) that we can choose p1 > 0 small enough so that for all x € (0, p1), we

have
0+r—1

r—p
Therefore, for pu € (0, u11), we have

SY VP allpso4p-1llell 0 < me(to).

0< /a(z)g@lf@ dz < my(to).
RN

Hence, from the table of variation of m,, we can deduce the existence of unique ¢; and ¢,
such that 0 < 1 < tg < t9 and

ma(tr) = my(t2) = [ al2)et 0 d
RN

Nonlinear Anal. Model. Control, 29(4):762-782, 2024
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Finally, from (19) and the table of variation of function m, we can see that ¢; and ¢, are
the unique critical points of function ¢, ,,. More precisely, ¢; is a local minimum point,
and ¢, is a local maximum point. Thus t;u € N, ;[ and tou € N e This completes the
proof of Lemma 7. O

Remark 2. It follows from Lemma 7 that N, # () and N,; # (), provided that 0 <z < ;.
Moreover, by Lemma 6, for every 0 < p < g, we have

N,=NFUN].
For the rest of the paper, we shall set

p* = min(po, i1, pi2)
and define

6, = inf JM(@),GZZ inf Ju(p) and 0, = inf J,(p),

PEN, @ENT ENT

where
_(0+p—1)SP (041 —1)p — (r—9)/(+p-1)
H2 = @+r—1)M \(1-6)(r—p) ? p/(0+p—1) .

Lemma 8. If 0 < p < u*, then the following statements hold:
® 0, <0 <.
(ii) There exists C' > 0 such that
0, =2C>0.
Proof. (i) Let p € N,F. Then from (13) we get

r

—-p p 1—9d
Lol < [ atz)et?
RN

So, combining the last inequality with (11), we obtain

r—op 0+r—1 _
T = Lol - T [ a@)et s
RN

(r=p@@+p-1), .,
< - (1= 0) [llP <0,

so, we conclude that 6, < 9: < 0.
(ii) Let o € N, . Then by (5) and (14), we get

ol > (2= DS N
? 0 +r—1)uM ’

where M is the positive constant given by Eq. (2).

https://www.journals.vu.lt/nonlinear-analysis
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Now, using the last inequality and (12), we get

r—p” ||p_9+ri_1
pr 7 r(l1—0)

_ofTr—p _ 0+r—1 _,_
> ol (2ol = LS00 a4

(9 +p—1)S:/p (1-6)/(r—p) r—p (9 +p—1)S:/p (0+p—1)/(r—p)
O+r—1)uM pr \ (@+7r—1)uM

S}()l—é)/p 16

Ju(@) >

||CLHp/(0+p—1) ll¢l

0+r—1 _
- WS;()Q 1)/p|a||17/(9+p—1))'

Since 0 < pu < p* < ppand 0 < 1 -0 < p < r, it follows that J, > C for some C' > 0.
This completes the proof of Lemma 8. O

Next, we have the following results on the existence of minimizers in [V, lf and NV " for
1€ (0, ")

Lemma 9. If 0 < u < p*, then there exists ¢, € N/j‘ such that

+ _
0, = Ju(ep).
That is, J,, attains its minimum on N;.

Proof. Since J,, is bounded from below on N, and hence also on N :[ , there exists
{¢r} € N;f such that

Jm Jupn) = int Ji(o)

Since J,, is coercive on IV, it follows that {(},} is bounded on E. So, there exist ¢, and
a subsequence, again denoted by {¢y }, such that as k tends to infinity, we have

Y — ¢, weaklyin E,

¢r — ¢, strongly in L?(R") forall p < ¢ < p*,

Or — O, ae. RV,

From Lemma 8 we know that inf, .+ J,.(¢) < 0. On the other hand, since {¢1} C
N, we have

r—p O0+r—1 _
Tuto) = Llaulr - T [ ate)el ()
RN

So, we get

O+r—1 10 s TN
L [ a@e @ s = SR - ),
]RN
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From (9), by letting k¥ — oo in the last equation, we obtain

/a(z)gp}f‘g(z) dz > 0.

RN

We now claim that ¢y, converges strongly to ¢, in E. If this were not true, then we
would have

P < liminf [|]|P.
lpwl” < lim nf o

Since d);u (t1) = 0, it would follow that ¢/wk (t1) > 0 for sufficiently large k. So, we must
have ¢; > 1. However, 1, € N, ;r , and therefore,

Ju(tion) < Juleou) < klim Ju(pr) = inf J,(¢),
—00 uGN;r

which is a contradiction, that is, k—> O
—00
Since N;) = 0), it follows that ¢, € N,F. Finally, ¢, is a minimizer for .J,, on N,
This completes the proof of Lemma 9. [

Lemma 10. If 0 < pn < pu*, then there exists 1, € N, such that

0 = Ju(iy).

That is, J,, achieves its minimum on N, -

Proof. By Lemma 8, there exists C' > 0 such that for all ¢ € N, we have J,,(¢) > C.
So, there exists a minimizing sequence {¢y} C N, such that

i Tl = B )2 0

Since J,, is coercive, we can deduce that {¢r} is bounded. So, forall p < r < p*,
there is a subsequence, still denoted by {¢y}, and ¢, € E such that if k tends to infinity,
we get

©r — ¥, weaklyin E,
YR — 1, strongly in L" (RN),

Or — Y, ae. RV,
On the other hand, since {¢;} C N, we have

_or+60-1 0+p—1 »
Tuon) = 1w [ Glpn(a)) as - TSl
RN
which implies

r+6-—1 0+p—1
_— d = _— p_
W= /G(Wk) z = Juler) + 1= okl

RN
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By letting k£ — oo in last equation, we obtain

/G(Zﬂ/}p) dz > 0.
RN

Hence, by Lemma 7 ¢, ,, has a maximum at some point ¢ and t2¢),, € N, . On the other
hand, ¢, € N, implies that 1 is a global maximum point for ¢,, ., , so, we get

Ju(tor) = Gppn (1) < Gpp (1) = Jou(pr)  forall t > 0. (22)

Now, we claim that ¢, — v, as & — oco. Suppose that this is were not true, then we
would get

P < liminf |0 ||P.
l,l” < lim inf [

So, from Eq. (22) and the Fatou lemma we would obtain

et ’ -0 o bth
Ju(tot),) = EWHH “1-4 a(z)y, " dz — 7 G(z,¥u(2)) dz
RN RN
. . tg p t%_e 1-6 :u“tg
<timint (2o - {2 [ ool ? a2 Gl
RN RN

- . _
< lim Ju(tapr) < lim Jy(ex) ¢lergi Ju (),

which is a contradiction. Hence, ¢, — v, as kK — oo.
Since N 2 = 0), it follows that ¢/, € N, . Finally, 1), is a minimizer for J, on N .
This completes the proof of Lemma 10.

5 The proof of Theorem 2

We shall need the following two auxiliary lemmas to prove that the local minimum of the
functional energy is a weak solution for problem (1).

Lemma 11. Assume that hypotheses of Theorem 2 are satisfied and i € (0, u*). Then
the following statements hold:

(i) There exist ry > 0 and a continuous function py : B(0,71) — (0, 00) such that

p1(0)=1 and p1(<p)(gou+90)€N: forall p € B(0,r1).

(il) There exist ro > 0 and a continuous function py : B(0,r2) — (0, 00) such that

p2(0) =1 and ps(@)(Yu+ ) €N, forall o € B(0,r2).

Nonlinear Anal. Model. Control, 29(4):762-782, 2024


https://doi.org/10.15388/namc.2024.29.35410

778 A. Drissi et al.

Proof. We give the proof only for assertion (i) since the proof for assertion (ii) is similar.
So, let @ : E x (0, c0) be a function defined by

B, 1) = 19471, + |7 — 1947 / Gz, o + ) dz
RN

- / a(2)|p + o177 dz.

RN
Since ¢, € N,F C N,,, we have #(0, 1) = 0. On the other hand, ¢,, € N,/ implies that

oo

GOD =0 +p=Dleul? - 6471 [ Glp)dz>o0

RN

So, by the Implicit function theorem, there exist 71 > 0 and a continuous function p; :
B(0,71) — (0, 00) such that

p1(0) =1 and pi(p)(eu+ )€ NS forallp € B(0,r).
This completes the proof of Lemma 11. O

Lemma 12. Assume that hypotheses of Theorem 2 are satisfied and p € (0, u*). Then
for every ¢ € E, the following statements hold:

(1) There exists T > 0 such that

Ju(en) < Ju(ep +te) forallt e (0,Ty).
(i) There exists Ty > 0 such that

Ju(bp) < Ju( +tp) forallt € (0,Ty).

Proof. We shall give the proof only for assertion (i) since the proof for assertion (ii) is
similar. So, let ¢ € F and d,, : [0,00) — R be a function defined by

Sp(t) = (p = Dllen + tel”

—i—@/ op +tol'0dz — (r— 1) /Gchu—i—t(p)d
RN

Since ¢, € N,F C N,,, we obtain

9/a<z)w1*9dz:9||w||”+(r—1>/G(z,sou)dz (23)
RN RN
and
0+p— Dl — @+ —1) / Gy + tip) dz > 0. (24)
]RN
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By combining Eqs. (23) and (24) with the definition of the function d,,, we get 6,,(0) >
0. So, the continuity of the function J,, implies the existence of 7Ty > 0 such that

d,(t) >0 forallt e [0,Tp).
On the other hand, by Lemma 11, for every ¢ € [0, r1], there exists 71 (¢) such that
pi(t) (e +tp) € NF and  lim pyi(t) = 1. (25)
t—0+
Moreover, by Lemma 9, we have
0;: = Ju(pu) < Ju(pr(t) (g + tp)) forallt € (0,Tp).
Now, from that fact that @}, , (1) > 0 and the continuity in ¢ we get

@Il

piontep(1) >0 forallt € [0,7;] and for some small enough T € (0, Tp).

So, using Eq. (25), we can get small enough T3 € (0, Ty) such that
0F = Ju(pn) < Ju(pp +tp) forallt € [0,T7).
This completes the proof of Lemma 12. O
Now we are ready to present the proof of Theorem 2.

Proof of Theorem 2. As a direct consequence of Lemmas 9 and 10, we can deduce that
J,, has minimizers ¢, € N5 and ¢, € N, . Moreover, N,;f N N = () implies that ¢,,
and 1), are distinct.

Next, we shall prove that ¢,, and v,, are weak solutions for problem (1). To this end,
let ¢ € E. Then by the assertion (i) of Lemmas 11, 12, we obtain

0< Ju(pu+tp)— Julp,) forallt e (0,T7).

Dividing the last inequality by ¢ and letting ¢ tend to zero, we get

/(IAso P72 ApuAp — AWDHWH’QW#W) dz

RN
/ a(z)e, pdz — p /f (pu)pdz >

Since ¢ is arbitrary in E, it follows that in the last inequality we can replace ¢ by —p.
So, for all ¢ € F, we get

0= / <|A<p P2 ApuAp — AWHWM““@W) dz
RN

/(% pdz —p /f h(pu)p d.
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That is, ¢, is a weak solution of problem (1). Moreover, from Eq. (10) we see that ¢,, is
nontrivial.

Finally, if we proceed as above using assertion (ii) of Lemmas 11 and 12, we can
prove that ¢, is also a nontrivial weak solution of problem (1). This completes the proof
of Theorem 2. O

6 An application

As an application of our main results, we shall consider the following problem:

a(z)

lp|P % _ r—2 N

Eld

Afggo—)\

where > 0,1 < p < N/2,0 < 0 < 1, and A satisfies Eq. (4).

We note that problems of type (26) describe, e.g., the deformations of an elastic beam.
Also, they give a model for studying traveling waves in suspension bridges.

First, let us assume that 1 < r < p, f is a positive function in

* *7,',_ S p* p
p/ )(RN)QLIOC(]RN) forsomese(p*_r,p*_r)v

which implies that the first part of hypothesis (H1) is satisfied.
On the other hand, it is easy that the function h(z) = |p|" 2 satisfies the second part
of hypothesis (H1). Moreover, a simple calculation shows that

0 <rf(2)H(p) = f(2)h(p)e,

so, hypothesis (H2) is also satisfied.
Finally, if

. (o e s p* p
ac L/ + 1)(RN)0L10C(RN) forsomeﬁe(p*+9_1,0+p_1>,

then Theorem 1 ensures the existence of nontrivial solution for problem (26).
Next, we assume that p < 7 < p* and a is a positive function in LP/@+P=1)(RN),
that is, hypothesis (HS5) is satisfied. It is not difficult to see that if

9(z,0) = f(2)]e| 2,
then

G(z0) = f(2)lel",

so, hypothesis (H4) is also satisfied. Hence, Theorem 2 now ensures the existence of two
nontrivial solutions for problem (26).
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