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Abstract. This paper is concerned with practical fixed-time (FT) stabilization problem of discrete-
time impulsive switched port-controlled Hamiltonian systems (DISPCH). First, starting with
discrete-time port-controlled Hamiltonian systems, a novel controller is presented to achieve
practical FT stability of the obtained closed-loop system. Moreover, in order to well handle the
abrupt changes at switch moments in practical switched systems, another novel controller is
presented in terms of positive-order Lyapunov functions approach and range dwell time method
to make discrete-time impulsive switched port-controlled Hamiltonian system practical FT stable.
Ultimately, the validity of proposed methods is illustrated by simulations.

Keywords: discrete-time Hamiltonian systems, practical fixed-time stabilization, impulsive
switched systems.

1 Introduction

Switched dynamic systems, which represent a particular type of hybrid dynamical sys-
tems, have been widely concerned by researchers recently; see [17,21]. In practice, many
actual physical systems can be represented in the form of switching systems, such as
network systems [5], multiagent systems [29], electrical power systems [4], etc. How-
ever, sometimes, impulsive phenomena are inevitable in switched systems when they are
switching among their subsystems. Since sudden changes at particular moments generally
lead to the instability of such systems, the stability analysis problem becomes very essen-
tial for impulsive switched systems. In [7], the impulsive and switching hybrid systems
were introduced, and several asymptotical stability criteria were established for these
systems. Based on impulsive dynamical linear systems, finite-time stabilization control
problem is tackled in [1]. In [10], time-delayed impulsive control was introduced to deal
with the stability problem of discrete-time systems.
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Hamiltonian systems, which represent a special kind of nonlinear systems, have been
investigated by researchers in a wide range of fields, such as flexible-joints robots [20],
physical science [27], electrical networks [31], and the like. The primary reason is their
appropriate forms, which have clear physical characteristics. Consequently, the theoretical
analysis of Hamiltonian systems is of great practical significance and has attracted wide
attention, for instance, [12, 13, 24, 28, 32]. A dynamic output controller of challenging
control objectives for port-Hamiltonian systems was proposed in [28]. The adaptive con-
trol problem was researched for stochastic Hamiltonian systems in [24]. In [13], for
uncertain Hamiltonian systems, the finite-time stabilization problem was solved by using
sliding mode control approach. For switched affine nonlinear systems, an event-triggered
stabilisation problem was studied via a Hamiltonian approach in [32]. In [12], for PCH
systems, H∞ control and fixed-time stabilization problems were investigated.

Recently, with the widespread utilization of computers to control these systems, the
control design and stability analysis for discrete-time Hamiltonian systems have already
obtained wide attention, and a large amount of remarkable achievements have been
achieved, for instance, [6, 9, 25, 26]. In [26], a discrete formulation of port-Hamiltonian
systems was derived. For discrete-time port-Hamiltonian systems, a new dynamic model
with discrete-time Dirac structures was given in [9] by using collocation methods. With
the development of stochastic systems, Cordoni et al. [6] introduced discrete stochastic
port-Hamiltonian systems based on symplectic variational integrators. For discrete time-
delay Hamiltonian systems with uncertain item, fusion estimation problem was investi-
gated in [25].

Among various realistic applications, achieving rapidly convergence within finite time
and global asymptotic stability play an significant role. Due to their fast convergence and
good robustness, there have been many literatures in regard to finite-time stabilization
in [2, 22, 23, 30], and global asymptotic stability for all kinds of difference models in
[8, 14–16]. However, with respect to finite-time stability, settling time heavily relies on
the original condition, and for global asymptotic stability, the speed of stabilization some-
times may be too long. As a result, when the fast convergence is required and accurate
initial value is not available in advance, these current finite-time and global asymptotic
stabilities fail to obtain an anticipated performance, which mostly limits the realistic
applications. Therefore, an unique finite-time stabilization problem, called fixed-time
stabilization problem, has attracted a large amount of scholars’ attention. Many significant
results about FT stability have been achieved, such as [11, 18, 19]. The definition of FT
stability was proposed by Polyakov et al. [18], who also studied the FT stabilization of
linear control systems by nonlinear feedback design. For finite-time and FT stabilization
problems, an implicit Lyapunov function approach was considered in [19]. As for port-
Hamiltonian systems, FT stabilization problem was studied in [11].

From the above discussions the remarkable thing is that FT stabilization problem has
given rise to some academic interest, but there are few researches about this aspect for
discrete-time impulsive switched port-controlled Hamiltonian systems. In this paper, the
primary contributions are summed up as follows:

(i) A new class of discrete-time model is set up for PCH systems considering im-
pulsive switch;

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Practical FT stabilization for DISPCH systems 351

(ii) Practical FT stabilization problem is considered in the DISPCH systems, in con-
trast with finite-time stabilization, settling time functions here eliminate the re-
liance of original conditions;

(iii) This paper discusses the impulsive effects during switched Hamiltonian systems
switching among its subsystems, which can well reflect the engineering practice.

The paper is structured as follows. Section 2 presents the model of DISPCH system
and preliminaries about practical FT stabilization problem. In Section 3, two sufficient
conditions are given for practical FT stabilization of the DPCH system and the DISPCH
system, respectively. Simulation results are shown to demonstrate the effectiveness of
presented methods in Section 4. Section 5 gives the conclusion.

Notations. N, N+, and R stand for sets of nonnegative integers, positive integers, and
real numbers, respectively, and R+ = [0,+∞). Let w(t) ∈ K∞ mean that the function
w(t) belongs to the class K∞, and let {Nl} be a sequence of number. ‖·‖ stands for the
usual Euclidean norm. In denotes the (n × n)-dimensional identity matrix. The n- and
(m × n)-dimensional real Euclidean space are denoted respectively by Rn and Rm×n.
Let AT stand for the transpose of matrix A. λmax(·) and λmin(·) stand for the maximum
and minimum eigenvalues, respectively.

2 Problem formulation and preliminaries

2.1 DISPCH systems

Consider the following DISPCH system:

xk+1 − xk = Tσk

(
Jσk

(xk)−Rσk

(
‖xk‖

))
∇̄Hσk

(xk, xk+1)

+ Tσk
Gσk

uσk,k, k 6= N1,

xk+1 = gσk
(xk), k = N1,

(1)

where xk = x(k) ∈ Rn stands for the system state, uσk,k = uσk
(k) ∈ Rm represents

system control input. σk = σ(k) : N 7→ P = {1, 2, 3, . . . ,M} with M ∈ N+ stands
for the switching signal, and P as the index set. Based on σk, switching sequence is
obtained as {x0: (i0, N0), (i1, N1), . . . , (ip, Np), . . . , ip ∈ P, Np ∈ N, p ∈ N}, the
switching time sequence is denoted by {Nl}, l = 0, 1, 2, . . . . For any i ∈ P , ui,k is
the control input of the ith subsystem. Ti is the sampling period of the ith subsystem.
Ji(xk) = −JT

i (xk) ∈ Rn×n and Ri(‖xk‖) = RT
i (‖xk‖) > 0 ∈ Rn×n represent the

natural interconnection and damping matrices of the ith subsystem, respectively. gi(xk) :
Rn 7→ Rn is a vector-valued function, Gi ∈ Rn×m represents the input gain matrix of the
ith subsystem and is assumed to have full column rank.Hi(xk) : Rn 7→ R+ represents the
discrete-time Hamiltonian function for the ith subsystem with xk = 0 being its minimum
point and Hi(xk) > 0 for all xk 6= 0. ∇̄Hi(xk, xk+1) : Rn 7→ Rn represents the discrete
gradient of Hi(xk), which satisfies

∇̄THi(xk, xk+1)(xk+1 − xk) = Hi(xk+1)−Hi(xk),

lim
xk+1→xk

∇̄Hi(xk, xk+1) = ∇Hi(xk).
(2)
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Remark 1. Compared with continuous PCH systems, in the DISPCH system (1) in
this paper, the time derivative is substituted by its forward Euler approximation, and the
gradient term is replaced by any discrete gradient as long as it satisfies Eq. (2).

In subsequent analysis, the Hamiltonian function Hi(xk) of the ith subsystem of (1)
is described as

Hi(xk) = %i · ‖xk‖2, 0 < %i 6 1. (3)

According to (2) and (3), we can obtain the discrete gradient corresponding to (3) as

∇̄Hi(xk, xk+1) = %i · (xk + xk+1).

The impulsive function is chosen as

gi(xk) = dixk, (4)

where di is a given constant.

Remark 2. According to switching sequence {x0: (i0, N0), (i1, N1), . . . , (ip, Np), . . . ,
ip ∈ Q, Np ∈ N, p ∈ N}, the ipth subsystem is active if k ∈ [Np + 1, Np+1].

Assumption 1. The sequence {Nl} satisfies Nl ∈ N, l = 0, 1, 2, . . . , and N0 < N1 <
N2 < · · · < Np < · · · with Np+1 −Np > 1.

Assumption 2. The damping matrix Ri(‖xk‖) eigenvalues’ suprema is finite, that is,
there exists a constant ς such that λmaxRi(‖xk‖) 6 ς with xk →∞.

The preliminaries about practical FT stabilization are briefly reviewed in the following
section.

2.2 Practical FT stabilization

Definition 1. (See [18].) For all initial condition x0 ∈ Rn, if there exists a constant
ε > 0 and settling time function T̃ (ε, x0) < +∞ such that ‖xk‖ 6 ε is satisfied for any
k > T̃ (ε, x0), then system (1) can be called practical finite-time stable.

Definition 2. (See [18].) If system (1) is practical finite-time stable and there exists an
upper bound of settling time function, which means that there exists a constant T̃max > 0
such that T̃ (ε, x0) 6 T̃max for any x0 ∈ Rn, then the system (1) is called practical
fixed-time stable.

Remark 3. In general, researchers consider the practical FT stabilization problem for
discrete-time systems rather than FT stabilization. Because practical FT stabilization leads
to ‖xk‖ 6 ε for all k > T̃max, ‖xk‖ converges to a region instead of 0. This is more
meaningful for discrete-time systems. Therefore, we here consider practical FT stabiliza-
tion problem of system (1).

Based on the above analysis, the main objective here is that devises state feedback
controllers, which make the DISPCH system practical FT stable under some switching
conditions.
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Then we will give a lemma to be used in the following proof.

Lemma 1. (See [3].) For system (1) and any i ∈ P , let there exist function Vi : Rn 7→ R+,
α ∈ K∞, and three constants c, q, b satisfying c > 0, q > 0, b > 1, respectively, and let
the following statements hold:

(i) α(‖xk‖) 6 Vi(xk),
(ii) V ci (xk+1)− V ci (xk) 6 −q(Vi(xk) · Vi(xk+1))c, k 6= Nl,

(iii) Vi(xNl+1) 6 bVj(xNl
) for all i, j ∈ P , l = 0, 1, . . . .

Then system (1) is called practical FT stable with all switching sequences σk satisfying

Nl+1 −Nl − 1 = T1 ∈ [θmin, θmax], l = 0, 1, . . . ,

where θmin = 1/(qZLα
c(ε)), θmax = b/(qαc(ε)), ZL =

∑L
j=1(1/b)jc, Tl ∈ R is the

dwell time, ε > 0 is a given constant, and L is a given positive integer. Meanwhile, the
settling time T̃ (ε, x0) 6 T̃max 6 L(θmax + 1) + 1.

3 Main results

In this section, the practical FT stabilization problem for system (1) is studied. Before
dealing with practical FT stabilization for DISPCH systems, we consider discrete-time
PCH (DPCH) systems without impulsive switch first.

The DPCH system is given as follows:

xk+1 − xk = T
(
J(xk)−R

(
‖xk‖

))
∇̄H(xk, xk+1) + TGuk, (5)

where xk = x(k) ∈ Rn represents the system state, uk = u(k) ∈ Rm stands for system
control input. T is the sampling period. J(xk) = −JT(xk) ∈ Rn×n stands for the
interconnection matrix, and R(‖xk‖) = RT(‖xk‖) > 0 ∈ Rn×n represents damping
matrix. R(‖xk‖) satisfies Assumption 2. Suppose the input gain matrix G ∈ Rn×m has
full column rank. H(xk) : Rn 7→ R+ stands for the discrete-time Hamiltonian function,
which also meets the conditions as shown in system (1). ∇̄H(xk, xk+1) : Rn 7→ Rn
stands for the discrete gradient of H(xk), which satisfies Eq. (2) without regarding to
switching signal.

3.1 Practical FT stabilization for DPCH systems

Corresponding to system (1), we put forward the desired Hamiltonian function as follows:

H(xk) = %‖xk‖2, 0 < % 6 1. (6)

According to (2) and (6), we can obtain the discrete gradient

∇̄H(xk, xk+1) = %(xk + xk+1). (7)
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Theorem 1. For the DPCH system (5), ε > 0 is a given constant, and suppose Hamil-
tonian function of system (5) is as shown in (6). If there exists a symmetric matrix K ∈
Rn×n that satisfies the following statements

λmin

(
R
(
‖xk‖

)
−K

)
> 0, (8)

λmax

(
R
(
‖xk‖

)
−K

)
6

2

(2 + ‖xk‖)%T
,

then closed-loop system corresponding to system (5) is practical FT stable under the
following state feedback control law:

uk = (GTG)−1GT

(
%K − 1

T
In

)
xk. (9)

Meanwhile, the settling time function T̃ (ε, x0) satisfies

T̃ (ε, x0) 6 T̃max =
2

ε
.

Proof. According to Eq. (3), Lyapunov function is selected as

V (xk) = H(xk) = %‖xk‖2.

By substituting the controller (9) into system (5) the following equation can be obtained:

xk+1 − xk = T
(
J(xk)−R

(
‖xk‖

))
∇̄H(xk, xk+1) + TGuk

= T
(
J(xk)−R

(
‖xk‖

))
∇̄H(xk, xk+1) + (%TK − In)xk. (10)

When xk = 0, it is effortless to derive that closed-loop system of (5) is practical FT
stable. Combining xk = 0 with Eq. (10), we can obtain

xk+1 = %T
[
J(0)−R(0)

]
xk+1. (11)

According to the arbitrariness of constant % and T , we will get all the later states are equal
to zero, which means the system is practical FT stable.

When xk 6= 0, without loss of generality, we assume that xk+1 6= 0. Multiplying both
sides of Eq. (10) by xTk+1 and substituting the discrete gradient into it, we have

xTk+1(xk+1 − xk) = TxTk+1(J(xk)−R
(
‖xk‖

)
)%(xk+1 + xk)

+ TxTk+1

(
%K − 1

T
In

)
xk.

Noticing skew-symmetry property of the matrix J(xk), we can get xTk+1J(xk)xk+1 = 0.
The equation implies

xTk+1xk+1 + %TxTk+1R
(
‖xk‖

)
xk+1

= xTk+1xk + %TxTk+1

(
J(xk)−R

(
‖xk‖

))
xk

+ %TxTk+1Kxk − xTk+1xk.
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Combining the semipositive definitiveness of the matrix R(xk), we can get
xTk+1R(xk)xk+1 > 0. Then one can obtain

xTk+1xk+1 6 x
T
k+1xk + %TxTk+1

(
J(xk)−R

(
‖xk‖

))
xk

+ %TxTk+1Kxk − xTk+1xk.

Further, we derive

‖xk+1‖ 6
∥∥%T (J(xk)−R

(
‖xk‖

))
xk + %TKxk

∥∥. (12)

Based on the trajectory of system (5), one can calculate

V −1/2(xk+1)− V −1/2(xk)

=
(√
% · ‖xk+1‖

)−1 − (√% · ‖xk‖)−1
>
(√
% · ‖%T

(
J(xk)−R

(
‖xk‖

))
xk + %TKxk‖

)−1 − (√% · ‖xk‖)−1
>
(√
% ·
∥∥(xkxTk )−1xkxTk (%T (J(xk)−R

(
‖xk‖

))
xk + %TKxk

)∥∥)−1
−
(√
% · ‖xk‖

)−1
.

According to the compatibility of matrix norms, one has

V −1/2(xk+1)− V −1/2(xk)

>
(√
% ·
∥∥%TxTk (J(xk)−R

(
‖xk‖

))
xk + %TxTkKxk

∥∥)−1
×
∥∥(xkxTk )−1xkxTk xk(xTk xk)−1∥∥−1 − (√% · ‖xk‖)−1

> ‖xk‖
(√
% ·
∥∥%TxTkR(‖xk‖)xk − %TxTkKxk∥∥)−1 − (√% · ‖xk‖)−1

> ‖xk
∥∥(√% · ‖2xTk (2 + ‖xk‖

)−1
xk
∥∥)−1 − (√% · ‖xk‖)−1

>
(
2 + ‖xk‖

)(
2
√
% · ‖xk‖

)−1 − (√% · ‖xk‖)−1
> (2
√
%)−1.

Furthermore, it is obvious that

1

‖xk‖
− 1

‖x0‖
>
k−1∑
i=0

1

‖xi+1‖
− 1

‖xi‖
>
k

2
,

and hence,

‖xk‖ 6
2‖x0‖

2 + k‖x0‖
6

2

k
. (13)

For given ε > 0, it follows from (13) that ‖xk‖ 6 ε for k > 2/ε, which implies that
closed-loop system of (5) is practical FT stable with T̃ (ε, x0) satisfying

T̃ (ε, x0) 6 T̃max =
2

ε
. �
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Remark 4. The conditions in Theorem 1 are reasonable. We can choose the sampling
period T small enough and design appropriate constant matrix K to make inequality (8)
satisfied.

Remark 5. T̃max is related to the attractive region {xk: ‖xk‖ 6 ε}. The value of T̃max

increases with the decrease of the value of ε.

Remark 6. In order to demonstrate the practical FT stabilization problem of DPCH
system (5), the positive-order Lyapunov function is used in Theorem 1, which is distinct
from usual Lyapunov function.

Based on the obtained results, we further study practical FT stabilization of DISPCH
systems, which can effectively describe the switching characteristics.

3.2 Practical FT stabilization for DISPCH systems

The practical FT stabilization control of DISPCH system (1) is discussed as follows.

Theorem 2. For the DISPCH system (1), ε > 0 is a given constant, L is a given positive
integer. Suppose that for any i ∈ P , the Hamiltonian function Hi(xk) is given as (3). Let
there exist a symmetric matrix Ki ∈ Rn×n that satisfies the following statements:

λmin

(
Ri
(
‖xk‖

)
−Ki

)
> 0,

λmax

(
Ri
(
‖xk‖

)
−Ki

)
6

2

(2 + ‖xk‖)%iTi
,

and let the switching time sequence satisfy

Nl+1 −Nl − 1 = Tl ∈ [θmin, θmax], l = 0, 1, . . . , (14)

where θmin = 2/(
√
%minZLε), θmax = 2b/(

√
%minε), ZL =

∑L
j=1(1/b)j/2, %min =

min16i6M{%i}, b = max16i6M{bi, 1}, bi = %id
2
i /%j , and Tl ∈ R is the dwell time.

Then closed-loop system of system (1) is practical FT stable under state feedback control
law

ui,k =
(
GTi Gi

)−1
GTi

(
%i ·Ki −

1

Ti
In

)
xk. (15)

Meanwhile, settling time function T̃ (ε, x0) satisfies

T̃ (ε, x0) 6 T̃max = L(θmax + 1) + 1.

Proof. The Lyapunov function is selected as

Vi(xk) = Hi(xk) = %i · ‖xk‖2. (16)
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When k 6= Nl, substituting the controller (15) into the ith subsystem of system (1),
the following equation can be obtained:

xk+1 − xk = Ti
(
Ji(xk)−Ri

(
‖xk‖

))
∇̄Hi(xk, xk+1)

+ Ti

(
%iKi −

1

Ti
In

)
xk. (17)

Under the condition k 6= Nl, when xk = 0, it is effortless to derive that closed-loop
system of (1) is practical FT stable. Combining xk = 0 with Eq. (17), we can obtain

xk+1 = %iT
(
Ji(0)−Ri(0)

)
xk+1.

According to the arbitrariness of constant ai and Ti, we will get that all the later states are
equal to zero, so the system is practical FT stable.

Under the condition k 6= Nl, when xk 6= 0, without loss of generality, we assume
xk+1 6= 0. Multiplying both sides of Eq. (10) by xTk+1 and substituting the discrete
gradient into it, we have

xTk+1(xk+1 − xk) = %iTix
T
k+1(Ji(xk)−Ri

(
‖xk‖

)
)(xk + xk+1)

+ Tix
T
k+1(%iKi −

1

T
In)xk.

Noticing the skew-symmetry of the matrix Ji(xk), we can get xTk+1Ji(xk)xk+1 = 0.
This implies

xTk+1xk+1 + Tix
T
k+1Ri

(
‖xk‖

)
xk+1

= xTk+1xk + %iTix
T
k+1(Ji(xk)−Ri

(
‖xk‖

)
)xk

+ %iTix
T
k+1Kixk − xTk+1xk.

According to the semipositive definitiveness of the matrix R(xk), we can get that
xTk+1Ri(xk)xk+1 > 0. By calculating the difference V 1/2

i (xk+1) − V
1/2
i (xk) the fol-

lowing inequality can be obtained:

V
1/2
i (xk+1)− V 1/2

i (xk)

6
√
%i
∥∥%iTi(Ji(xk)−Ri

(
‖xk‖

))
xk + %iTiKixk

∥∥−√%i‖xk‖
6
√
%i
∥∥%iTixTk (Ji(xk)−Ri

(
‖xk‖

))
xk + %iTix

T
kKixk

∥∥·‖xk‖−1 −√%i‖xk‖
6 2
√
%i‖xk‖

(
2 + ‖xk‖

)−1 −√%i‖xk‖
6 −
√
%i

2
‖xk‖

√
%i‖xk+1‖ 6 −

1

2

(
Vi(xk)Vi(xk+1)

)1/2
,

which implies that the ith subsystem satisfies

V
1/2
i (xk+1)− V 1/2

i (xk) 6 −1

2

(
Vi(xk) · Vi(xk+1)

)1/2
.
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When k = Nl, according to impulsive function (4), the following equation can be
obtained:

xNl+1 = gi(xNl
) = dixNl

.

Combining with (16), we can obtain

V
1/2
i (xNl+1) =

√
%i‖dixNl

‖, V
1/2
j (xNl

) =
√
%j‖xNl

‖.

Next, we get

V
1/2
i (xNl+1) 6

√
%i‖dixNl

‖ 6
√
%i|di|
√
%j

V
1/2
j (xNl

) 6
√
bV

1/2
j (xNl

),

where b = max16i6M{bi, 1} with bi = %id
2
i /%j . Thus, for any i, j ∈ Q, the following

inequality is satisfied:
Vi(xNl+1) 6 bVj(xNl

).

According to Lemma 1, it is effortless to derive that system (1) is practical FT stable.
In this case, we choose c = 1/2, q = 1/2, and T̃ (ε, x0) satisfies

T̃ (ε, x0) 6 T̃max = L(θmax + 1) + 1 = L

(
2b

ε
√
%min

+ 1

)
+ 1,

where ε is a given constant, %min = min16i6M{%i}, and L is a given positive integer.

Remark 7. L is a given positive integer, and the value of L is related to the number
of switches between different subsystems. Specifically, the value of L is less than the
number of switches. In fact, during the proof of Lemma 1, such condition is needed to
obtain α(‖xk‖) 6 Vi(xk) 6 α(ε) with ε being a given positive constant, and then one
can derive that ‖xk‖ 6 ε after a fixed-time interval.

4 Two illustrative examples

The effectiveness of presented methods for practical FT stabilization control of DPCH
systems and DISPCH systems is proven by two simulation examples, respectively.

Example 1. Consider the following DPCH system:

xk+1 − xk = T
(
J(xk)−R

(
‖xk‖

))
∇̄H(xk, xk+1) + TGuk, (18)

where xk = [x1k, x
2
k]T ∈ R2 is system’s state, uk = [u1k, u

2
k]T ∈ R2 represents system’s

control input, T is the sampling period, and

H(xk) =
1

2
‖xk‖2, ∇̄H(xk, xk+1) =

1

2
(xk + xk+1),

J(xk) =

[
0 1
−1 0

]
, G =

[
1 0
0 1

]
, R

(
‖xk‖

)
=

[
3 0
0 2

2+‖xk‖ + 2

]
.
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Figure 1. State responses xk of (18).
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Figure 2. The norm of xk of (18).

According to Theorem 1, we choose T = 1/4, ε = 0.5, and

K =

[
3 0
0 2

]
.

From (9) the practical FT controller is

uk = (GTG)−1GT

(
a ·K − 1

T
In

)
∇̄H(xk, xk+1)

=

[
− 5

2 0
0 −3

]
xk =

[
− 5

2x
1
k

−3x2k

]
.

Meanwhile, T̃ (ε, x0) satisfies

T̃ (ε, x0) 6 T̃max =
2

ε
= 4.

We select the initial condition as x0 = [1, 0.7]T. Figures 1 and 2 respectively display the
state responses and state norm for DPCH system (18). It can be obtained from Fig. 2 that
state norm of DPCH system (18) satisfies ‖xk‖ 6 0.5 approximately 3.5 s later, which
means that the state of system (18) converges to the attractive region {xk: ‖xk‖ 6 ε}
and remain inside. Thus, simulation results display that this presented method has good
practical FT stability performance.

Example 2. Consider the following DISPCH system:

xk+1 − xk = Tp
(
Jp(xk)−Rp

(
‖xk‖

))
∇̄Hp(xk, xk+1)

+ TGpup,k, k 6= N1,

xk+1 = gp(xk), k = N1, p = 1, 2,

(19)

where xk = [x1k, x
2
k]T ∈ R2 is the state, up,k = [u1p,k, u

2
p,k]T ∈ R2 is the control input,

{Nl} with l = 0, 1, 2, . . . is the switching time sequence, and

H1(xk) = H2(xK) =
1

2
‖xk‖2,
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∇̄H1(xk, xk+1) = ∇̄H2(xk, xk+1) =
1

2
(xk + xk+1),

g1(xk) =
2

3
xk, J1(xk) =

[
0 1

4
− 1

4 0

]
,

g2(xk) =
1

2
xk, J2(xk) =

[
0 1
−1 0

]
,

R1

(
‖xk‖

)
=

[ 4
3+‖xk‖ + 2 1

1 4

]
, R2

(
‖xk‖

)
=

[
3 0
0 2

2+‖xk‖ + 2

]
,

G1 = G2 =

[
1 0
0 1

]
.

According to Theorem 2, we choose T1 = T2 = 1/4, ε = 0.5, and

K1 =

[
2 1
1 4

]
, K2 =

[
3 0
0 2

]
.

From (15) the practical FT controller of the first subsystem is

u1,k =
(
GT

1G1

)−1
GT

1

(
%1 ·K1 −

1

T1
In

)
xk

=

(
1

2
·
[
2 1
1 4

]
− 4 ·

[
1 0
0 1

])[
x1k
x2k

]
=

[
−3x1k + 1

2x
2
k

−2x2k + 1
2x

1
k

]
,

the practical FT controller of the second subsystem is

u2,k =
(
GT

2G2

)−1
GT

2

(
%2 ·K2 −

1

T2
In

)
xk

=

(
1

2
·
[
3 0
0 2

]
− 4 ·

[
1 0
0 1

])[
x1k
x2k

]
=

[
− 5

2x
1
k

−3x2k

]
.

Noticing d1 = 2/3, d2 = 1/2, %1 = %2 = 1/2, %min = 1/2, by choosing L= 4, ε= 1,
we have b1 = 4/9, b2 = 1/4, b = max16i62{bi, 1} = 1, and ZL =

∑4
j=1 1j/2 = 4.

According to (14), we further get

θmin =
2

√
%minZLε

=
2 ·
√

2∑4
j=1 1j/2 · 0.5

=
√

2,

θmax =
2b

√
%minε

=
2 · 1 ·

√
2

0.5
= 4
√

2.

The setting time function is

T̃ (ε, x0) 6 T̃max = L(θmax + 1) + 1 = 4 · (4
√

2 + 1) + 1 = 16
√

2 + 5.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Practical FT stabilization for DISPCH systems 361

0 5 10 15 20 25

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 3. State responses xk of (19).
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Figure 4. The norm of xk of (19).
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Figure 5. Switching signal σk .

Let Nl+1 −Nl − 1 = Tl ∈ [θmin, θmax], l = 0, 1, . . . . Figure 5 shows the switching
signal σk of system (19). We select the initial condition as x0 = [2 2.5]T. Figures 3
and 4 respectively show state responses and state norm of DISPCH system (18). We can
obtain from Fig. 4 that state norm of the DISPCH system (19) satisfies ‖xk‖ 6 0.5 ap-
proximately 3 s later, which means that the state of system (19) converges to the attractive
region {xk: ‖xk‖ 6 ε} and remains inside. Thus, the simulation results confirm that the
presented method is competent for stabilizing DISPCH systems.

5 Conclusion

The practical FT stabilization problem of DPCH systems and DISPCH systems have been
discussed, respectively. Starting with a class of DPCH systems, a novel controller is
presented to make the DPCH systems practical FT stable. Using positive-order Lyapunov
functions method and range dwell time technique, another novel controller is presented
to make the DISPCH systems practical FT stable. Specific simulation results illustrate the
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validity of the presented methods. When using the presented method, the settling time
functions have an upper bound, which is unrelated to initial states. Sometimes, the upper
bound of setting-time function may be over estimated. Hence, further work needs to be
done to reduce the conservativeness in estimating the upper bound.
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