
Nonlinear Analysis: Modelling and Control, Vol. 29, No. 3, 509–527
https://doi.org/10.15388/namc.2024.29.34884

Press

Synchronization of delayed stochastic reaction–diffusion
Hopfield neural networks via sliding mode control*

Xiao Lianga,1 , Yiyi Yanga , Ruili Wangb , Jiangtao Chenc ,
aSchool of Mathematics and System Science,
Shandong University of Science and Technology,
Qingdao, China, 266590
mathlx@163.com
bInstitute of Applied Physics and Computational Mathematics,
Beijing, China, 100094
cChina Aerodynamics Research and Development Center,
Mianyang, China, 621000

Received: February 12, 2023 / Revised: November 9, 2023 / Published online: March 23, 2024

Abstract. Synchronization of stochastic reaction–diffusion Hopfield neural networks with s-delays
via sliding mode control is investigated in this article. To begin with, we choose suitable functional
space for state variables, then the system is transformed into a functional differential equation in
an infinite-dimensional Hilbert space by using appropriate functional analysis technique. Based
on above preliminary preparation, sliding mode control (SMC) is constructed to drive the error
trajectory into the designed switching surface. Specifically, the switching surface is constructed
as linear combination of state variables, which is related to control gains. Then novel SMC law
is designed which involving delay, reaction diffusion term, and reaching law. Furthermore, the
criterion of mean-square exponential synchronization for stochastic delayed reaction–diffusion
Hopfield neural networks with s-delays is given in the form of matrix form. This criterion is
less restrictive and easy to check in computer. Meanwhile, a different novel Lyapunov–Krasovskii
functional (LKF) mixed with Itô’s formula, Young inequality, Hanalay inequality is employed in this
proof procedure. At last, a numerical example is presented to validate the availability of theoretical
result. The simulation is based on the finite difference method, and numerical result coincides with
the theoretical result proposed.
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1 Introduction

Synchronization generally means that two systems with different initial conditions are
forced to achieve identical dynamics after finite time under appropriate control law [18].
As an important collective behavior, synchronization of Hopfield neural networks (HNNs)
becomes a hot research topic in recent decades due to its potential applications in secure
communications, information processing, and distributed computation [4, 10, 11, 14, 19,
23–25,30]. As we all know, the original controlled models of HNNs are described through
nonlinear ordinary differential equations. They are just the approximations of real world,
the following vital factors are neglected in the standard HNNs.

To begin with, a delay is inevitably encountered in implementation of neural networks
(NNs) through very large scale integration (VLSI) system due to finite speed of switching
and transmission of signals [4, 10, 11, 24, 25, 27, 28, 30]. Two main types of delays are
investigated in published work of delayed HNNs. Some scholars assume that delay is
a constant number in operation of HNNs. Mathematically, they focus on HNNs with
discrete delays fi(ui(t−τi)), i = 1, 2, . . . , n, where fi, i = 1, 2, . . . , n, are the activation
functions of HNNs [30]. Other scholars notice that NNs have spatial nature since the
presence of a multitude of parallel pathways. In this case, it is reasonable to study the
HNNs with distributed delays

∫ 0

−τi fi(ui(t + θ))ki(θ) dθ, ki are kernel functions [19,
27, 28]. Both of them can be included in the s-delays

∫ 0

−τi fi(ui(t + θ)) dκi(θ) with
dκi satisfying Lebesgue–Stieltjes measure [9]. So the HNNs with s-delay is much more
general than other type of delayed HNNs, whether in mathematics or physics.

Meanwhile, diffusion effect cannot be ignored in HNNs when electrons move in an
asymmetrical electromagnetic field [8–11, 14, 19, 24, 28]. The diffusion operator with
convection-advection term rather than the Laplacian ∆ operator is explored in this article
to describe the diffusion phenomenon. The diffusion operator with convection-advection
term can be degenerated to the Laplacian operator when the diffusion coefficient matrix is
chosen to be an identity matrix. Furthermore, from physical viewpoint, diffusion operator
with convection-advection term means that the particle diffuses heterogeneously, while
Laplacian operator means that the particle diffuses homogenously. So diffusion operator
with convection-advection term is much more general than ∆ operator [24, 25].

Furthermore, it is particularly worth mentioning that the synaptic transmission is
a noisy process brought on by random fluctuations from the release of neurotransmitters
and other probabilistic causes in real nerve systems [4, 14, 19, 27–29]. Wiener process
used in this paper is an efficient and common tool in characterising random external
disturbance.

We can infer from above discussion that the predictability of HNNs will be signif-
icantly improved if s-delays, reaction diffusion term, and stochastic factors are taken
into consideration. However, delays, reaction diffusion term, and Wiener processes are
also sources of bifurcation, chaos, and instability, which are harmful to the system in
the practical design. In view of this disadvantage, the scholars might hesitate to adopt
the stochastic reaction diffusion Hopfield neural networks (SRDHNNs) with s-delays.
Therefore, synchronization will be a critical technique if we want to make the best use of

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis
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the advantage of SRDHNNs with s-delays and hedge their bets. Unfortunately, there is
still no result on synchronization of SRDHNNs with s-delays due to complex structure.
The difficulty of tackling synchronization of SRDHNNs with s-delays will be magnified
by simultaneous existence of s-delay, reaction–diffusion term, and Wiener process. This
is one of the motivation of this article.

In order to track the desired trajectory in the controlled system, we are inclined to use
the sliding mode control(SMC) technique to reduce the tracking error for SRDHNNs with
s-delays since it is an effective discontinuous control strategy. It has numerous attractive
features such as fast response, good transient performance, and robustness subject to un-
certainties and external disturbance. It can even stabilize the complex nonlinear systems,
which are difficult to stabilize by continuous control [6, 7, 12, 17, 22]. After checking the
published papers, we find there is still little paper involving synchronization of HNNs via
SMC. Integral SMC approach is used to investigate the synchronization of nonidentical
chaotic neural networks with constant delays in [5], equivalent control is constructed
based on integral sliding manifold. However, random disturbance and diffusion effect is
missed in that model. SMC based on equivalent control is also utilized in control of deter-
ministic reaction diffusion Hopfield neural networks in [7]. But his methodology will be
failed if Wiener process is added in the system of [7]. As far as we know, synchronization
of SRDHNNs with s-delays via SMC has not been studied, which is another motivation
of this article. The main contribution of this paper is listed in the following terms.

(i) Choosing the right functional space for state variables is a critical step toward its
analysis. The study of synchronization of delayed SRDHNNs is more compact,
convenient, and concise when it is carried out on the abstract Hilbert space.

(ii) Most existing literatures related to synchronization of distributed system via SMC
are concentrated on relatively simple, linear, and low-dimensional reaction–dif-
fusion system derived from biological or chemical field. It is a challenge to use
SMC to tackle SRDHNNs with s-delays, which are complex and high-dimension-
al nonlinear dynamical systems. To the best of knowledge, there is no published
result on this field yet.

(iii) One of the trouble lies in how to deal with the reaction–diffusion term in con-
vection–advection form when it comes to the application of SMC to delayed
SRDHNNs. This object is solved by implementing semipositive definite assump-
tion of related matrix, and deduction is based on the Gauss formula and Kro-
necker product.

(iv) Two novel Lyapunov–Krasovskii functionals (LKFs) are applied in the proof pro-
cedures. Both of them are trickly constructed, which is related to the coefficients
of switching surface. These LKFs can surmount the difficulty due to coupleness
of delay, reaction–diffusion term, and Wiener process. By the way, appropriate
bound for noise intensity function is utilized to restrain the impact of noise. The
synchronization criterion is given in the form of matrix norm and can be easily
checked in computer.

(v) The program for simulation is written by ourselves. After checking the published
paper in the SMC of distributed systems,we found that there is still no software
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for synchronization of SRDHNNs with s-delays. It becomes one of our task
to develop a software to simulate these objects. The Runge–Kutta–Chebyshev
scheme is used to deal with time, second-order center difference scheme is uti-
lized to cope with the space, and Euler–Maruyama formula is used to solve
Wiener process.

The rest of this article is organized as follows. The preliminaries and notations are
presented in Section 2. The switching surface and control law is designed in Section 3.
In Section 4, the synchronization of delayed SRDHNNs under SMC is discussed. Sec-
tion 5 provides a numerical example to validate the efficiency of theoretical result. The
conclusion is drawn and future direction is pointed out in Section 6.

2 Nomenclatures and preliminaries

We begin with a motivational preview on some notations, definitions, and inequalities,
which will arise later on the paper.

• (Ω,F ,P) represents a complete probability space with filtration {Ft}t>0 satisfying
the usual conditions, whereΩ is the basic event space, F is the σ-algebra of sample
space, P is the probability measure;

• E is the expectation operator with respect to P;
• W = (W1,W2, . . . ,Wm) is a m-dimensional mean-zero standard Wiener process

defined on (Ω,F ,P) with independent components;
• For A ∈ Rn×n, det(A) denotes the determinant of A;
• For A ∈ Rn×n, A > 0 means that A is a positive definite matrix;
• If A ∈ Rn×n and AT = A, λM (A) denotes the largest eigenvalue of A;
• For A ∈ Rn×n and AT = A, λm(A) denotes the smallest eigenvalue of A;
• E denotes the identity matrix of Rn×n;
• Frobenius norm of A ∈ Rm×n is defined as ‖A‖F = (tr(ATA))1/2;
• For A = (aij)m×n, B = (bij)m×n, A ◦ B = (aijbij)m×n is called the Hadmard

product of A and B [13];
• u(·)t denotes the restriction of u(·) to the interval [t − r, t] translated to [−r, 0].

For all s ∈ [−r, 0], ut(s) = u(t+ s);
• L2(O) stands for the space of square-integrable functions onO, it becomes a Hilbert

space when equipped with the square norm |·|L2(O) on O;
• U = {L2(O)}n, it becomes a Hilbert space when equipped with the usual inner

product (u,v),u,v ∈ U and the corresponding norm is ‖u‖ =
√

(u,u);
• Hk(O) is the space of function u in L2(O) whose distribution derivative of order

6 k is in L2(O);
• C([−r, 0], U) is the Banach space of all continuous functionals from [−r, 0] into U

with the sup-norm ‖ϕ‖C = sup−r6s60 ‖ϕ(s)‖;
• L2

F0
([−r, 0];U) denotes the space of all F0-measurable C([−r, 0];U)-valued ran-

dom variable, which satisfies sup−r6s60 E‖ϕ(s)‖2 <∞.
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The response system of delayed SRDHNNs under adiabatic boundary condition is
expressed in the following form:

du =

(
∇ ·
(
D(x) ◦ ∇u

)
−Au+Cf

( 0∫
−r

u(t+ s, x) dη(s)

)
+ I

)
dt,

∂u

∂ν
(t,x) = 0, t > 0, x ∈ ∂O, u(s,x) = φ(s,x), s ∈ [−r, 0],

(1)

where n denotes the number of neurons, u = (u1, u2, . . . , un)T is the state vector, which
is a function with independent variable t ∈ R, and space x ∈ O. O ⊂ Rl is a connected
bounded set with smooth boundary ∂O. The general gradient operator of state vector u
is defined as ∇u = (∇u1,∇u2, . . . ,∇un)T, where ∇ui = (∂ui/∂x1, ∂ui/∂x2, . . . ,
∂ui/∂xl)

T, i = 1, 2, . . . , n, so the size of ∇u is n × l. f(u) = (f1(u1), f2(u2),
. . . , fn(un))T is a diagonal map, which represents continuous activation function. A =
diag(a1, a2, . . . , an), ai > 0, i = 1, 2, . . . , n, is the matrix of self-inhibition rate. C =
(cij)n×n represents matrix of connection weights between neurons. I = (I1, I2, . . . , In)T

is the external bias vector, and φ(s,x) = (φ1(s,x), φ2(s,x), . . . , φn(s,x))T ∈
L2
F0

([−r, 0];U) is the initial function. D(x) = (Dij)n×l is the diffusion coefficient
matrix, the value of which is determined by Fick’s law [8]. Let Y = (yij)n×l = D◦∇u =
(Dij(∂ui/∂xj))n×l is the Hadamard product of matrix D and ∇u. ∇ · Y is the general
divergence operator of matrix Y , which is defined as∇·Y = (∇·Y1,∇·Y2, . . . ,∇·Yn)T,
Yi, i = 1, 2, . . . , n, is the ith column of matrix Y . ∇ · Yi is the divergence operator
of vector Yi. The boundary condition is ∂u/∂ν = (∂u1/∂ν, ∂u2/∂ν, . . . , ∂un/∂ν)T,
∂ui/∂ν = (∂ui/∂x1, ∂ui/∂x2, . . . , ∂ui/∂xm)T, i = 1, 2, . . . , n. Adiabatic boundary
condition is used in this article.

r is the length of time delay. In this article, the delay is expressed as a Lebesgue–
Stieltjes integral, which is called s-delay. Specifically,

0∫
−r

u(t+ s, x) dη(s) =

( 0∫
−r

u1(t+ s, x) dη1(s), . . . ,

0∫
−r

un(t+ s, x) dηn(s)

)T

.

ηi(s), i = 1, 2, . . . , n, are nondecreasing functions with bounded variation. In other
words, there exist constants qi, i = 1, 2, . . . , n, such that

∫ 0

−r dηi(s) = qi. For conve-
nience of study, we construct the matrix Q̃ = diag{q1, q2, . . . , qn}.

Let ud denotes the state vector of drive system, which satisfies

dud =

(
∇ ·
(
D(x) ◦ ∇ud

)
−Aud + I + Pv

+Cf

( 0∫
−r

ud(t+ s, x) dη(s)

))
dt+ g(ud − u) dW

∂ud
∂ν

(t,x) = 0, t > 0, x ∈ ∂O, ud(s,x) = ψ(s,x), s ∈ [−r, 0],

(2)
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with ψ(s, x) = (ψ1(s,x), ψ2(s,x), . . . , ψn(s,x))T ∈ L2
F0

([−r, 0];U), ud = (u1d, u
2
d,

. . . , und ). g(ud − u) is the intensity of noise, it is a matrix-valued function. g is inferred
from the occurrence of eternal random fluctuation and other probabilistic causes. u is the
solution of (1). v = (v1, v2, . . . , vm) is the control input of this system. P ∈ Rn×m is
the gain of v, which is a dimensionless control matrix and has full column rank. Other
symbols have the same physical meaning as those in (1).

Remark 1. If

ηi(s) =

{
0, −r 6 s < 0

1, s = 0, i = 1, 2, . . . , n.

Then by calculating the Lebesgue–Stieltjes integral, the governing equation of (1) is
transformed to

du =
(
∇ ·
(
D(x) ◦ ∇u

)
−Au+Cf

(
u(t− r, x)

)
+ I

)
dt,

which is the system with discrete delay as that in [8].
If there exists function κ(s) such that dη(s) = κ(s) ds, by calculating the Lebesgue–

Stieltjes integral, the governing equation of response system is reduced to

du =

(
∇ ·
(
D(x) ◦ ∇u

)
−Au+Cf

( 0∫
−r

u(t+ s, x)κ(s) ds

)
+ I

)
dt,

which is the system with distributed delays. That means that our model is more general
than those studied before.

2.1 Tracking error in the Hilbert space

The tracking error vector e(t) is defined as the difference between the observed behavior
of the drive system (2) and its desired behavior of response system (1):

e(t,x) = ud(t,x)− u(t,x). (3)

From (1)–(3) we get the following error dynamics:

de =

(
Pv +∇ ·

(
D(x) ◦ ∇e

)
−Ae+Cf

( 0∫
−r

ud(t+ s, x) dη(s)

)

−Cf

( 0∫
−r

u(t+ s, x) dη(s)

))
dt+ g(e) dW ,

∂e

∂ν
(t,x) = 0, t > 0, x ∈ ∂O,

e(s, x) = −φ(s,x) +ψ(s,x), x ∈ O, s ∈ [−r, 0].

(4)

Let us define the diffusion operator as follows:

A : D(A)→ U, Ae = ∇ ·
(
D(x) ◦ ∇e

)
,

where D(A) is the domain of A defined as D(A) = {e: e∈{H2(O)}n, ∂e/∂ν|∂O=0}.
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We rewrite system (4) in the following form of stochastic functional differential equa-
tions in Hilbert space:

de = (Pv + Ae−Ae+Cf̃) dt+ g(e) dW

e(s) = ψ(s)− φ(s), s ∈ [−r, 0],
(5)

where f̃ = f(
∫ 0

−r ud(t+ s) dη)− f(
∫ 0

−r u(t+ s) dη), (ψ − φ) ∈ L2
F0

([−r, 0];U).
The basic assumptions are

(H1) |fi(ui)− fi(vi)| 6 σi|ui − vi| for all ui, vi ∈ R, σi > 0, i = 1, 2, . . . , n;
(H2) There exist two positive constants α, β such that 0 < α 6 Dij 6 β;
(H3) The noise intensifying function g(u) satisfies the linear growth constraints,

which means that there exists a positive constant k such that tr(gTg) 6 k(uTu);
(H4) γ − γ−1n‖KC‖2F ‖ΣQ̃‖2F > 0, am = min{a1, a2, . . . , an}, γ = ζmam −

λM (K)k > 0, ζm = λm(K), K will be defined in (8), and K̃ is a semipositive
definite matrix.

Remark 2. From [8] we know that global Lipschitz condition (H1) and positiveness of
diffusion coefficients (H2) can ensure the existence and uniqueness of (1). Moreover,
the noise intensifying function depends on the state vector of the error system, and it is
a nonlinear function rather than a linear function. (H3) means that the noise intensity is
upper bounded by the norm of error. The noise is removed if the error vanishes. Fur-
thermore, the surface will become smoother if e → 0. Last, from (H1) the requirement
of monotonicity, continuously differentiable restriction, and boundedness of activation
function is removed. So this type of activation function is more general than the sigmoid
activation functions studied in [11, 23, 30].

We can infer from (H1) that

Lemma 1. If f is a diagonal map and satisfies (H1), we can get

‖f̃‖2 6 ‖ΣQ̃‖2F ‖et‖2C ,

where Σ = diag{σ1, σ2, . . . , σn}.

By using (H1) and total boundedness of Lebesgue–Stieltjes integral
∫ 0

−r dη(s), we
have ∫

O

∣∣∣∣∣fi
( 0∫
−r

uid(t+ s, x) dηi(s)

)
− fi

( 0∫
−r

ui(t+ s, x) dηi(s)

)∣∣∣∣∣
2

dx

6 σ2
i

∫
O

∣∣∣∣∣
0∫
−r

ei(t+ s, x) dηi(s)

∣∣∣∣∣
2

dx 6 σ2
i q

2
i

∫
O

sup
s∈[−r,0]

e2i (t+ s, x) dx

= σ2
i q

2
i sup
s∈[−r,0]

∥∥ei(t+ s)
∥∥2
L2(O)

.
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By the definition of f̃ , ‖·‖F , ‖et‖C , as well as f is a diagonal map, one obtains

‖f̃‖2 6 ‖ΣQ̃‖2F sup
s∈[−r,0]

∥∥e(t+ s)
∥∥2 = ‖ΣQ̃‖2F ‖et‖2C .

Let us construct a new matrix K̃ = (k̃ij)n×n based onK = (kij)n×n with k̃ii = kiiα

and k̃ij = −|kij |β, i 6= j. Then we have

Lemma 2. If (H2) holds and K̃ is a semipositive definite matrix, then we have
(u,KAu) 6 0, u ∈ U .

By using the property of Hadmard product and the basic relationship between di-
vergence operator and gradient operator, we first prove the following equality, which is
expressed as

∇ · (uiYi) = ui∇ · (Yi) + 〈∇ui, Yi〉,

where 〈·, ·〉 denotes the standard inner product of Euclid space Rl. Then we have

∇ ·
(
diag(u1, u2, . . . , un)KY

)
= ∇ ·

(
diag(u1, u2, . . . , un)K(Y1, . . . ,Yn)T

)
= ∇ ·



k11u1 . . . k1nun
k21u1 . . . k2nun
. . . . . . . . .

kn1u1 . . . knnun

 (Y1, . . . ,Yn)T


= ∇ ·

(
n∑
j=1

k1jujYj ,

n∑
j=1

k2jujYj , . . . ,

n∑
j=1

knjujYj

)T

=

(
n∑
j=1

k1juj∇ · Yj +

n∑
j=1

k1j〈∇uj ,Yj〉,

n∑
j=1

k2juj∇ · Yj +

n∑
j=1

k2j〈∇uj ,Yj〉, . . . ,

n∑
j=1

knjuj∇ · Yj +

n∑
j=1

knj〈∇uj ,Yj〉

)T

= diag(u1, u2, . . . , un)K∇Y

+


k11 k12 . . . k1n
k21 k22 . . . k2n
. . . . . . . . . . . .
kn1 kn2 . . . knn



〈∇u1, Y1〉
〈∇u2, Y2〉

. . .
〈∇un, Yn〉


with Y = (Y1, . . . ,Yn)T.
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On the other side, by using the definition of Hadmard product, we have
〈∇u1, Y1〉
〈∇u2, Y2〉

. . .
〈∇un, Yn〉

 =


∂u1

∂x1
y11 + ∂u1

∂x2
y12 + · · ·+ ∂u1

∂xl
y1l

∂u2

∂x1
y21 + ∂u2

∂x2
y22 + · · ·+ ∂u2

∂xl
y2l

. . .
∂u2

∂x1
yn1 + ∂u2

∂x2
yn2 + · · ·+ ∂un

∂xl
ynl



=



∂u1

∂x1
. . . ∂u1

∂xl
∂u2

∂x1
. . . ∂u2

∂xl

. . . . . . . . .
∂un

∂x1
. . . ∂un

∂xl

 ◦

y11 . . . y1l
y21 . . . y2l
. . . . . . . . .
yn1 . . . ynl


J , (6)

where J = (1, 1, . . . , 1)T, which means that

∇ ·
(
diag(u1, u2, . . . , un)KY

)
= diag(u1, u2, . . . , un)K∇Y +K

(
(∇u ◦ Y )J

)
.

In other words, we have

diag(u1, u2, . . . , un)K∇Y = ∇ ·
(
diag(u1, u2, . . . , un)KY

)
−K

(
(∇u ◦ Y )J

)
.

Let Y = D(x) ◦ ∇u in (6), and using the general Gauss formula for the matrix∫
O

∇ · Z dx =

∫
O

∇ · (Z1,Z2, . . . ,Zn)T dx

=

(∫
O

∇ ·Z1 dx,

∫
O

∇ ·Z2 dx, . . . ,

∫
O

∇ ·Zn dx

)T

=

( ∫
∂O

Z1 ds,

∫
∂O

∇ ·Z2 ds, . . . ,

∫
∂O

Zn ds

)T

=

∫
∂O

∇ · (Z1,Z2, . . . ,Zn)T ds =

∫
∂O

Z ds,

where Zi is the ith column of Z, and the adiabatic boundary conditions, we have∫
O

diag(u1, u2, . . . , un)K∇ ·
(
D(x) ◦ ∇u

)
dx

=

∫
O

∇ ·
(
diag(u1, . . . , un)K(D(x) ◦ ∇u)

)
dx

−
∫
O

K
((
∇u ◦

(
D(x) ◦ ∇u

))
J
)

dx

=

∫
∂O

diag(u1, u2, . . . , un)K
(
D(x) ◦ ∇u

)
dx
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−
∫
O

K
((
∇u ◦

(
D(x) ◦ ∇u

))
J
)

dx

= −
∫
O

K
((
∇u ◦

(
D(x) ◦ ∇u

))
J
)

dx.

For the relationship between inner product, Hadmard product, and Kronecker product, we
have

≺u,v�= tr
(
u⊗ vT

)
= sum(u ◦ v), u,v ∈ Rn, (7)

where≺u,v� denotes the inner product of Rn, ⊗ denotes the Kronecker product of two
matrix. sum(u) =

∑n
i=1 ui, u = (u1, u2, . . . , un)T.

Then by using (H2), (7), Cauchy inequality (u,v) 6 ‖u‖‖v‖, and (u,u) = ‖u‖2,
we have

(e,KAe) = −
∫
O

n∑
i=1

n∑
j=1

kij〈∇ui, Dj ◦ ∇uj〉dx

6 −
∫
O

n∑
i=1

kii〈∇ui, Di ◦ ∇ui〉dx−
∫
O

∑
i 6=j

kij〈∇ui, Dj ◦ ∇uj〉dx

6 −u+K̃u
T
+,

where u+ = (‖∇u1‖, |∇u2‖, . . . , ‖∇un‖). Since K̃ is a positive definite matrix, then
we have

(e,KAe) 6 0.

Lemma 3 [Hanalay inequality]. If u > 0 and meets

du

dt
6 −au+ b sup

−r6θ60
u(t+ θ),

u(θ) = φ(θ), φ ∈ C
(
[−r, 0],R

)
,

where a, b > 0, a− b > 0, then there are positive scalars k and D such that

u 6 k exp{−Dt}.

3 Switching surface and design of controller

In this work, the switching surface is constructed as a linear function of the current states

s0 =
{
e ∈ U : S(e) = PTKe = 0

}
, (8)

K ∈ Rn×n will be determined later, and we assume that it meets the condition K > 0.
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The switching control law is defined as

v(x, t) = −B̃(Ae−Ae+ Cf̃)− (PTKP )−1
(
%S + ε

S

‖S‖

)
, (9)

where B̃ = (PTKP )−1PTK. ε and % are positive scalars, which will be selected
properly.

Remark 3. The discontinuous term S/‖S‖ in (9) can be replaced with the continuous
term S/(‖S‖+ τ), where τ > 0 is a small number. It is determined through experience.
Then control law (9) is replaced with

v(x, t) = −B̃(Ae−Ae+ Cf̃)−
(
PTKP

)−1(
%S + ε

S

‖S‖+ τ

)
.

This treatment can be used to eliminate chattering. However, the robustness of the system
will also be removed if this continuation controller is used.

4 Synchronization of SRDHNNs with s-delays under SMC

We have the following main theorem of this article.

Theorem 1. Let system (5) satisfy (H1)–(H4). Suppose that the switching surface is given
by (8), and the SMC law is set to be (9). Then the solution of (5) is exponentially stable
in the mean-square sense on the switching surface described by (8). In other words, (1)
and (2) is exponentially synchronized in the mean-square sense under (9) on the switching
surface described by (8).

Proof. Let us define the Lyapunov–Krasovskii functional as follows:

V
(
(e)t

)
=
∥∥(e)t(0)

∥∥2
K

,
∫
O

eT(t)Ke(t) dx, (10)

K > 0 is the same matrix as that in (8).
By Itô’s formula, we have

dV = LV dt+ 2

∫
O

eTKg dW dx, (11)

where

LV = 2

∫
O

eTKAe dx+ 2

∫
O

eTKAe dx+ 2

∫
O

eTKCf̃ dx

+ 2

∫
O

eTKPv dx+

∫
O

tr
(
gTKg

)
dx
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= 2

∫
O

eTKAe dx+ 2

∫
O

eTKAe dx

+ 2

∫
O

eTKCf̃ dx+

∫
O

tr
(
gTKg

)
dx. (12)

By Lemma 2 and the semipositiveness of the matrix K̃, we get∫
O

eTKAe dx 6 0. (13)

By the positiveness of diagonal entries ofA (soKA is a positive definite matrix), we have

−
∫
O

eTKAe dx 6 −ζmam‖e‖2. (14)

By (H3), we obtain∫
O

tr
(
gTKg

)
dx 6 λM (K)

∫
O

tr
(
gTg

)
dx 6 λM (K)k‖e‖2. (15)

By Young inequality, Lemma 1, the definition of f̃ (f is a diagonal map), condi-
tion (H1), and total variation boundedness of Lebesgue–Stieltjes integral

∫ 0

−r dηi(s) =
qi > 0, i = 1, 2, . . . , n, we have(

e(t),KCf̃
)
6
γ

2
‖e‖2 +

1

2
γ−1‖KCf̃‖2

6
γ

2
‖e‖2 +

n

2
γ−1‖KC‖2F ‖f̃‖2

6
1

2
γ‖e‖2 +

n

2
γ−1‖KC‖2F ‖ΣQ̃‖2F ‖et‖2C . (16)

By (10)–(16), we have

LV 6 −γV + c1 sup
s∈[−r,0]

V (t+ s)

with c1 = γ−1‖KC‖2F ‖ΣQ̃‖2F . By Itô’s formula, we have

EV 6 −γEV + c1 sup
s∈[−r,0]

EV (t+ s).

From (H4) we have γ > c1. By the Hanalay inequality, we have EV (t) 6 E‖φ − ψ‖C
× exp{−(γ − c1)t}. By definition of ‖et‖C in Section 2, (1) and (2) are exponentially
synchronized in the mean-square sense under (9).
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5 Example and simulation

The response system is

du1 =

(
∇ ·
(
D1(x)∇u1

)
− 4u1 + 0.5 tanh

( 0∫
−r

u1(t+ s, x) dη

)

− 0.2 tanh

( 0∫
−r

u2(t+ s, x) dη(s)

)
+ I1

)
dt,

du2 =

(
∇ ·
(
D2(x)∇u2

)
− 4u2 − 5 tanh

( 0∫
−r

u1(t+ s, x) dη

)

+ 0.5 tanh

( 0∫
−r

u2(t+ s, x) dη(ls)

)
+ I2

)
dt,

∂ui
∂x

(t, 0) =
∂ui
∂x

(t, 20) = 0, t > 0,

u1(s, x) = 3 cos(0.2πx), u2(s, x) = −2 cos(0.2πx),

x ∈ O = [0, 20], s ∈ [−1, 0], i = 1, 2,

(17)

and the drive system is

du1d =

(
∇ ·
(
D1(x)∇u1d

)
− 4u1d + 0.5 tanh

( 0∫
−r

u1d(t+ s, x)dη

)

− 0.2 tanh

( 0∫
−r

u2d(t+ s, x) dη(s)

)
+ I1 + p1v

)
dt+ e1 dW,

du2d = ∇ ·
(
D2(x)∇u2d

)
− 4u2d − 5 tanh

( 0∫
−r

u1d(t+ s, x) dη

+ 0.5 tanh

( 0∫
−r

u2d(t+ s, x) dη(s)

)
+ I2 + p2v

)
dt+ e2 dW,

∂uid
∂x

(t, 0) =
∂uid
∂x

(t, 20) = 0, t > 0,

u1d(s, x) = cos(0.2πx), u2d(s, x) = − cos(0.2πx),

x ∈ O = [0, 20], s ∈ [−1, 0], i = 1, 2.

(18)
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Figure 1. Simulation of u1 and u2 in response system (17).

In this example, U = {L2(O)}2, u = (u1, u2)T ∈ U , ud = (u1d, u
2
d)

T ∈ U ,

φ =
(
3 cos(0.2πx),−2 cos(0.2πx)

)T ∈ L2
F0

(
[−r, 0];U

)
,

ψ =
(
cos(0.2πx), cos(0.2πx)

)T ∈ L2
F0

(
[−r, 0];U

)
,

and
φ−ψ =

(
2 cos(0.2πx),−3 cos(0.2πx)

)T ∈ L2
F0

(
[−r, 0];U

)
,

W is one-dimensional standard Wiener process with mean zero. We can also see that
n=2, m=1, l=1, h=1. In this example, time delay r=1 and s-type delay is defined as

η(s) =

{
0, −1 6 s < 0,

1, s = 0.

Through calculating above Lebesgue–Stieljes integral, we get
∫ 0

−1 ui(t + s, x) dη(s) =

ui(t − 1, x), i = 1, 2. This is also true for uid. We also have |
∫ 0

−1 dη(s)| 6 1 by calcu-
lation, so q1 = q2 = 1 is chosen, we also have Q̃ = diag{q1, q2}. f is a diagonal map
with f = (tanh(u1), tanh(u2))T. By using | tanh(x) − tanh(y)| < |x − y|, x, y ∈ R,
so f1(u1), f2(u2) are global Lipschitz continuous functions with σ1 = 1, σ2 = 1 and
σM = 1. This means that (H1) is satisfied in this system. Other parameters are as follows:
A =

[
4 0
0 4

]
that means λm(A) = λM (A) = 4, C =

[
0.5 −0.2
−5 0.5

]
, I1 =

(
5
2

)
, P =

(
0.1
0.2

)
.

By calculation, rank(P ) = 1, so it has full column rank. D1(x) = 1, D2(x) = 1 such
that ∇ · (D1(x)∇u1) = ∆u1, ∇ · (D2(x)∇u2) = ∆u2, ∆ is a Laplacian operator. By
the way 0 < 1 6 D1(x) 6 1, 0 < 1 6 D2(x) 6 1, α = β = 1, so (H2) is also
fulfilled. Furthermore, g = (g1, g2)T = (e1, e2)T, where e1 = u1d − u1, e2 = u2d − u2.
By calculation, we get k = 1 in hypothesis (H3).

Matlab is used to perform the simulation. The code is written by ourselves and based
on the finite difference method with space scale ∆x = 1 and time scale ∆t = 0.01.
The second-order centered difference scheme is utilized to discrete the reaction–diffusion
term. The Runge–Kutta–Chebyshev method is used to discrete the time. Euler–Maruyama
formula is used to solve Wiener process. Relations E∆W = 0 and E(∆W )2 = ∆t
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Figure 2. Dynamical behavior of e1 and e2 without control in error system.

are also used for computing the Wiener increment. We first use this scheme to simulate
the long time asymptotic behavior of response system (17). From Figs. 1(a), 1(b) the
surface of reference system (17) is very complicated, especially, it seems that there is
no equilibrium for u. It will be a challenge to track this system. For the error system
without control, it can be inferred from Figs. 2(a), 2(b) that solution even exhibits random
oscillation in the whole process when driven by the Wiener process. To give a clear
description of it, we also simulate the frequency of e in Fig. 3, which coincides with
Figs. 2(a), 2(b). Now we devote ourselves to eliminate the noise and synchronize (17) and
(18) under SMC.

In order to track the reference system (17), SMC law (9) is used to synchronize these
two systems. So there are two main steps in the design of SMC. First, we design a switch-
ing surface, then we determine the control law based on the sliding mode. Appropriate
switching surface and SMC law are based on Theorem 1. In the design of switching
surface, we set K = diag(1, 1), so λm(K) = λM (K) = 1, PTK = (0.1, 0.2). By (8),
we have s0 = {e|e1 + 2e2 = 0}. According to (9), the SMC is set to be

v(x, t) = −(2, 4)(∆e−Ae+ Cf̃)− 20

(
%S + ε

S

‖S‖

)
= −2∆e1 − 4∆e2 − 12e1 − 4e2 − 20

e1 + 2e2
‖e1 + 2e2‖

−
(
tanh(u1d)− tanh(u1)

)
+ 0.4

(
tanh(u2d)− tanh(u2)

)
+ 10

(
tanh(u1d)− tanh(u1)

)
+ tanh

(
u2d
)
− tanh(u2),

where S = e1 + 2e2. ε = 1 is used in the simulation.
Other parameters are given as KP = (0.1, 0.2)T, PTKP = 0.05, KPPTK =

0.05. Then B̃ = (PTKP )−1PTK = (2, 4), B = PB̃ =
[
0.2 0.4
0.4 0.8

]
, X = E − B =[

0.8 −0.4
−0.4 0.2

]
. Since α = β = 1 is chosen in this example, then K̃ = K is the semipositive

definite matrix. XC =
[
0.5 −0.2
−5 0.5

]
, ‖KC‖F = 4.0311.

This means that γ − nγ−1‖KC‖2F ‖ΣQ̃‖2F = 0.3126 > 0. So (H4) is fulfilled.
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Figure 3. Frequency of e1 and e2 in error system without control.
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Figure 4. Dynamical behavior of e1 and e2 under SMC.

With these conditions discussed above, the behavior of (17) and (18) is exponentially
synchronized under (9) in the mean-square sense by Theorem 1. The results can be
validated through the simulation results; see Figs. 4(a), 4(b).

We can see that as time t increases to the infinity, the error surfaces of e1 and e2
converge to the equilibrium 0 in the sliding mode. The surface is much smoother than
that of error system without control, and the impact of random noise is much smaller than
that in the open loop system, although the scattering still exists in the controlled system.
It coincides with the result of Theorem 1.

6 Conclusion and discussion

The synchronization of delayed SRDHNNs has been solved by using SMC. The result is
also validated through an example with simulation. The main theoretical innovation is the
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construction of switching control law. The construction is novel, and there is no similar
work until yet.

The work can be improved further in the following ways. To begin with, integral
switching surface is suggested to replace the linear switching surface in the next work.
Second, the decomposing method is used to deduce the asymptotic behavior of switching
surface of SRDHNNs with s-delays. Third, equivalent control is a sophisticated method
in designing the controller, but we still do not know how to construct the appropriate
equivalent control for the SRDHNNs with s-delays. We even do not know whether it
exists or not for stochastic system. It will be a great challenge for us. The design of
switching is very tricky, and it depends on the control gains P . We hope this constraint
can be removed in the next article. The controller can also be improved in some sense.

Furthermore, the criteria are described explicitly and given in the form of matrix
norm in this work, but some scholars and engineers prefer to use the criteria based on
linear matrix inequalities (LMIs) form [2, 3, 16, 26], which can be formulated as convex
optimization problems. It is also easy to check since there is a LMIs toolbox in Matlab.
This is our another research direction in the future.

Leakage delay effect is missed in this paper, but it plays a more and more important
role in the HNNs as convinced by Prof. Cao’s team [1, 15]. Moreover, if the mean value
of the random process is not zero, how will the synchronization property of the system
be affected? This is another interesting topic. Practical applications of SRDHNNs with
s-delays is not considered in this article. The recent progress of HNNs shows that image
encryption is potential area of application of SRDHNNs with s-delays [20, 21]. We will
deal with it in the subsequent work.
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