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Abstract. In this paper, we propose and analyze a prey–predator model with the functional
response of Beddington–DeAngelis and the fear effect that have infection only in prey populations.
We determine existence criteria of several equilibria, and the stability at different equilibria are
presented. We exert pesticide control over prey and additional food control over predators, the
optimal control is obtained by the Pontryagin maximum principle. We confirm that adding controls
to the predator and prey yields better results. Further we enrich our analysis with the inclusion of
the existence and uniqueness of the optimal control. Finally, some numerical results to illustrate our
analysis are presented.
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1 Introduction

The prey–predator system is an important concept in ecology that describes the interac-
tions between prey and predators. The significance of this model lies in the in-depth un-
derstanding and interpretation of the food chain and food web structure in the ecosystem,
as well as the interrelationship between prey and predators. Jana et al. [16], Mandal et al.
[21] used mathematical models with the help of ordinary differential equations to describe
the prey–predator system and made significant progress. When there are insects or other
pests in the system that cause harm to crops, horticultural crops, livestock, human health,
or other ecosystems, we call them pests. Pests cause direct harm to crops, horticultural
crops and livestock, reduce yield and quality, may contribute to environmental pollution
and have the potential to spread disease. Therefore, the selection and use of pest control
methods have become more and more important, and the researches on pest control have
been widely concerned by researchers.

Khatua et al. [18] proposed a new mathematical model using fuzzy inferences to
investigate the impacts of global warming, water pollution, and harvesting of juvenile
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fishes on the production of mature Hilsa fishes. By applying optimal control theory, the
most effective method for controlling pest populations can be found. This helps reduce
the use of chemical pesticides, protect the ecosystem, reduce environmental pollution,
and improve crop yield and quality. In the research of predator feeding systems with
pests, the aim is to eliminate pests and obtain maximum benefits. In these studies, single
pesticide control is generally applied to pest populations, and few studies have looked at
simultaneous control of pests and predators to achieve better results. Therefore, in our
current work, we apply pesticide control to pests, while applying alternative food control
to predators and providing alternative food may increase predator density and provide
better pest control [2]. Moreover, in the model, we also consider the fear effect, and the
predation rate follows the Beddington–DeAngelis functional response term. Chottopad-
hyay et al. [11] studied a prey–predator models and became diseased in prey species.

Now to form the mathematical model, we hypothesize: prey groups are divided into
susceptibility class X(t) and infectious class Y (t), these two groups differ in mortal-
ity and ability to escape predators Z(t), X(t)+Y (t) is the total biomass of the prey
population, Z(t) is the total biomass of the predator population. It is assumed that only
susceptible prey groups X(t) can reproduce according to logical laws, while infected
prey Y (t) cannot. It is assumed that the disease affects only the incidence of simple
populations. λXY circulates in prey populations, and infected prey cannot recover from
disease and cannot reproduce. The disease is only transmitted in prey populations, and the
disease is not hereditary. Infected people do not recover or become immune. Susceptible
prey is less likely to prey than infected prey, and we hypothesize the function of predator
response to susceptible prey after Beddington–DeAngelis, h(X,Z) = αSZ/(1+e1X+
e2Z), where α and e1 are normal numbers that measure the effect of capture rate and
processing time on feeding rate, respectively, while the normal number e2 describes
interference between predators.

However, the mere presence of a predator can alter the physiology of prey and even
reduce its birth rate. Zanette et al. [26], Preisser et al. [23], Cresswell [13], Creel and
Christianson [12], Pretelli et al. [24], Wang et al. [25] are the research works used mathe-
matical models with fear effect. We use the n(f, Z) fear item, including that f is the fear
effect parameter and Z is the predator population density. It can be used as a fear item if
the following conditions are met:

n(0, Z) = 1, lim
f→∞

n(f, Z) = 0,
∂n(f, Z)

∂f
< 0,

n(f, 0) = 1, lim
Z→∞

n(f, Z) = 0,
∂n(f, Z)

∂Z
< 0.

In order to bring fear effect into the model, in the paper, the intrinsic growth rate is
usually multiplied by 1 + fZ. Please note that when f = 0, the model does not have the
fear effect.

dX = X

(
r

1 + fZ

(
1− X + Y

K

)
− λY − αZ

1 + e1X + e2Z

)
dt, (1a)
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dY = Y (λX −m− βZ) dt, (1b)

dZ = Z

(
m1αX

1 + e1X + e2Z
+m2βY − µ

)
dt. (1c)

r is the intrinsic birth rate constant for the susceptible preys; K is the carrying ca-
pacity with which the susceptible preys obeys the logistic curve. m (µ) represents the
natural mortality rate of infected prey (predator). β is the search rate, m1 represents the
conversion factor, and m2 represents the mortality rate per unit consumed by the predator
of infected prey.

The goal of this research is to minimize the number of pests at the least cost and with
the least damage to the environment, and in addition, to study susceptible pests, infected
pests, and their connections and interactions with predators. Unlike other studies, we
used insecticides at regular intervals to achieve this goal. At the same time, other control
factors are added to control the pest population. We modulate the system by providing
additional food to the predator in the model. Considering the cost, environmental and
ecological issues, we need to find an optimal solution between the cost and the use of
pesticides and the provision of additional food. Therefore, we adopt the optimal control
theory and apply the Pontryagin maximum principle to solve the problem. In ecological
epidemiology, research on the optimal control theory of applying multivariate control to
prey populations is still limited.

In recent years, many scholars at home and abroad have devoted themselves to the
study of optimal control of population systems (Brauer and Soudack [7–10], Zhang [27],
Lu et al. [19]). Bidhan et al. [4–6] was studied the optimal harvesting of several types
of prey–predatory models with time delay in detail, Majee et al. [20] have constructed
and solved an optimal monkeypox control strategy taking into account vaccination and
treatment controls into consideration. System (1) has been modified to add pesticide
control to the system. This control is represented by the variable u. Thus, the population
difference equations for susceptible and infected pests are reduced by ε1uX and ε2uY ,
respectively. Insecticides are known to have different effects on susceptible and infected
prey. Therefore, we assume that infected preys are more susceptible to pesticides than
susceptible prey, ε1 < ε2. It is clear that predators in the ecosystem are also affected
by pesticides [8]. The predator population is decreasing at a rate of ε3. In addition, the
additional food supply we add to predators also affects predators and prey populations.
Therefore, it is also a way to control the effects of pests in the model. Replace the initial
model (1) with the following:

dX = X

(
r

1 + fZ

(
1− X + Y

K

)
− λY − αZ

1 + e1X + e2Z
− ε1u

)
dt,

dY = Y (λX −m− βZ − ε2u) dt,

dZ = Z

(
m1αX

1 + e1X + e2Z
+m2βY − µ− ε3u+ g

(
1− X + Y

K

))
dt.

(2)

In this paper, the dynamic behaviors and optimal control of differential system (1) are
discussed. In Section 2, we find all the feasible equilibria of the system and their local
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stability analyses are given. In Section 3, we get the existence and uniqueness of solution
for the optimal control problem. Finally, numerical simulations are given in Section 4.

2 Equilibrium and stability analysis

2.1 Equilibrium analysis

The prey–predator mathematical model with infection in prey has five equilibria, namely,
the population-free equilibrium E0. The population-free equilibrium represents an eco-
logical situation where neither prey nor predator populations are present in the system.
The equilibrium with susceptible prey only E1, this equilibrium point illustrates an eco-
logical situation where only prey population exists. This can happen in some ecological
systems. The endemic equilibrium E2, the disease-free equilibrium E3, and the coexis-
tence equilibrium E∗ will be mentioned as follows.

1. The population-free equilibrium E0 = (0, 0, 0), which is always feasible. The
population-free equilibrium represents an ecological situation where neither prey nor
predator populations are present in the system. As for the population-free limit, this
equilibrium point should be unstable.

2. The equilibrium with susceptible prey only E1 = (K, 0, 0), which is always feasi-
ble. This equilibrium point illustrates an ecological situation where only prey population
exists. Under some specific conditions on system’s parameters, this equilibrium point
should be stable.

3. The endemic equilibrium E2 = (X2, 0, Z2), where Z2 = cX2 + d, c = (m1α −
µe1)/µ, d = −1/e2, X2 is positive root of the following equation:

a2X
2
2 + a1X2 + a0 = 0, (3)

where

a2 = −αfc2 − re1(1 + c)

K
,

a1 = re1(1 + c)− αc+ 2αfcd− r(1 + e1d)

K
,

a0 = r(1 + e1d) + αd+ αfd2.

Since a2 > 0 and a0 < 0, (3) has exactly one positive root. The equilibrium point E2

illustrates an ecological situation where predator population does not exist.

4. The disease-free equilibrium E3 = (X3, Y3, 0), where X3 = m/λ, Y3 = K −
Km/r −m/λ. The equilibrium E3 is feasible if

Kλ(r −m)− rm > 0. (4)

The equilibrium point E3 illustrates an ecological situation where infected prey does not
exist in the system.
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5. The coexistence equilibrium E∗ = (X∗, Y ∗, Z∗), X∗ is the solution of AX2+
BX + C = 0, a = 1− e2m/β, b = e1 + e2λ/β, where

Y ∗ = − m1X
∗

(a+X∗)m2β
+

µ

m2β
, Z∗ =

λX∗ −m
β

,

A =
m1fλ

2

m2β2
− b

k
− λ2µbf

m2β2
− αfλ2

β
,

B = −a
k
+ br +

m1r − rµb
km2β

+
m1λ− λµb

m2β

− mm1fλ+ (aλ− bm)λµf

m2β2
− αλ− 2αfmλ

β
,

C = ar − rµa

km2β
− rβµa− λµa

m2β2
+
αm− αfm2

β
.

2.2 Stability analysis

Regarding local stability of equilibria of system (1), we have the following theorem.

Theorem 1. System (1) has the following behavior at different equilibria:

(i) The equilibrium E0 is unconditionally unstable.
(ii) The equilibrium E1 is stable, provided that

λK −m < 0,
Km1α

1 + e1K
− µ < 0. (5)

(iii) The equilibrium E2, if feasible, is stable, provided that

λX2 −m− βZ2 < 0.

(iv) The equilibrium E3, if feasible, is stable, provided that

m1αX3(1 +X3)

(1 + e1X3)2
+m2βY3 − µ < 0. (6)

(v) The equilibrium E∗, if feasible, is locally asymptotically stable if and only if the
following conditions hold:

A1 > 0, A3 > 0, A1A2 −A3 > 0, (7)

where Ai (i = 1, 2, 3) are defined in the proof.

Proof. Jacobian matrix of system (1) is given by

J =

J11 J12 J13
J21 J22 J23
J31 J32 J33

 ,
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where

J11 =
r

1 + fY
(1− 2X + Y

K
)− λY − αaZ

(1 + e1X + e2Z)2
,

J12 = − rX

K(1 + fZ)
− λX,

J13 = − KrX

(1 + fZ)2

(
1− X + Y

K

)
− αX(1 +X)

(1 + e1X + e2Z)2
,

J21 = λY, J22 = λX −m− βZ, J23 = −βY,

J31 =
m1αaZ(1 + Z)

(1 + e1X + e2Z)2
, J32 = m2βZ,

J33 =
m1αaX(1 +X)

(1 + e1X + e2Z)2
+m2βY − µ.

(i) Evaluating the Jacobian matrix at the equilibrium E0 leads to the eigenvalues r,
−m, and−µ. Since one eigenvalue is always positive, the equilibrium E0 is uncondition-
ally unstable.

(ii) Evaluating the Jacobian matrix at the equilibrium E1 leads to the eigenvalues
−r, λKm, and (m1αK)/(1 + e1K) − µ. One eigenvalue is always negative, while the
remaining two are negative in view of conditions in (5). Note that the second condition
in (5) is opposite to condition (4). Thus, the equilibrium E1 is related to the equilibrium
E3 via transcritical bifurcation.

(iii) Evaluating the Jacobian matrix at the equilibrium E2 immediately gives one
eigenvalue λx2 − m − βz2, while the other two are given by roots of the following
quadratic equation:

ξ2 −
[

r

1 + fZ2

(
1− 2X2

K

)
+
m1αX2(1 + e1X2)− αZ2(1 + e2Z2)

(1 + e1X2 + e2Z2)2
− µ

]
− m1αZ2(1 + e2Z2)

(1 + e1X2 + e2Z2)2

[
KrX2

(1 + fZ2)2

(
1−X2

K

)
+

αX2(1 + e1X2)

(1 + e1X2 + e2Z2)2

]
= 0. (8)

Employing Routh–Hurwitz criterion, both roots of (8) are either negative or have negative
real parts.

(iv) Evaluating the Jacobian matrix at the equilibrium E3 gives one eigenvalue as
m1αX3/(1 + e1X3) +m2βY3 − µ and the other two are roots of the quadratic equation

ξ2 −
[
r

(
1− 2X3 + Y3

K

)
− λY3

]
ξ − λY3

(
rX3

K
+ λX3

)
= 0. (9)

Roots of (9) are either negative or have negative real parts if the coefficient of linear
term is positive. In view of the second condition in (6), the roots of characteristic equation
(9) are either negative or have negative real parts, while the first condition in (6) leads to
negativity of the remaining eigenvalue m1αX3/(1 + e1X3) +m2βY3 − µ.
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(v) The Jacobian matrix associated with the linearization of system (1) at the equilib-
rium E∗ is

J =

a11 a12 a13
a21 a22 a23
a31 a32 0

 ,

where

a11 = − X∗r

(1 + fZ∗)K
− αZ∗X∗ + α(Z∗)2

(1 + e1X∗ + e2Z∗)2
,

a12 = − rX∗

K(1 + fZ∗)
− λX∗,

a13 =
KrX∗

(1 + fZ∗)2

(
1− X∗

K

)
+

αX∗(1 +X∗)

(1 + e1X∗ + e2Z∗)2
,

a21 = λY ∗, a22 = λX∗ −m− βZ∗, a23 = −βY,

a31 =
m1αZ

∗(1 + Z∗)

(1 + e1X∗ + e2Z∗)2
, a32 = m2βZ

∗, a33 = 0.

Therefore, characteristic equation associated with the equilibrium E∗ is

ξ3 +A1ξ
2 +A2ξ +A3 = 0, (10)

where

A1 = (Ar − λ)X∗ +BαZ∗(X∗ + Z∗) + βZ∗ +m,

A2 = −
[
ArX∗ + αBZ∗(X∗ + Z∗)

]
(−λX∗ +m+ βZ∗)

+m1BαZ
∗(1 + Z∗)

[
A2rX∗

K

(
1− X∗

K

)
+BαX∗(1 +X∗)

]
,

A3 = A2m2βλKrX
∗Y ∗Z∗

(
1− X∗

K

)
+Bm2λαβX

∗Y ∗Z∗(1 +X∗)

+Bm1αZ
∗(1 + Z∗)(−λX∗ +m+ βZ∗)

×
[
AKrX∗

(
1− X∗

K

)
+BαX∗(1 +X∗)

]
+Am2β

2rX∗Y ∗Z∗ +Bm2α
2β2Y ∗(Z∗)2(X∗ + Z∗).

Here

A =
1

1 + fZ∗
K, B =

1

(1 + e1X∗ + e2Z∗)2
.

Using Routh–Hurwitz criterion, roots of (10) are either negative or with negative real
parts if and only if the conditions in (7) hold. Theorem has been proved.

Remark 1. The characteristic values of the Jacobian matrix at equilibrium E0 indicate
that population-free equilibrium cannot be observed in natural ecosystems. Equilibrium
E1 can be observed if the mortality rate of infected prey is high, susceptible prey or/and
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infection rate is low, and predator mortality is high. For sufficiently large predator popu-
lation mortality, the balance can be visualized by E2. When the infection rate of infected
prey is low and the mortality rate is high, a balance ofE3 can be achieved. In addition, the
high growth rate of susceptible prey and the low consumption rate of predator populations
enhance the stability of the equilibrium E3. Furthermore, if the initial state of system (1)
is close to the equilibrium point E∗, the solution trajectory not only remains near the
equilibrium point E∗ at all t > 0, but also close to the equilibrium component of E∗ such
as t → ∞. Therefore, if the initial values of the state variables X , Y , and Z are close to
X∗, Y ∗, and Z∗, respectively, system (1) will eventually be stable with (7) holding the
condition. That is, small perturbations in system variables do not affect the stability of
the system under coexistence equilibrium.

3 The optimal control problem

In this section, we will analyze the effects on pest populations after applying pesticide
control and providing additional food control for predators. In addition, we will study how
to formulate an optimal control problem after the control is applied under the condition of
controlling the cost and reducing the damage to the environment, and prove its existence
and other properties. Our main goal is to reduce the population of susceptible and infected
pests through the use of pesticides while exerting control over the predator’s food. But
given the cost of using pesticides, we need to use them as little as possible. In addition
to the cost factor, the ecosystem does not exist in isolation, there are many relationships.
When large amounts of pesticides are used, it is inevitable that there will be an impact on
predators, which will have a negative impact on pest control. It can also cause harm to
crops or other living things that we need. Therefore, we should minimize the square of
the cost of applying pesticides and feeding predators, so that we can not only reduce the
cost, but also minimize the side effects of pesticides.

The optimal control problem, we consider, aims the minimization of the objective
function

J =

tf∫
0

(
k1X + k2Y + k3u

2 + k4g
2
)
dt, (11)

where k1 and k2 are constants, balancing the dimensions of variables X and Y , respec-
tively. The normal numbers k3 and k4 balance the size of the secondary control, k2Y
represents the number of infected pests. The second term, k1X , represents the number of
susceptible pests. k3u2 is the cost of using pesticides. Finally, k4g2 is the cost of the food
supply for the predator population. The cost of these controls is not linearly proportional
to the increase in pesticide levels or the additional food supply. When pesticides are
used in large quantities, they can make crops toxic and useless. Therefore, the quadratic
functional (11) is most suitable for this model, and k3u2 reflects the severity of pesticide
side effects [17]. We assume that the upper bounds for pest control and predator feeding
are umax and gmax, respectively. Furthermore, we prove the existence and uniqueness of
the optimal control solution.
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3.1 Existence of solution for the optimal control problem

Problem (2), (11) is an optimal control problem in the Lagrange form

J (x, u) =
tf∫
0

L
(
t,X(t), u(t)

)
dt→ min,

x′(t) = f
(
t, x(t), u(t)

)
, a.e. t ∈ [t0, tf ];

x(t0) = x0,

(12)

x(t) ∈ AC([0, tf ];Rn); u(t) ∈ L1((0, tf ];Un). Here U = [0, u1,max]×· · ·× [0, um,max]
(ui,max 6 1, i = 1, . . . ,m), AC stands for absolutely continuous, x(t) = (x1(t), . . . ,
xn(t)), and the control u(t) = (u1(t), . . . , um(t)) for some natural numbers n and m.

In this context, a pair (x, u) ∈ AC([0, tf ];Rn)×L1([0, tf ];U) is feasible if it satisfies
the control problem considered in (12). As usual, the set of all feasible pairs is denoted
by F . The following theorem that we will use to prove existence of solution is contained
in Theorem III.4.1 and Corollary III.4.1 in [14].

Lemma 1 [Existence of solutions for control problems]. Suppose that f and L are
continuous and that there exist positive constants C1 and C2 such that, for t ∈ R,
x, x1, x2 ∈ RN , and u ∈ RM , we have:

(i) ‖f(t, x, u)‖ 6 C1(1 + ‖x‖+ ‖u‖);
(ii) ‖f(t, x1, u)− f(t, x2, u)‖ 6 C2‖x1 − x2‖(1 + ‖u‖);

(iii) F is nonempty;
(iv) U is closed;
(v) There is a compact set S such that x(t1) ∈ S for any state variable x;

(vi) U is convex, f(t, x, u) = α(t, x) + β(t, x)u, and L(t, x, ·) is convex on U;
(vii) L(t, x, u) > c1|u|β − c2 for some c1 > 0, β > 1.

Consequently, an optimal solution (x∗, u∗) exists for minimizingJ over the region F .
Set U = [0, umax]× [0, gmax] with umax, gmax 6 1. Applying Lemma 1 to our problem,
we obtain the following result.

Theorem 2. There exist an optimal control pair (u∗, g∗) and a corresponding solu-
tion (X∗, Y ∗, Z∗) of the initial value problem determined by (2) with initial condition
(X(0), Y (0), Z(0)) = (X0, Y0, Z0) that minimizes the cost functional

J =

tf∫
0

(
k1X + k2Y + k3u

2 + k4g
2
)
dt

over L1([0, tf ]; [0, umax]× [0, gmax]).

Proof. To apply Lemma 1 to our problem, we set U = [0, umax]× [0, gmax] and [t0, t1] =
[0, tf ]. To keep the expressions in the proofs short, we omit the dependency on time of
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the parameters. Adding the first two equations in (2), we get

Ẋ + Ẏ =
r

1 + fZ

(
1− X + Y

K

)
− αXZ

1 + e1X + e2Z

−mY − βY Z − ε1uX − ε2uY

6 rX

(
1− X + Y

K

)
−mY − ε1uX − ε2uY.

We conclude that X(t)+Y (t) 6 max{X0 +Y0, K} (since X(t)+Y (t) is decreasing if
X(t) + Y (t) > K). Thus we conclude that X(t) + Y (t) 6 max{X0 + Y0, K} :=M1.

ż = P

(
m1αX

1 + e1X + e2Y
+m2βY − µ

)
− ε3uZ + gZ

(
1− X + Y

K

)
6 Z

(
m1α

e1
+m2βM1 + g − µ− ε3u

)
,

z 6 max{Z0, Z0e
m1α+m2βM1+g} =M2.

By employing the aforementioned limits, we promptly ascertain conditions (i) and (ii).
Conditions (iii) and (iv) are straightforward consequences of the definition of F and due to
U = [0, umax]× [0, gmax]. We consequently ascertain that all the state variables lie within
the confined compact domain {(X,Y, Z) ∈ (R+)3: 0 6 X + Y + Z 6M1 +M2}, and
condition (v) follows.

Given that the state equations are linearly reliant on the controls and L is quadratic in
the controls, we derive (vi). Finally,

L = k1Y + k2X + k3u
2 + k4g

2 > min{k3, k4}
(
u2 + g2

)
> min{k3 + k4}

∥∥(u, g)∥∥2,
and we establish (vii) with c1 = min{k3, k4}.

After evaluating all assumptions, the result is emanated from Lemma 1.

3.2 Characterization of the controls

First-order necessary conditions for optimality of a controlled trajectory are given by
the Pontryagin maximum principle (cf. [1]; for a formulation adapted to a minimization
problem, see [3]). Since we have a minimization problem, using the adjoint variable p =
(p1, p2, p3) ∈ R+

3 , the Hamiltonian for the objective function (11) and the control system
(2) is given by the following theorem.

Theorem 3. The optimal control pair is given by

u∗ = min

{
max

{
0,
ε1X

∗p∗1 + ε2Y
∗p∗2 + ε3Z

∗p∗3
2k3

}
, umax

}
, (13)

g∗ = min

{
max

{
0,
p∗3Z

∗

2k4

(
X∗ + Y ∗

K
− 1

)}
, gmax

}
,

where X∗, Y ∗, Z∗, p∗1, p∗2 and p∗3 are the optimal variables.
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Proof.

H =

3∑
i=1

pifi(X,Y, Z) + k1Y + k2X + k3u
2 + k4g

2

= p1

[
rX

1 + fZ

(
1− X + Y

K

)
− λXY − αXZ

1 + e1X + e2Z
− ε1uX

]
+ p2[λXY −mY − βY Z − ε2uY ]

+ p3

[
m1αXZ

1 + e1X + e2Z
+m2βY Z − µZ − ε3uZ + gZ

(
1− X + Y

K

)]
+ k1Y + k2X + k3u

2 + k4g
2,

adjoint variables satisfying the following costate equations:

p1(t) = −
∂H
∂X

, p2(t) = −
∂H
∂Y

, p3(t) = −
∂H
∂Z

,

so

ṗ1 = −k2 − p2λY − p3
[

m1αXZ

(1 + e1X + e2Z)2
− gZ

K

]
− p1

[
rX

1 + fz

(
1− 2X + Y

K

)
− λY

− αZ(1 + e1X + e2Z)−XZ
(1 + e1X + e2Z)2

− ε1uX
]
,

ṗ2 = −k1 − p1
[
− rX

K(1 + fZ)

(
1− X + Y

K

)
− λX

]
− p2(λX −m− βZ − ε2u) + p3

(
m2βZ −

gZ

K

)
,

ṗ3 = p1

[
αX(1 +X)

(1 + e1X + e2Z)2
+

rfX

(1 + fZ)2

(
1− X + Y

K

)]
+ p2βY

− p3
[

m1αX(1 +X)

(1 + e1X + e2Z)2
+m2βY − µ− ε3u+ g

(
1− X + Y

K

)]
.

Since the terminal state (X(tf ), Y (tf ), Z(tf )) is free, the transversality conditions are

p1(tf ) = p2(tf ) = p3(tf ) = 0.

Using the Pontryagin maximum principle (PMP), we characterize the optimal controls u∗

and g∗. The optimality conditions dictate that ∂H/∂u = 0 and ∂H/∂g = 0, that is,

u∗ =
ε1X

∗p∗1 + ε2Y
∗p∗2 + ε3Z

∗p∗3
2k3

, g∗ =
p∗3Z

∗

2k4

(
X∗ + Y ∗

K
− 1

)
. �
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3.3 Uniqueness of solution for the optimal control problem

In this section, we shall demonstrate the uniqueness of the optimal control of (2). The
local uniqueness result established in [22] is expanded to encompass the global unique-
ness condition, that is, uniqueness over each time interval [0, tf ]. Consequently, it is
postulated that we have two distinct variables ξ = (X,Y, Z, p1, p2, p3, p4) and ξ∗ =
(X∗, Y ∗, Z∗, p1, p2, p3), respectively pertaining to (u, g) and (u∗, g∗); subsequently, it
is established that both minimization trajectories reside within the positive invariant re-
gion Γ embodying the contradiction ξ = ξ∗ in a small time interval [0, T ]; if the interval
[0, T ] overlaps with the optimal control problem’s corresponding interval, the proof is
accomplished. Otherwise, we deem T at the right limit of [0, T ] as the initial time, thus
obtaining the interval [T, 2T ], because the estimate of T is only related to the maximum
of the parameter on the invariant region Γ of the new control problem and the boundary of
the state and costate variables, so it is the same as the obtained conclusion on the interval
[0, T ]. Finally, by repeating this process, we ascertain the global uniqueness for the entire
interval [0, tf ].

Theorem 4. Assuming that there is a solution of the optimal control problem in Ω1, the
optimal control is unique in the interval [0, tf ].

Proof. We initially demonstrate the uniqueness of the solution to the OCP problem
(X,Y, Z, p1, p2, p3) on some interval [0, T ] for some T ∈ R+, eventually less than tf . We
assume that we have two optimal controls corresponding to trajectories and state equations
(X,Y, Z), (p1, p2, p3) and (X,Y , Z), (p1, p2, p3), and we will show that the two coincide
in some small interval. Consider the change of variables

X(t) = eθtx(t), Y (t) = eθty(t), Z(t) = eθtz(t)

and

p1(t) = e−θtφ1(t), p2(t) = e−θtφ2(t), p3(t) = e−θtφ3(t).

By the first equation in (12), we get

θeθtx+ eθtẋ =
r

1 + fz
eθtx

(
1− eθtx+ eθty

K

)
− λe2θtxy − αe2θtxz

1 + e1eθtx+ e2eθtz
− ε1ueθtx,

thus

θx+ ẋ =
rx

1 + fzeθt

[
1− eθt(x+ y)

K

]
− λeθtxy − αxz

e−θt + e1x+ e2z
− ε1ux,

θx+ ẋ =
rx

1 + fzeθt

[
1− eθt(x+ y)

K

]
− λeθtxy − αxz

e−θt + e1x+ e2z
− ε1ux.
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Multiplying by (s− s), integrating from 0 to T , and noting that s(0) = s(0), we have

θ

T∫
0

[
(x− x)2 dt+ 1

2

(
x(T )− x(T )

)2]

= r

T∫
0

[
x(x−x)
1+fzeθt

− x(x−x)
1+fzeθt

− r
T∫

0

[
x+y

K(e−θt+fz)
− x+y

K(e−θt+fz)

]
(x− x)

]
dt

− λ
T∫

0

eθt(xy − xy)(x− x) dt

− α
T∫

0

(
xz

e−θt + e1x+ e2z
− xz

e−θt + e1x+ e2z

)
(x− x) dt

− ε1

T∫
0

(ux− ux)(x− x) dt.

Recall that

(x− x)(y − y) 6 1

2

[
(x− x)2 + (y − y)2

]
(14)

and that, for each x, y, z, x, y, z > 0, there is C > 0 (depending on x, y, z, x, y, z) such
that

(xy − xy)(z − z) = C[(x− x)2 + (y − y)2 + (z − z)2]. (15)

Using (14), (15), we can get

T∫
0

[
xz

e−θt + e1x+ e2z
− xz

e−θt + e1x+ e2z

]

=

T∫
0

e−θtxz + xxz + xzz − e−θtxz − xxz − xzz
(e−θt + e1x+ e2z)(e−θt + e1x+ e2z)

dt

=

T∫
0

[e−θt(xz − xz) + xx(z − z) + zz(x− x)](x− x)
(e−θt + x+ z)(e−θt + e1x+ e2z)

dt

6 CeθT
T∫

0

[2(x− x)2 + (z − z)2] dt

+
xx

2

T∫
0

[(x− x)2 + (z − z)2 + zz(x− x)2] dt
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and
T∫

0

(
rx

1 + fzeθt
− rx

1 + fzeθt

)
(x− x) dt

=

T∫
0

(x− x+ fxzeθt − fzxeθt)(x− x)
(1 + fzeθt)(1 + fzeθt)

dt

=

T∫
0

(x− x)2 + feθt(xz − xz)(x− x)
(1 + fzeθt)(1 + fzeθt)

dt

6
CeθT

f

T∫
0

[
2(x− x)2 + (z − z)2

]
dt,

so

θ

T∫
0

(x− x)2 dt+ 1

2

(
x(T )− x(T )

)2

=
(
C1 + C1e

θT
) T∫

0

[
(x− x)2 + (y − y)2 + (z − z)2(u− u)2

]
dt. (16)

By the second equation in (1), we get

θeθty + eθtẏ = λe2θtxy −meθty − βe2θtyz − ε2ueθty,

thus

θy + ẏ = λxyeθt −my − βyzeθt − ε2uy.

Use the same method as above, we can get

θ

T∫
0

(y − y)2 dt+ 1

2

(
y(T )− y(T )

)2
=

T∫
0

[
e−θtλ(xy − xy)(y − y) dt−m(y − y)2

− e−θtβ(yz − yz)(y − y)− ε2(uy − uy)(y − y)
]
dt

6
(
C̃2e

θT + C2

) T∫
0

[
(x− x)2 + (y − y)2 + (z − z)2 + (u− u)2

]
dt (17)
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and

θ

T∫
0

(z − z)2 dt+ 1

2

(
z(T )− z(T )

)2

=

T∫
0

[
m1αxz

e−θt + e1x+ e2z
− m1αxz

e−θt + e1x+ e2z

]
(z − z) dt

+

T∫
0

m2β(yz − yz)(z − z) dt

− µ
T∫

0

(z − z)2 dt− ε3

T∫
0

(uz − uz)(z − z) dt+ g

T∫
0

(z − z)2 dt

−
T∫

0

eθt(x2 + xy − x2 − xy)(z − z)
K

dt

6
(
C̃3e

θT + C3

) T∫
0

[
(x− x)2 + (y − y)2 + (z − z)2 + (u− u)2

]
dt. (18)

Considering the equations for the adjoint equations and reasoning similarly, we can
conclude that there are constants A1, Ã1, A2, Ã2, A3, Ã3 > 0 (depending on the state
variables and adjoint equations) such that

θ

T∫
0

(φi − φi)2 dt+
1

2

(
φi(0)− φi(0)

)2

6
(
Ãie

θT+Ai
) T∫
0

[
(x− x)2 + (y − y)2 + (z − z)2

]
dt

+
(
Ãie

θT+Ai
) T∫
0

[
(φ1 − φ1)2 + (φ2 − φ2)2 + (φ3 − φ3)2 + (u− u)2

]
dt, (19)

i = 1, 2, 3. By (13), we obtain

u− u =
ε1
2k3

(xφ1 − xφ1) +
ε2
2k3

(yφ2 − yφ2) +
ε3
2k3

(zφ3 − zφ3),

and we conclude that C4 > 0 (depending on the state variables and adjoint equations)
makes

(u− u)2 =

[
ε1
2k3

(xφ1 − xφ1) +
ε2
2k3

(yφ2 − yφ2) +
ε3
2k3

(zφ3 − zφ3)
]2
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=

[
ε1
2k3

(
x(φ1 − φ1) + (x− x)φ1

)
+

ε2
2k3

(
y(φ2 − φ2) + (y − y)φ2

)
+

ε3
2k3

(
z(φ3 − φ3) + (z − z)φ3

)]2
6 C4

[
(x− x)2 + (y − y)2 + (z − z)2

+ (φ1 − φ1)2 + (φ2 − φ2)2 + (φ3 − φ3)2
]
dt, (20)

and for the control g, we have

(g − g)2 =
1

4k24

[
eθt[(φ3xz − φ3xz) + (φ3yz − φ3yz)]

K
+ φ3z − φ3z

]2
6 C8

[
(φ3 − φ3)2 + (z − z)2

]
+
C9e

θT

K

[
(x− x)2 + (y − y)2 + 2(z − z)2 + 2(φ3 − φ3)2

]
dt. (21)

Finally, we have all we need to prove our result. Define

Ψ(t) = (x− x)2 + (y − y)2 + (z − z)2

and
Φ(t) = (φ1 − φ1)2 + (φ2 − φ2)2 + (φ3 − φ3)2,

and observe that Ψ(t) > 0 and Φ(t) > 0 for all t.
Adding Eqs. (16)–(21), we obtain for the sum of left-hand sides

1

2

[
Ψ(T ) + Φ(0)

]
+ θ

T∫
0

[
Ψ(t) + Φ(t)

]
dt 6

(
D + D̃e2θT

) T∫
0

[
Ψ(t) + Φ(t)

]
dt,

where D =
∑4
i=1 Ci +

∑3
i=1Ai and D̃ =

∑4
i=1 C̃i +

∑3
i=1 Ãi. Thus

1

2

[
Ψ(T ) + Φ(0)

]
+
(
θ −D − D̃e2θT

) T∫
0

[
Ψ(t) + Φ(t)

]
dt 6 0. (22)

We now choose θ so that
θ > D + D̃.

Subsequently, we choose T such that

T <
1

2θ
ln
θ −D
D̃

,

then

e2θT <
θ −D
D̃

.
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It follows that θ −D − D̃e2θT > 0, so inequality (22) can hold if and only if, for all
t ∈ [0, T ], we have x(t) = x(t), y(t) = y(t), z(t) = z(t), φ1(t) = φ1(t), φ2(t) = φ2(t),
and φ3(t) = φ3(t). But this is equivalent to X(t) = X(t), Y (t) = Y (t), Z(t) = Z(t),
p1(t) = P 1(t), p2(t) = p2(t) and p3(t) = p3(t). Therefore, the uniqueness of the optimal
control is established in a small interval [0, T ].

To culminate this proof, we suggest that if T > tf , the conclusion naturally follows.
Conversely, we can attain uniqueness on the interval [T, 2T ] for the optimal control
problem whose initial conditions at time T align with the values of X , Y , and Z at T
(note that we still acquire constants α, D, D, and thus we retain the same T ). Continuing
in an analogous manner, we ascertain, after a finite number of iterations, that we possess
uniqueness on the interval [0, tf ], and thus, the proof is complete.

4 Examples and numerical simulations

On the basis of complying with infectious diseases and ecology, we refer to [15] and other
articles to ensure the scientificity and validity of parameter values. More importantly,
these values are taken in strict accordance with the range of values in our proof condition.
We focus on the qualitative behavior of the proposed system (1) and (2). In the following
concrete example, we can see the value of our assumed parameter. The goal of our study
is to minimize the objective function, so as to minimize the total number of susceptible
and infected pests under the premise of considering the cost, and we set the corresponding
weight to 1. In a time interval of 20 units, this unit may be equivalent to days, weeks, or
months, here we take the year as the unit. We set the initial values of the susceptible pest,
infected pest, and the predator to 1, 0.6, and 0.1, respectively. Then we will solve the state
variable equation and the adjoint variable equation in the given time interval. Before that,
the fear function for different fear levels is graphically represented in Fig. 1.

From Fig. 1 we can clearly see the relationship between the magnitude of the fear
factor and the birth rate of susceptible prey populations. When the fear coefficient is 0,
the birth rate remains unchanged, and the fear coefficient is inversely proportional to the
birth rate, and the bigger the fear coefficient, the closer the birth rate is to 0.

Figure 1. The relationship between fear level and natural growth rate of prey.
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(a) (b)

(c) (d)

Figure 2. Control u of infected prey–predator model with the fear.

We solve numerical simulation of the optimal control problem using Runge–Kutta
fourth-order iterative method. Let us consider the following example:

dX = X

(
0.5

1 + 0.5Z

(
1− X + Y

0.49

)
− 0.6Y − 0.7Z

1 + 0.1X + 0.1Z
− 0.1u

)
dt,

dY = Y (0.6S − 0.5− 0.7Z − 0.1u) dt,

dZ = Z

(
0.01 ∗ 0.7X

1 + 0.1X + 0.1Z
+ 0.6 ∗ 0.7Y − 0.4 + 0.1u+ 0.1

(
1− X + Y

0.49

))
dt

with the initial value (1, 0.6, 0.1). Choose and keep the initial value, different values of
control u were selected, and it was obviously observed that the population density of
susceptible prey X(t) and infected prey Y (t) decreased significantly after different levels
of control u were added compared with those without control as shown in Fig. 2.

From Fig. 2(a) the population density of susceptible prey X(t) is the largest without
control, and the difference is not large when u = 0.1, 0.4, 0.5, and the population density
is the smallest when the optimal control is taken. From Fig. 2(b) the population density of
infected prey decreased significantly with the strengthening of control u, and the optimal
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(a) (b)

(c) (d)

Figure 3. Control g of infected prey–predator model with the fear.

control was between 0 and 0.1. Fig. 2(c) is similar to Fig. 2(b), but it can be seen that
pesticide control has a large impact on predators with optimal control having a relatively
small effect on predator populations.

Different values of control g were selected, and it was obviously observed that the
population density of susceptible prey X(t) and infected prey Y (t) decreased signifi-
cantly after different levels of control g was added compared with those without control
as shown in Fig. 3.

From Fig. 3(a) we can get susceptible prey X(t) has the largest population density
without control, and it can be seen that control g has less effect on susceptible prey.
From Fig. 3(b) the population density of infected prey decreased significantly with the
strengthening of control u, and the optimal control was greater than 0.5. It can be seen
that the optimal control is between 0 and 0.1 in Fig. 3(c).

We choose a = 0.3; m = 0.01; β = 0.5; r = 0.9; k1 = 0.1; k2 = 0.1; k3 = 0.05;
m1 = 0.1; m2 = 0.6; µ = 0.4; λ = 0.6; K = 0.4; ε1 = 0.9; ε2 = 0.9; ε3 = 0.9.

Using the above methods, we study the optimal control of model (2). Let S(t) =
X(t)+Y (t). It can be observed in Fig. 4 that when the control u and g are both optimized,
the pest control effect is the best.
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(a) (b)

(c) (d)

Figure 4. Control both u and g of infected prey–predator model.

5 Conclusions

Research on pest control is of great importance to both agriculture and ecological environ-
ment. First of all, pests will cause serious damage to crops and plants, resulting in reduced
yield or even crop failure, causing major economic losses to agricultural production.
Second, conventional chemical pesticide control can negatively impact the environment
and human health, so we need to develop more environmentally friendly and sustainable
pest control methods. Research on pest control can help us better understand the ecology
and behavior patterns of pests, provide a basis for formulating more scientific and efficient
control strategies, and promote the protection of biodiversity and the maintenance of
ecological balance. With the above factors, we take a reasonable approach to study the
dynamic behavior of pests and use pesticides and the food supply of predators for optimal
control.

This paper systematically studies the prey–predator model with fear effect and draws
some conclusions. The interaction between predators and susceptible prey is thought to
be a functional response of Beddington–DeAngelis, and the birth rate of prey species
is affected by predator populations. We certify that the birth rate of prey populations
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is inversely proportional and gradually decreases as the density of predator populations
increases. In addition, the equilibrium point stability of the proposed model is analyzed,
so we can better understand and manage the operation and evolution of biological systems.
The equilibrium E0 is unconditionally unstable. Note that the second condition in (5)
is opposite to condition (4). Thus, the equilibrium E1 is related to the equilibrium E3

via transcritical bifurcation. Furthermore, if the initial state of system (1) is close to the
equilibrium point E∗, the solution trajectory not only remains near the equilibrium point
E∗ at all t > 0, but also close to the equilibrium component of E∗ such as t → ∞.
Therefore, if the initial values of the state variables X , Y , and Z are close to X∗, Y ∗, and
Z∗, respectively, the system (1) will eventually be stable with (7) holding the condition.
That is, small perturbations in system variables do not affect the stability of the system
under coexistence equilibrium.

Furthermore, the optimal control of the model is explored, an optimal strategy is pro-
posed by considering the maximization of returns. Employing the Pontryagin maximum
principle, the optimal control strategy for reaching the maximum value of the indicator
is derived. It is proved that when the two controls are applied at the same time, there
is an optimal control (u∗, g∗). We assume that there are two different variables ξ =
(X,Y, Z, p1, p2, p3, p4) and ξ∗=(X∗, Y ∗, Z∗, p1, p2, p3), respectively corresponding to
(u, g) and (u∗, g∗). Then we make a change of variable, proving that the contradiction
ξ = ξ∗ is in a small time interval [0, T ]. Finally, by iterating the process, we get the
uniqueness of the entire interval [0, tf ] of optimal control. On the basis of previous stud-
ies, more complex situations were considered, and numerical simulations confirmed that
the control effect was better than that of chemical control alone when control was applied
together with ecological control. This has catalyzed advancements in eco-epidemiology
for multidimensional and environmentally friendly pest control. Guided by these research
findings, we can devise more effective biological control strategies, reduce reliance on
chemical pesticides, and improve the sustainable use of crop and fishery resources.

Pesticides have an important role in pest control, there are also some limitations,
and the continuous evolution of pest resistance may make pest control more and more
difficult. In the process of application, pesticides may pollute the soil, water, and air,
causing harm to the ecological environment. In addition, residues on agricultural products
may also pose a potential threat to human health. And some pesticides will remain in
agricultural products for a long time, which may cause food safety hazards. The abuse
of pesticides can also have long-term effects on ecosystems such as on soil microbes and
other organisms. Therefore, although pesticides have a certain role in pest control, their
limitations are also obvious. In order to solve these problems, it is necessary to explore and
promote more sustainable, environmentally friendly, and selective pest control methods
such as biological control, sex pheromone control, natural enemy release. Therefore, for
future research purposes, we sought to refine the form of the optimal control question by
introducing differences between harmful but less costly chemical pesticides and environ-
mentally friendly but more risky and costly biological controls.

The results of numerical analysis do not represent the likelihood that we will reach
the same conclusion in real situations, the content of the study can serve as an objective
reference for real cases in which prey–predator interactions are indeed important in sys-
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tems. In limited cases, we should use numerical analysis to analyze the data in real cases
so as to provide more information and countermeasures for similar cases in the future.
The environment is complex and variable, and there are many random factors that are
difficult to predict, which can lead to bias in results. Therefore, the numerical simulation
in this paper is considered under the assumed ideal environment. However, our simulation
results in multiple scenarios with multiple sets of parameters provide a theoretical basis
for further research that considers more factors and is closer to reality.

On the basis of this thesis, we can also study nonlinear cases. In addition, the time-
delay parameter may affect the stable configuration of the eco-epidemiological system,
and we can extend the eco-epidemiology model by considering the delay factor in model
development.
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