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Abstract. In this paper, we employ computational analysis to investigate the long-term potentiation
(LTP) and memory formation in synapses between neurons. We use a mathematical model
describing the synaptic transmission as a signal transduction pathway with a positive feedback loop
formed by diffusion of nitric oxide (NO) to the presynaptic site. We found that the model of synaptic
transmission exhibits a hysteresis-like behavior, where the strength of synaptic transmission
depends not just on instantaneous interstimulus intervals, but also on the history of activity. The
switching between resting and memory states can be induced by physiologically relevant and
moderate (less than 50%) changes in the duration of interstimulus intervals.

Keywords: long-term potentiation, memory, modeling, positive feedback loop, bistability,
hysteresis-like behavior, information processing.

1 Introduction

Memory, learning, and adaptation to a changing environment in animals, examples of
multistable behavior, are essential features to survival. The storage of information in the
brain is associated with altered synaptic connectivity between neurons. The long-term
potentiation (LTP) – a long-lasting increase in synaptic strength induced by short-term
stimuli – is used for experimental studies of learning and memory [7].

A number of post- and presynaptic mechanisms are involved in LTP, including modifi-
cation of proteins, intracellular Ca2+ signaling, diffusion of NO, altered gene expression,
and insertion and internalization of receptors [2,3]. Also, mechanisms of LTP are specific
to types of neurons and region of the brain.

The loss of memory and impaired ability of new memory formation are the hallmarks
of Alzheimer’s desease (AD) [15]. The experiments in animal models demonstrated that
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Amyloid beta, associated with memory loss in AD, can cause an impairment of LTP [27].
Moreover, Amyloid beta inhibits a NO-dependent pathway during LTP [24]. A number
of other neurological and neurodegenerative deseases are associated with impaired mem-
ory.

Understanding neuronal mechanisms behind LTP is critical for understanding mem-
ory, learning, and impairments during neurodegenerative diseases. Despite the recent ad-
vancement in neuroscience, we are still limited by the experimental design and techniques
for exploring the mechanisms and pathways involved in LTP [9]. This increases the need
for theoretical and modeling studies revealing and explaining the possible mechanisms of
LTP.

From a theoretical perspective memory, learning and adaptation to a changing envi-
ronment can be considered as examples of multistable behavior. Systems with positive
feedback under certain conditions may exhibit multistable behavior [17] when a short-
lasting stimulus or perturbation in the environment can lead to a long-lasting change in
the system behavior [14, 20].

In the previous paper [11], we demonstrated that the long-term potentiation of synap-
tic transmission can be explained as a bistable behavior in a chain of biochemical reactions
with positive feedback (Fig. 1). In that case the dynamics of glutamate (Glu), calcium
(Ca2+), and nitric oxide (NO) (Fig. 1a), forming the positive feedback loop by diffus-
ing to the presynaptic site and facilitating the release of Glu (Fig. 1b), were described
by a system of nonlinear diffusion–reaction equations with Michaelis–Menten (MM)
kinetics.

One of the feature of model proposed in [10, 11] was that the test stimuli every 5 s
were required not only to test the synaptic strength, but to maintain the elevated NO
concentration as well. Can this model be applicable under real conditions? Even at rest
in a brain, there is some spontaneous synaptic activity [22], which may keep elevated
concentrations of NO under real conditions. Moreover, the increased brain activity is as-
sociated with decrease of time intervals between action potentials, whereas the decreased
brain activity with increased time intervals between action potentials. The physiological
activity and coding of information in a brain is associated with changes of time interval
between action potentials.

In this study, we investigated the behavior of proposed LTP model with physiolog-
ically relevant interstimulus intervals. Here we demonstrate that interstimulus intervals
comparable to background brain activity are sufficient to maintain the memory state.
Memorizing and forgetting can occur even by a moderate (less than 50%) change in inter-
stimulus intervals. Moreover, the LTP model proposed exhibits a hysteresis-like behavior
in response to changes in the interstimulus intervals.

2 Model description

In this investigation, we used the previously proposed LTP model [10,11]. The synapse is
described as a one-dimensional object consisting of a presynaptic terminal, synaptic cleft,
and postsynaptic terminal (Fig. 1(a)).
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(a) (b)

Figure 1. Graphical representation of the proposed LTP model. (a) The detailed schematic diagram of glutamate
(Glu), calcium (Ca2+), and nitric oxide (NO) forming a signal transduction pathway of LTP with positive
feedback. (b) The schematic view of positive feedback loop of LTP model.

The concentrations of nitric oxide ([NO](t, x)), glutamate ([Glu](t, x)), and calcium
Ca2+ ([Ca](t, x)) are functions of two variables, the time t and the position x. Interactions
between substances are modeled as one-to-one chemical reactions between substrate and
enzyme. Coupled systems of partial differential equations for [NO], [Glu], and [Ca] are
considered.

The differential equation for [NO] is investigated in the domain [0, d3], the differ-
ential equation for [Glu] is stated in the domain [d1, d2], and the Ca2+-concentration is
considered in [d2, d3].

The NO dynamics and NO producing in Ca2+-dependent manner at the postsynaptic
terminal are described by the reaction–diffusion equations

∂[NO]

∂t
= DNO

∂2[NO]

∂x2
−
(
k1 +

vNO
max

kNO
M + [NO]

)
[NO] for 0 < x < d2, t > 0,

∂[NO]

∂t
= DNO

∂2[NO]

∂x2
−
(
k1 +

vNO
max

kNO
M + [NO]

)
[NO]

+ k2
(
[Ca]− Camin

)
for d2 < x < d3, t > 0,

where DNO is the NO diffusion coefficient, k1 is the rate constant of linear NO decay,
vNO
max is the maximal rate of nonlinear NO decay, kNO

M is the MM constant for nonlinear
NO decay, and Camin is the minimal (background) Ca2+ concentration maintained in the
postsynaptic terminal.

The conjugation conditions at x = d2 and the zero-flux boundary conditions for x = 0
and x = d3 are defined.

The Glu concentration in the synaptic cleft is determined by the equation

∂[Glu]

∂t
= DGlu

∂2[Glu]

∂x2
− k4[Glu] for d1 < x < d2, t > 0,

with the Glu diffusion coefficient DGlu and the effective rate constant of Glu decay k4.
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The Glu release into the synaptic cleft is triggered by the presynaptic action potential.
To model the synaptic release of Glu, we use the time-dependent piece-wise constant
function

φ(t) =

{
1, tAPstart 6 t 6 tAPend,

0 otherwise,

where tAPstart and tAPend are the start and end time moments of the presynaptic action
potential. The Glu release to the synaptic cleft from the presynaptic terminal is modeled
as NO-independent and NO-dependent processes. The synaptic release of Glu during an
action is described by the boundary condition

[Glu] = JGlu

(
1 +

vGlu
max

kGlu
M + [NO]

[NO]

)
φ(t) if φ(t) 6= 0 for x = d1, t > 0,

where JGlu is the concentration of Glu during action potential at x = d1 in the absence
of NO, vGlu

max is the normalized maximal rate of NO-dependent Glu production, and kGlu
M

is the MM constant for NO-dependent Glu production.
The zero-flux boundary conditions at rest for x = d1 and x = d2 are defined.
The following equation characterizes the kinetics of Ca2+ in the postsynaptic neuron:

∂[Ca]

∂t
= DCa

∂2[Ca]

∂x2
− k5

(
[Ca]− Camin

)
for d2 < x < d3, t > 0,

where DCa is the Ca2+ diffusion coefficient, and k5 is the effective rate constant of Ca2+

decay. The Ca2+ enters postsynaptic terminal through the NMDA Glu receptors at Ca2+.
This is reflected in the boundary condition

DCa
∂[Ca]

∂x
= −k6

(
Ca − [Ca]

)
[Glu] for x = d2, t > 0,

where the constant k6 reflects the effective conductance of NMDA receptors, and Ca is
the concentration of calcium in the synaptic cleft. The zero-flux boundary condition at
x = d3 is defined.

Unless otherwise indicated, the zero initial conditions for [NO] and [Glu] and the
condition [Ca](0, x) = Camin are used.

The following parameters for MM interactions were used:

kNO
M = 10−4 µM, vNO

max = 3 · 10−7 µM ms−1,

kGlu
M = 5.6 · 10−3 µM, vglumax = 5.6.

A detailed description of the remaining parameters and numerical investigation used are
presented in [11]. The time intervals between stimuli are subjects of investigation and are
specified in Section 3.1.
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3 Results

3.1 Interstimulus interval and bistable LTP model behavior

In LTP model proposed in [10], just the residue of a NO is noticeable before the following
stimulus when test pulses are delivered every 5 s. Therefore the model behavior, involving
positive feedback via retrograde NO signaling, is determined by the residue NO concen-
tration before the next stimuli. This was used to evaluate the behavior of the model [11].
We set the initial NO concentration [NO]0, then after 5 s, delivered the first and, after
10 s, the second stimulus pulses. The initial NO concentration [NO]0 was varied from 0
nM with an increment of 0.05 nM, and the following model behavior was assessed: how
the difference ∆[NO] of NO just before the second and first stimulus pulses ([NO]2 and
[NO]1, respectively) depends on the [NO] peak during the first pulse ([NO]p) (Fig. 2a
in [11]). This dependence indicates how the change∆[NO] of NO concentration between
pulses depends on the NO concentration peak [NO]p during the first stimulus pulse.

This approach of analysis of the dependence of ∆[NO] on the level of [NO]p is
compatible with the classical stability analysis. The number of stationary states represents
the number of points where∆[NO] = 0, and the number of stable stationary points repre-
sents the number of stable model states. The introduced model stability analysis allowed
us to achieve a bistable model behavior by modifying interactions between substances
modeled [11].

The proposed bistable LTP model behavior [11] characterized by the plot in Fig. 2(b)
(solid line) has three stationary points. Two of them are stable and reflect the two possible
states of the model: the resting point at So

1 and the higher [NO] level and therefore en-
hanced synaptic transmission, “high-memory” point (herinafter the memory point) at So

3

(Fig. 2(b), solid line). The unstable stationary point So
2 represents a critical, or threshold,

point (herinafter the threshold point): if [NO]p < So
2 , then the system moves toward So

1 ,
and if [NO]p > So

2 , then the system moves toward So
3 .

In this study, we investigated the behavior of the proposed LTP model with physio-
logically relevant interstimulus intervals. The background activity in a brain corresponds
to range of frequency, rather than on the specific frequencies: the main power spectra
components of electroencephalogram (EEG) recordings at rest are at frequencies< 20 Hz
[28]. Single cell in vivo recordings from experimental animals revealed that spontaneous
firing of neurons is highly irregular, and the average frequency depends on a cell type:
0.14 Hz in hippocampal CA1 and CA3 pyramidal cells of mice [19]), 1 Hz in L5 visual
cortical pyramidal neurons of rats [18], and 4 Hz in pyramidal cells of rat prefrontal cortex
[4]. First, we tested if a model exhibits a bistable behavior with shorter interstimulus
intervals T . The decrease of T will lead to a net increase in NO production. Therefore,
while decreasing the interstimulus interval 5 s n times, we reduced the strength of positive
feedback by decreasing the model parameter JGlu describing the amount of glutamate
release after each stimulus pulse by n times also. We found that the dependence of
∆[NO] on the level of [NO]p has three stationary points and therefore exhibits a bistable
behavior for T > 0.02 s (Fig. 2(a)). For further investigation of dependence of model
behavior on the interstimulus interval, we used T = 1 s, which corresponds to 1 Hz,
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(a) (b)

(c) (d)

Figure 2. Influence of interstimulus interval on model behavior. (a) The influence of interstimulus interval on
the dependence of∆[NO] on the level of [NO]p. The values of JGlu are 0.8 mM (1), 0.4 mM (2), 0.2 mM (3),
0.04 mM (4), 0.02 mM (5), 0.012 mM (6), and 0.008 mM (7). Insert presents a zoomed region of small∆[NO]
levels. (b) The dependence of∆[NO] on the level of [NO]p indicating the bistable behavior of model with three
stationary points when interstimulus interval is 5 s (JGlu = 2 mM, solid line) and 1 s (JGlu = 0.4 mM, dashed
line). (c) The influence of interstimulus interval T on the number of stationary points. (d) The dependence of
stationary points on interstimulus interval. Insert presents a zoomed region of small [NO] levels. Arrows indicate
the direction of model evolution.

a frequency within a range of spontaneous firing recorded in vivo. The reduction of
interstimulus interval and JGlu resulted in bistable model behavior characterized by three
new stationary points S1, S2, and S3 (Fig. 2(b), dashed line).

The duration of interstimulus interval is a key parameter defining the balance be-
tween production and breakdown of NO. Therefore we investigated how the duration of
interstimulus interval affects the dependence of ∆[NO] on the level of [NO]p of model
while other parameters are fixed (Fig. 2(c)). Reduction of interstimulus interval increases
the value of memory point, decreases the value of threshold, and increases the value of
resting point. This is summarized in Fig. 2(d), where dependence of resting, memory, and
threshold points on interstimulus interval is displayed.

At certain interstimulus interval TN = 0.785 s for a given model parameters, thresh-
old and resting points fuse (saddle-node bifurcation point N in Fig. 2(d)), and at shorter

Nonlinear Anal. Model. Control, 29(4):746–761, 2024
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interstimulus intervals T < TN , the threshold and resting points disappear (traces 1 and 2
in Fig. 2(c)), and there is just one stationary memory point. Similarly, when interstimulus
interval exceeds TM = 1.1 s, threshold and memory points fuse (saddle-node bifurcation
point M in Fig. 2(d)), and at higher interstimulus intervals, the system has just one
stationary resting point (trace 7 in Fig. 2(c)). Therefore the branch NL represents the
resting points, MN the threshold points, and HM the memory points (Fig. 2(d)).

Model behavior changes qualitatively at saddle-node bifurcation points M and N
(Fig. 2(d)). The LTP model for a range of interstimulus interval between TN and TM can
be in one of two stable stationary states and therefore exhibits a bistable behavior.

The LTP model state (level of [NO] and interstimulus interval) can be represented as
a point in Fig. 2(d). If this point is on a branch LN or HM , then the LTP model is in
a stationary resting or memory state, respectively. Changes in an activity of neuronal net-
work will result in a change of interstimulus interval and therefore will result in horizontal
shift of model state toward the corresponding value of new interstimulus interval T . Then
the direction of model evolution toward the new steady stationary points depends on [NO]
level and is indicated by arrows in Fig. 2(d).

Figure 3(a) represents an example of model behavior when interstimulus interval is
1 s, which is between TN and TM . In this case the model exhibits the bistable behav-
ior and, depending on initial [NO] level ([NO]0), evolves toward the resting point if
[NO]0 < S2 (trace 1 in Fig. 3(a)) and toward the memory point if [NO]0 > S2 (traces 2
and 3 in Fig. 3(a)). When the interstimulus interval is 0.7 s, shorter than TN (Fig. 3(b)), the
model evolves toward the corresponding memory point for all values of [NO]0 (traces 1–3
in Fig. 3(b)), and when interstimulus interval is 1.2 s, longer than TM (Fig. 3(c)), the
model evolves toward the corresponding resting point for all values of [NO]0 (traces 1–3
in Fig. 3(c)).

These results indicate the importance of interstimulus intervals on modeled memory
formation: the transition to “high-memory” state can be induced not only by a series of
high-frequency (100 Hz) stimulation experimentally used for LTP induction, but also by
a moderate decrease of interstimulus interval T < TN . On the other hand, an increase
of interstimulus T > TM would lead to “forgetting”, moving of the model toward the
resting point.

3.2 Model behavior during transient change of interstimulus interval

The interstimulus interval defines the number and values of stationary points and therefore
the qualitative behavior of model. Moreover, due to balance between production and
breakdown of NO, it also strongly influences the rate of evolution toward the stable
stationary points. When the interstimulus interval T > TM , the breakdown of NO dom-
inates, the model evolves toward the resting point, and the rate of evolution increases
with increase of interstimulus interval T (Fig. 4(a)). When the interstimulus interval
T < TN , production of NO dominates, and the rate of evolution toward memory point
increases with decrease of interstimulus interval T (Fig. 4(b)). Therefore the duration of
interstimulus interval T defines both the direction and rate of model evolution.

https://www.journals.vu.lt/nonlinear-analysis
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(a) (b)

(c)

Figure 3. An example of model evolution from different initial levels of [NO]0. (a) When interstimulus interval
is 1 s, the model has three stationary points, two stable ones (S1 = 0.15 nM and S3 = 9.7 nM) and one
unstable point (S2 = 2.12 nM). Evolution of the model depends on the [NO]0: if [NO]0 < S2, then the model
evolves toward S1 (trace 1); if [NO]0 > S2, then the model evolves toward S3 (traces 2 and 3). (b) When
the interstimulus interval is 0.7 s, then the model has just one stable stationary point S3 = 22 nM and from
all [NO]0 evolves toward S3. (c) When the interstimulus interval is 1.2 s, then the model has just one stable
stationary point S1 = 0.12 nM and from all [NO]0 evolves toward S1.

Changes in an activity of neuronal network will result in a transient change of inter-
stimulus intervals and in a model evolution toward the new stationary state corresponding
to the interstimulus interval.

For example, if at the memory state the interstimulus interval increases to from 1 s to
1.3 s, then at least 83 s are required for a level of [NO] to cross the threshold S2 at T = 1
s and “forgetting” the memory state (trace C in Fig. 4(c)). If the interstimulus interval
increases to 2 s, then at least 31 s are required for “forgeting” the memory state (trace C
in Fig. 4(d)). Decrease of interstimulus interval to a correspondingly shorter duration will
result in model evolving back to the memory state (traces A and B in Figs. 4(c), 4(d)).
Similarly, if at the resting state the interstimulus interval decreases from 1 s to 0.3 s,
then to cross the threshold S2 at T = 1 s or memory formation, it takes less than 4 s
(trace C in Fig. 4(e)), and further model evolves toward the memory state. However, if
the interstimulus interval decrease to 0.7 s, then at least 31 s are required for memory

Nonlinear Anal. Model. Control, 29(4):746–761, 2024
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Model behavior during temporal change of interstimulus interval. The rate of NO decrease (a) and
increase (b) depends on duration of interstimulus interval T . Temporal increase in interstimulus interval can
lead to forgetting the memory state (traces C in (c), (d)), whereas temporal decrease in interstimulus interval can
result in swithcing to the memory state (traces C in (e), (f)). The interstimulus intervals T are indicated in each
panel.

formation (Fig. 4(f)). Increase of the interstimulus interval for a corresponding longer
duration (traces A and B in Figs. 4(e), 4(f)) will result in model evolving back to the
resting state.
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These results indicate that both the level of transient change in neuronal activity (in-
terstimulus interval T ) and its duration determine whether the model ultimately changes
its state.

3.3 Hysteresis-like model behavior

The dependence of LTP model stationary points on interstimulus interval has an inverted
S-shape (Fig. 2(d)). This type of dependency, when in a range between TN and TM ,
the same interstimulus interval can correspond to two stable stationary states, imposes
a hysteresis-like behavior. If the interstimulus interval decreases from higher values slowly
(reaching the steady state at each point), the model remains in the resting state follow-
ing the branch LN (Fig. 5(a)). At point N the model jumps toward the memory state

(a) (b)

(c)

Figure 5. The hysteresis-like model behavior. (a) The hysteresis-like model behavior when the interstimulus
interval T decreases slowly (reaching the steady state at each point) from 1.2 s to 0.6 s and then slowly increases
back to 1.2 s. Arrows indicate the trajectory of model evolution. (b) The increase rate of change of interstimulus
interval broadens the hysteresis. The increment/decrement of consecutive interstimulus intervals are 2 ms (1),
5 ms (2), 10 ms (3). (c) The decreased minimal interstimulus interval Tmin broadens the hysteresis. Tmin: 0.4
s (1), 0.6 s (2), 0.7 s (3). An increment/decrement of consecutive interstimulus was 5 ms. Dashed lines in (b)
and (c) represent the hysteresis-like trajectory from (a).

Nonlinear Anal. Model. Control, 29(4):746–761, 2024
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(branch MH , Fig. 5(a)) and evolves toward H . Then, if the interstimulus interval slowly
increases, the model evolves following the branch HM in the memory state (Fig. 5(a)).
At point M the model jumps toward the resting state (branch NL, Fig. 5(a)) and follows
the branch NL. Therefore, between points N and M , the system can be in two stable
(memory or resting) states. Moreover, the state depends on the history of model behavior.

During a pulse, just a limited amount of substances are released or produced. More-
over, the breakdown of NO takes time. Therefore some time is required for NO accu-
mulation or breakdown (see Figs. 4(a), 4(b)). Figure 5(b) represents the hysteresis-like
behavior of model when the interstimulus interval gradually decreases from 1.8 s to 0.4
s and then increases back to 1.8 s at different increments/decrements (the consequent
intervals differ by 2 ms, 5 ms, and 10 ms). The increased rate of interstimulus interval
change leads to broadening of hysteresis (Fig. 5(b)). Moreover, the transfer to resting
states occurs at interstimulus intervals longer than TM (Fig. 5(b)).

Moreover, the shape of hysteresis also depends on the value of minimal interstimulus
interval (Tmin) reached during gradual decrease. If the interstimulus interval does not
reach the TN value, then system does not exhibit a hysteresis-like behavior. Hysteresis
becomes noticeable when the interstimulus interval becomes smaller than TN (trace 3
in Fig. 5(c)). Further decrease of interstimulus interval duration leads to broadening of
hysteresis (traces 1 and 2 in Fig. 5(c)).

3.4 Parameter sensitivity of model behavior

The bistable behavior of the model is characterized by dependency of stationary points on
interstimulus intervals (Fig. 2(c)), where branch LN correspond to the resting state, NM
to the threshold point, and MH to the memory state. Here we tested how the dependency
of stationary points on interstimulus intervals is affected by variation of parameters.

A detailed description of model parameters and their values used is provided in the
methods section in [11]. The increase of model parameters by 20% had very little effect
on the value of resting point for a given interstimulus interval (Fig. 6(a)). 20% increase
in the MM constant for nonlinear NO decay (kNO

M ) and normalized maximal rate of NO-
dependent Glu production (vGlu

max) decreased the value of threshold (upward shift of NM ,
traces 2 and 5 in Fig. 6(a)), whereas 20% increase in maximal rate of nonlinear NO decay
(vNO

max) and the MM constant for NO-dependent Glu production (kGlu
M ) increased the value

of threshold (downward shift of NM , traces 3 and 4 in Fig. 6(a)). 20% increase vGlu
max

increased the value of memory state (upward shift of HM , trace 5 in Fig. 6(a)), whereas
20% increase in vNO

max and kGlu
M decreased the value of memory state (downward shift of

HM , traces 3 and 4 in Fig. 6(a)). 20% change in kNO
M had little effect on the value of

memory state (trace 2 in Fig. 6(a)).
Moreover, the change in model parameters affected the values of TN and TM of

saddle-node bifurcation points M and N and therefore the interstimulus time range when
the model exhibits a bistable behavior [TN , TM ] (Fig. 6). The points N and M were
shifted to the right by 20% increase in kNO

M and vGlu
max and to the left by 20% increase in

vNO
max and kGlu

M (Fig. 6(a)); however, the relative change of these parameters was less than

https://www.journals.vu.lt/nonlinear-analysis
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(a) (b)

Figure 6. Influence of model parameters on stationary states. (a) Influence of 20% increase of model parameter
on the dependence of stationary points on interstimulus interval (• – the saddle-node bifurcation points M , � –
the saddle-node bifurcation points N ). The plot from Fig. 2(d) (curve 1) and one parameter increased by 20%:
kNO
M = 1.2·10−4 µM (2), vNO

max = 3.6·10−7 µMms−1 (3), kGlu
M = 6.72·10−3 µM (4), vGlu

max = 6.72 (5).
(b) The relative value (%) of the TN , TM , and TM − TN after 20% increase of the model parameter in (a).

20% (Fig. 6(b)). Parallel shift of N and M points resulted in shift rather than in change
of the interstimulus interval range [TN , TM ] for bistable model behavior; however, 20%
increase in vGlu

max parameter resulted in significant increased range of interstimulus interval
for bistable model behavior by 40% (Fig. 6(b)).

The increase by 20% of tested model parameters affected the behavior of model.
However, the effect was quantitative rather than qualitative. Therefore we conclude that
the model behavior described is not limited to a specific set of model parameters.

4 Discussion

In this study, we investigated how the LTP model with positive feedback loop behaves in
more physiological conditions when the changes in brain activity are reflected in changes
of interstimulus intervals.

First, we demonstrated that interstimulus interval of 1 s, within a range of a typical
background activity in a brain, is capable to maintain the level of NO sufficiently to
keep the model in a high NO level or a memory state. Moreover, the moderate, less
than 50%, and temporal decrease of the interstimulus interval is sufficient to trigger
the transition of the system in to a high NO level state, or “memorizing”. Even if the
duration of interstimulus intervals returns to 1 s, the system can stay in a memory state
for an infinite time. However, the moderate increase of interstimulus intervals leads to
a transition toward the low [NO] state or “forgetting”. In this way the model under the
physiological condition can be considered a bistable switch, where the output (strength
of synaptic transmission) depends not just on instantaneous interstimulus intervals, but
on the stimulus history as well. This means a hysteresis-like behavior with respect to
changing duration of interstimulus interval.

Nonlinear Anal. Model. Control, 29(4):746–761, 2024
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These results provides a novel insight on the role of NO in synaptic transmission:
positive feedback loop realized by NO can explain not just memory, but an advanced
information processing as well.

Indeed, hysteresis-like model behavior can be deduced from the type of dependence of
stationary points (resting point, memory point, and threshold point) on the interstimulus
interval. For given model parameters, there are two saddle-node bifurcation points M
and N . If the interstimulus interval decreases, then it will follow the resting state until
the bifurcation point at TM and the jump toward the memory. Further decrease of the
interstimulus interval will result in model staying at the memory state. If being at the
memory state, the interstimulus intervals starts to increase, then the model will stay in
the memory state until the bifurcation point at TN and then will jump to the resting
state. Further increase of the interstimulus interval will result in the system following
the “resting” trajectory. In this way, between saddle-node bifurcation points M and N ,
the model can be at two stable states, depending on the history of interstimulus intervals,
and this will result in hysteresis-like model behavior.

A number of biological switches and oscillators exhibit a hysteresis-like behavior.
This include circadian clock in mammals [1,23], transitions of consciousness and uncon-
sciousness in brain networks [12], gene regulatory networks [21, 32], calcium signaling
[25, 29], water permeability switching in a synthetic membranes [8], and the cell cycle
transition [6, 26]. The latter forms an irreversible hysteretic switch.

The hysteresis-like behavior is not advantageous for accurate control systems, as
output depends not only on the instantaneous input, but on the input history as well.
However, it enables systems to convert graded inputs into decisive, all-or-none outputs.
Moreover, a hysteretic switching system with a wider safety zone can suppress the chatter-
ing, a phenomenon when a fluctuating system input is close to the transition threshold, and
therefore can lead to too frequent switchings between the states. The hysteresis provides a
“safety zone” against chattering over a wider range of stimuli and makes the system more
resistant to noise [13].

The positive feedback loop in a synaptic transmission realized via retrograde signaling
of NO exhibits a hysteresis like behavior. This extends functional features of model: it
provides substrate not just for a memory formation, but also for reversible and weighted
decision-making systems, where the decision depends not just on an instantaneous input,
but on the history of input as well. The generation of action potentials in a brain is of
stochastic nature [16, 30], and therefore a hysteresis-like behavior may assist in making
a proper stable decision. Moreover, we have found that faster change in interstimulus
intervals results in a broadening of hysteresis and, at the same time, increase of “safety
zone” against chattering.

The single positive feedback loop via NO retrograde signaling is included in our
model. Indeed, it is shown that the hysteretic switch can be implemented by a sin-
gle positive feedback loop with a sufficiently large feedback strength [31]. However,
the majority of biological systems exhibiting hysteresis are composed of coupled pos-
itive feedback loops [5], which increases robustness to noise. Including extra feedback
loops (for example, for Ca2+ homeostasis) may enhance the stability of behavior of our
model.
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In this study, we used the interstimulus interval T = 1 s within a range of spontaneous
firing activity recorded in vivo. The introduced proportional change of T and JGlu resulted
in bistable model behavior for T > 0.02 s. Therefore the use of interstimulus interval
other than T = 1 s (for T > 0.02 s) will lead to quantitative rather than qualitative
differences in model behavior. Moreover, the behavior of model for synaptic plasticity
remains to be tested with interstimulus intervals of stochastic manner.

In conclusion, a model of synaptic plasticity, describing the behavior of positive
feedback loop realized by NO, exhibits a hysteresis-like behavior and can explain not
just memory, but an advanced information processing as well.
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