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Abstract. In this paper, we investigate the spatiotemporal dynamics of a diffusive nutrient-
phytoplankton model with delayed nutrient recycling. We first study the stability of positive
equilibrium and Turing instability induced by diffusion. We then investigate the effect of delay, and
it turns out that the value of the rate of recycling k plays an important role in the Hopf bifurcation
induced by delay. The delay will and will not induce Hopf bifurcation with low and high level of
k, respectively. To reveal the spatiotemporal dynamics, Turing–Hopf bifurcation is carried out, and
normal form is derived. Many spatiotemporal dynamics are found, including the coexistence of two
stable spatially inhomogeneous periodic solutions or two stable spatially inhomogeneous steady-
state solutions.

Keywords: plankton, diffusion, nutrient recycling delay, Turing–Hopf bifurcation, spatiotemporal
dynamics.

1 Introduction

Plankton form the base of all food chains in the ocean and lakes, and phytoplankton are in
the first trophic level. Moreover, phytoplankton produce oxygen for human life and other
living animals and absorb almost half of the carbon dioxide, which may be contributing to
global warming [2, 10]. However, a rapid increase or decrease of phytoplankton popula-
tions, which is known as “bloom”, has adverse effects on aquatic population, ecosystem,
and human health [2, 3, 17].

It has been widely recognized that one of the factors that contributes to algal blooming
is eutrophication, which refers to the enrichment of waters by inorganic plant nutrients.
Since the pioneering work of Riley et al. [20], the interaction of nutrient and plankton
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has been extensively investigated through mathematical models [5,14]. Many experimen-
tal observations show that toxin producing phytoplankton (TPP) also play a role in the
outbreak of phytoplankton blooms [8, 18, 24, 31, 34].

In nature, the portion of dead phytoplankton regenerates to the nutrient concentration
due to bacterial decomposition. The effect of nutrient recycling on the stability of ecolog-
ical systems has been widely studied [6,19]. Chakraborty et al. [6] proposed the following
nutrient-phytoplankton model:

dN

dt
= a− bNP − eN + kP,

dP

dt
= cNP − dP − θP 2

µ2 + P 2
,

where N and P are the concentration of nutrient and the abundance of phytoplankton,
respectively; a is the rate of constant external nutrient input into the system; b is the
maximal nutrient uptake rate of phytoplankton, and c is the maximal conversion rate of
nutrient into phytoplankton, where c 6 b; d is the per capita-mortality rate of phytoplank-
ton, k is the portion of the phytoplankton recycled back to the nutrient concentration,
where k < d; e is the per capital-loss rate of nutrient. θ represents the rate of release of
toxic chemicals by the toxin-producing phytoplankton (TPP) population, and µ denotes
the half-saturation constant. In [6], numerical simulations show the existence of the limit
cycle, which indicates recurring blooms.

In lakes or oceans, current or turbulent lateral diffusion can lead to the movement
of plankton population [7, 32]. Therefore, it is more realistic to take spatial diffusion
into account when we model the nutrient and phytoplankton interaction. In fact, nutrient
recycling after the death of plankton is not instantaneous, but it takes time to transform
dead plankton to nutrient via bacterial decomposition [4, 13, 15, 23, 30]. Delayed nutrient
recycling was first modeled by Beretta et al. [4] with a distributed delay. He and Ruan [13]
used a distributed delay to describe nutrient recycling and a discrete delay to model the
planktonic growth response to nutrient uptake, and they obtain some sufficient conditions
for the global attractivity of the positive equilibrium. Motivated by [6] and the previous
work, we consider a diffusive nutrient-phytoplankton model with delayed nutrient recy-
cling

∂N(x, t)

∂t
= d1∆N(x, t) + a− bN(x, t)P (x, t)− eN(x, t)

+ kP (x, t− τ), x ∈ (0, lπ), t > 0,

∂P (x, t)

∂t
= d2∆P (x, t) + cN(x, t)P (x, t)− dP (x, t)− θP (x, t)2

µ2 + P (x, t)2
,

x ∈ (0, lπ), t > 0,

∂N(x, t)

∂n
=
∂P (x, t)

∂n
= 0, x = 0, lπ, t > 0,

N(x, t) = N0(x, t) > 0, x ∈ (0, lπ), −τ 6 t 6 0,

P (x, t) = P0(x, t) > 0, x ∈ (0, lπ), −τ 6 t 6 0,

(1)
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where d1 and d2 are the diffusion coefficients of nutrient and phytoplankton, respectively,
and τ is the nutrient recycling delay. Zhuang et al. [35] investigated Hopf bifurcation
induced by nutrient recycling delay.

There have been many papers published on nutrient-phytoplankton models incorpo-
rating diffusion. Chakraborty et al. [7] investigated the spatial dynamics of a nutrient-
phytoplankton system with toxic effect on phytoplankton. They obtained the condition for
Turing instability and found that the distribution of nutrient and phytoplankton becomes
inhomogeneous in space and results in different patterns, like stripes, spots, and the
mixture of them depending on the toxicity level. Ruan [23] proposed a reaction-diffusion
nutrient-plankton model with delayed growth response and delayed nutrient recycling
and proved that there is a family of travelling wave solutions. Dai et al. [9] studied
a nutrient-phytoplankton model described by a couple of reaction-diffusion equations
with delay, and they found that the delay cannot only induce instability of a positive
equilibrium, but also promote the formation of patchiness (an irregular pattern) via Hopf
bifurcation. In addition, the numerical analysis indicated that eutrophic conditions may be
a significant reason inducing phytoplankton blooms. Sigh el al. [25] discussed a model for
interacting nutrient phytoplankton systems with the effect of toxic chemicals released by
phytoplankton and time delay in toxin liberation. They observed that increasing values of
toxin release results in the system dynamics show stable and oscillatory behavior without
diffusion, and the time delay in toxin distribution term stabilizes and destabilizes the sys-
tem dynamics. Tian and Zhang [29] explored the impact of time delay on spatiotemporal
patterns in a plankton system, and they found that time delay can trigger the emergence
of irregular spatial patterns via a Hopf bifurcation.

The aim of this paper is to investigate the joint effects of spatial diffusion and time
delay on the spatiotemporal dynamics of the nutrient-phytoplankton system from the view
of bifurcation analysis. First, we analyze diffusion-driven instability of the nondelayed
system and give the conditions for the stability and Turing instability using diffusion
coefficient as bifurcation parameter. Then we investigate the effect of nutrient recycling
delay. Combining with numerical and analytical analysis, we find that the level of k plays
an important role in Hopf bifurcation induced by τ . When the value of k is large, the delay
τ does not induce instability to the positive equilibriumE∗, and Hopf bifurcation does not
occur. When the value of k is small, τ may change the stability ofE∗ and induce Hopf bi-
furcation. Finally, to reveal the spatiotemporal dynamics induced by diffusion and delay,
Turing–Hopf bifurcation analysis is carried out. We derive the normal form of Turing–
Hopf bifurcation from which we can obtain the dynamical classification near Turing–
Hopf bifurcation. Numerical simulations show complex dynamics, such as stable spatially
homogeneous and inhomogeneous periodic solutions and nonconstant steady states.

The rest of this paper is organized as follows. In Section 2, we investigate the existence
and stability of the equilibria and derive the conditions for Hopf bifurcation, Turing
instability, and Turing–Hopf bifurcation. In Section 3, we derive the normal form of
Turing–Hopf bifurcation. In Section 4, some numerical simulations are presented to verify
the theoretical results, and the existence of stable spatially homogeneous and inhomoge-
neous periodic solutions as well as spatially inhomogeneous steady-state solutions are
demonstrated. Finally, a brief conclusion is given in Section 5.
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2 Local stability and bifurcation

In this section, we investigate the stability of equilibria and derive the conditions for
bifurcations, including Turing bifurcation induced by diffusion, Hopf bifurcation induced
by delay, and Turing–Hopf bifurcation.

2.1 Equilibria and local stability

In this subsection, we investigate the existence and stability of spatially homogeneous
equilibria. Recall that we have assumed that k < d and c 6 b, and therefore the following
holds:

(H1) bd− ck > 0.

Firstly, we discuss the existence of equilibria. It is straightforward to see that model (1)
always has an equilibriumE0 = (a/e, 0). Denote the positive equilibrium byE∗(N∗, P ∗),
where N∗ = (a+ kP ∗)/(e+ bP ∗), and P ∗ is a positive root of the equation

h(P ) := P 3 + v1P
2 + v2P + v3 = 0

with

v1 =
bθ − (ac− de)

bd− ck
, v2 =

θe+ (bd− ck)µ2

bd− ck
, v3 =

−(ac− de)µ2

bd− ck
. (2)

Since we only consider spatially homogeneous equilibria, which are independed on space,
thus we can discuss the existence of interior equilibria using the similar method in [6,16].
We have the following results.

Lemma 1. Suppose that (H1) holds, and v1, v2 and v3 are defined in (2).

(i) If ac− de 6 0, system (1) has no positive equilibria.
(ii) If 0 < ac− de 6 bθ, then system (1) has a unique positive equilibrium.

(iii) Suppose that ac−de > bθ. If v2
1−3v2 6 0, then system (1) has a unique positive

equilibrium. If v2
1 − 3v2 > 0, system (1) has a unique positive equilibrium,

provided h(P−)h(P+) > 0; system (1) has two positive equilibria, provided
h(P−)h(P+) = 0, and three positive equilibria, provided h(P−)h(P+) < 0,
where P− = −v1/3−

√
v2

1 − 3v2/3 and P+ = −v1/3 +
√
v2

1 − 3v2/3.

Now we consider the stability of the equilibrium E0. The linearization of system (1)
at E0 is

∂

∂t

(
N(x, t)
P (x, t)

)
= (D∆ + L1)

(
N(x, t)
P (x, t)

)
+ L2

(
N(x, t− τ)
P (x, t− τ)

)
, (3)

where

D =

(
d1 0
0 d2

)
, L1 =

(
−e −abe
0 ac

e − d

)
, L2 =

(
0 k
0 0

)
.
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From [33] we know that the eigenvalue problem

−∆ξ = σξ, x ∈ (0, lπ), ξ′(0) = ξ′(lπ) = 0

has eigenvalues σn = n2/l2, n ∈ N0, with corresponding normalized eigenfunctions

bn(x) =
cos nl x

‖ cos nl x‖
=


√

1
lπ , n = 0,√
2
lπ cos nl x, n > 1.

The characteristic equation for linearized system (3) is

det

(
λI2 +D

n2

l2
− L1 − L2e−λτ

)
= 0,

where I2 is the 2× 2 identity matrix. It is equivalent to(
λ+ d1

n2

l2
+ e

)(
λ+ d2

n2

l2
− ac

e
+ d

)
= 0,

and thus

λ1,n = −d1
n2

l2
− e < 0, λ2,n = −d2

n2

l2
+
ac

e
− d.

If ac−de < 0, we have λ2,n < 0, and E0 is locally asymptotically stable. If ac−de > 0,
we have λ2,0 > 0, which implies that E0 is unstable.

Lemma 2. The equilibrium E0 of system (1) is locally asymptotically stable if
ac− de < 0, and it is unstable if ac− de > 0.

In the rest of this paper, we only consider the case when system (1) has a unique
positive equilibrium. Suppose

(i) 0 < ac− de 6 bθ;
(ii) ac− de > bθ, v2

1 − 3v2 6 0;
(iii) ac− de > bθ, v2

1 − 3v2 > 0, h(P−)h(P+) > 0.

Assume that

(H2) (i) or (ii) or (iii) holds.

Suppose that (H1) holds according to Lemma 1. We can get that system (1) has
a unique positive equilibrium if (H2) holds.

The linearization of system (1) at E∗ is

∂

∂t

(
N(x, t)
P (x, t)

)
= (D∆ + L′1)

(
N(x, t)
P (x, t)

)
+ L2

(
N(x, t− τ)
P (x, t− τ)

)
,

where

L′1 =

(
l11 l12

l21 l22

)
, L2 =

(
0 k
0 0

)
(4)
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with l11 = −bP ∗ − e < 0, l12 = −bN∗ < 0, l21 = cP ∗ > 0, l22 = θP ∗(P ∗2 − µ2)/
(µ2 + P ∗2)2. The corresponding characteristic equation is given by

λ2 +Anλ+Bn + Ce−λτ = 0, (5)

whereAn = d1n
2/l2+d2n

2/l2−l11−l22,Bn = (d1n
2/l2−l11)(d2n

2/l2−l22)−l12l21,
C = −kl21 < 0.

2.2 Turing instability for the nondelayed system

When τ = 0, the characteristic equation (5) is transformed into the following equation:

λ2 +Anλ+Bn + C = 0, n ∈ N0. (6)

Clearly, if An > 0, Bn + C > 0 for n ∈ N0, all roots of Eq. (6) have negative real roots.
When n = 0, it corresponds to the case of temporal model without diffusion, which
requires

(H3) A0 = −(l11 + l22) > 0, B0 + C = l11l22 − (l12 + k)l21 > 0

holding for the stability of E∗ without delay and diffusion.
Turing instability occurs when there is an n ∈ N such that An < 0 or Bn + C < 0

[22, 27]. Obviously, An > A0 > 0 for all n ∈ N. So the condition that guaranteeing
Turing instability can only be

Bn + C = d1d2
n4

l4
− (l22d1 + l11d2)

n2

l2
+B0 + C < 0.

If l22 < 0, we can deduce that Bn + C > 0. In the following, we consider the case for
l22 > 0. We will derive the condition for Turing instability choosing d2 as bifurcation
parameter. For convenience, denote

d2(n2) = l2
l22d1n

2 − (B0 + C)l2

n2(d1n2 − l11l2)
.

Since l11 < 0, we have d1n
2− l11l

2 > 0, thus, Bn+C < 0 is equivalent to d2 < d2(n2).
We need to find the critical NT such that d2(n2) reaches its maximum when n = NT .

Lemma 3. Assume that (H1)–(H3) hold.

(i) If l22 < 0, thenBn+C > 0, and all the roots of Eq. (6) have negative real parts.

(ii) If l22 > 0, there exists a positive integer NT ∈ N such that d∗2
∆
= d2(N2

T ) =
maxn∈N d2(n2). Equation (6) has at least one zero eigenvalue when d2 = d∗2.
Moreover, if d2 > d∗2, then Bn + C > 0 for n ∈ N0, and all the roots of Eq. (6)
have negative real parts; if d2 < d∗2, there exists at least an integer n ∈ N such
that Bn +C < 0, and Eq. (6) has at least one eigenvalue with positive real part.
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Proof. The proof of (i) is obvious. Now we consider the case for l22 > 0. Let q =
n2, then d2(q) = l2(l22d1q − (B0 + C)l2)/(q(d1q − l11l

2)). Since l11 < 0, we have
d1q− l11l

2 > 0. We can deduce that d2(q) > 0 if and only if q > (l2(B0 +C))/(l22d1).
Taking the derivative of d2(q) with respective to q yields

d′2(q) =
l2

q2(d1q − l11l2)2

[
−l22d

2
1q

2 + 2d1l
2(B0 + C)q − l11(B0 + C)l4

]
{
> 0, 0 < q < q∗,

< 0, q > q∗,

where q∗ = (l2[B0 +C +
√

(B0+C)(B0+C−l11l22)])/(l22d1). Clearly, d2(q) reaches
its maximum at q = q∗. Define

NT =

{
b√q∗c if d2(b

√
q∗c2) > d2((b

√
q∗c+ 1)2),

b
√
q∗c+ 1 if d2(b

√
q∗c2) < d2((b

√
q∗c+ 1)2),

where b·c is the floor function. We have d2(N2
T ) = maxn∈N d2(n2). Hence, when d2 >

d2(N2
T ), Bn +C > 0 for n ∈ N0. When 0 < d2 < d2(N2

T ), there exists N1 and N2 such
that

Bn + C

{
> 0 for n 6 N1 or n > N2,

< 0 for N1 < n < N2,

where N1 = bn1c and N2 is defined by

N2 =

{
n2 if n2 is an integer,
bn2c+ 1 if n2 is not an integer

with n1 and n2 being positive roots of Bn + C = 0, namely,

n1 = l

√
l22

2d2
+
l11

2d1
+

1

2d1d2

√
(l22d1 + l11d2)2 − 4d1d2(B0 + C),

n2 = l

√
l22

2d2
+
l11

2d1
− 1

2d1d2

√
(l22d1 + l11d2)2 − 4d1d2(B0 + C).

�

Theorem 1. Suppose that (H1)–(H3) hold. For system (1) with τ = 0, we have the
following conclusions:

(i) If l22 < 0, the positive equilibrium E∗ is asymptotically stable;
(ii) If l22 > 0, E∗ is asymptotically stable when d2 > d∗2, and E∗ is unstable when

0 < d2 < d∗2. Moreover, E∗ undergoes a Turing instability when d2 = d∗2.

Fix parameters:

a = 0.3, b = 0.5, c = 0.5, d = 0.2, e = 0.02,

θ = 0.26, µ = 0.18, k = 0.15, d1 = 0.1, l = 3.
(7)
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Figure 1. The diagram of d2(n2) on the n, d2-plane.

We can verify that (H1) and (H2) hold, and system (1) has a unique equilibrium
E∗(N∗, P ∗) = (1.1061, 0.6894). We can also verify that (H3) holds, which means that
E∗(N∗, P ∗) is stable for the system without diffusion and delay. In addition, we can get
that l22 = 0.3080 > 0. When n = 5.1, d2(n2) reaches its maximum. Thus, NT = 5,
d∗2 = d2(N2

T ) = 0.0330.
If we decrease θ to 0 and keep the other parameters the same as in (7), system (1)

has a unique equilibrium E∗(N∗, P ∗) = (d/c, (ac− de)/(bd− ck)) = (0.4, 5.84). It is
easy to see that l22 = 0, thus An > 0 and Bn + C > 0 under assumption of (H1)–(H3),
which means that Turing instability will not occur.

2.3 Hopf bifurcation

From Theorem 1, under assumption of (H1)–(H3), if l22 < 0 or l22 > 0 and d2 > d∗2, we
can conclude that An > 0 and Bn +C > 0, and E∗ is asymptotically stable when τ = 0.
Suppose that

(H4) l22 < 0;
(H5) l22 > 0 and d2 > d∗2.

In the following, taking τ as the bifurcation parameter, we seek the critical values of
τ such that Eq. (5) has a pair of simple purely imaginary eigenvalues. Let±iωn (ωn > 0)
be a pair of purely imaginary roots of Eq. (5), then we have

ω2
n −Bn = C cosωnτ, Anωn = C sinωnτ.

Let ρn = ω2
n, we can get that

ρ2
n + Tnρn +Dn = 0, (8)

where
Tn = A2

n − 2Bn

=
(
d2

1 + d2
2

)n4

l4
− 2(l11d1 + l22d2)

n2

l2
+ l211 + l222 + 2l12l21,

Dn = B2
n − C2 = (Bn + C)(Bn − C).

https://www.journals.vu.lt/nonlinear-analysis
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Since Bn + C > 0 and C < 0, Bn − C > Bn + C > 0, then we have Dn > 0. Denote
Fn = T 2

n − 4Dn. Since the signs of Tn and Fn are uncertain, we need to discuss in
different cases, and we have the following lemma.

Lemma 4. Suppose that (H1)–(H3) hold, and (H4) or (H5) holds.

(i) If for all n ∈ N0, Fn < 0 or Fn = 0, Tn > 0 or Fn > 0, Tn > 0, then (8) has no
positive roots, and Eq. (5) has no purely imaginary roots.

(ii) If there exists n ∈ N0 such that Fn > 0, Tn < 0, then (8) has two positive roots
ρ±n = (−Tn ±

√
Fn)/2, and Eq. (5) has two pairs of purely imaginary roots

±iω±n = ±i
√
ρ±n .

Remark 1. In fact, when Fn = 0, Tn < 0, (8) has a positive double root, consequently,
(5) has a pair of purely imaginary double roots. It may arise resonant double Hopf bifur-
cation. In this paper, we do not consider this case.

Denote D = {n̄ ∈ N0: Fn > 0, Tn < 0}. When (8) has two positive roots ρ±n , we
can get that Eq. (5) has two pairs of purely imaginary roots ±iω±n = ±i

√
ρ±n . Recall that

C < 0 and An > 0, then sinωnτ = Anωn/C < 0, and we have

τ±n,j =
1

ω±n

(
2π − arccos

ω±n
2 −Bn
C

+ 2jπ

)
, j = 0, 1, 2 . . . . (9)

Lemma 5. Suppose that (H1)–(H3) hold, and (H4) or (H5) holds. If Fn > 0, then
Reλ′(τ+

n,j) > 0, Reλ′(τ−n,j) < 0 for j ∈ N0.

Proof. Taking the derivative of both sides of Eq. (5) with respect to τ , we get[
dλ

dτ

]−1

=
(2λ+An)eλτ

Cλ
− τ

λ
.

Then

Re

[
dλ

dτ

]−1

τ=τ±
n,j

= Re

[
(2iω±n + An)(cosω±n τ + i sinω±n τ)

Ciω±n

]

=
2ω±n cosω±n τ +An sinω±n τ

Cω±n
=

2(ω±n
2 −Bn) +A2

n

C2

=
±
√
Fn

C2
.

Therefore, Reλ′(τ+
n,j) > 0, Reλ′(τ−n,j) < 0 for Fn > 0.

Lemma 5 tells that transversality condition holds and the Hopf bifurcation occurs at
τ = τ±n,j with n ∈ D and j ∈ N0. From (9) we have that τ+

n,0 < τ−n,0 for all n ∈ D. We
can define the smallest τ so that the stability will change,

τ∗ = τ+
n0,0

= min
{
τ+
n,0, n ∈ D

}
.

Then we have the following result.
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Theorem 2. Assume that (H1)–(H3) hold, and (H4) or (H5) holds.

(i) If Fn < 0 or Fn = 0, Tn > 0, or Fn > 0, Tn > 0 for all n ∈ N0, then
the positive equilibrium E∗ of system (1) is locally asymptotically stable for any
τ > 0.

(ii) If there exists n ∈ N0 such that Fn > 0, Tn < 0. System (1) undergoes
a Hopf bifurcation at E∗ when τ = τ+

0,j (τ = τ−0,j) for j ∈ N0, and the
bifurcating periodic solutions are spatially homogeneous. System (1) undergoes
a Hopf bifurcation at E∗ τ = τ+

n,j (τ = τ−n,j) for j ∈ N0 and n ∈ D, and the
bifurcating periodic solutions are spatially inhomogeneous.

(iii) If there exists n ∈ N0 such that Fn > 0, Tn < 0, then E∗ of system (1) is locally
asymptotically stable when 0 6 τ < τ∗, and E∗ is unstable for τ ∈ (τ∗, τ∗ + ε)
with some ε > 0.

Proof. (i) Let (H1)–(H3) hold, and (H4) or (H5) holds. From Lemma 3 all the roots of
Eq. (5) have negative real parts when τ = 0. From Corollary 2.4 in [21] the sum of the
multiplicities of the roots of Eq. (5) in the open right half-plane changes only if a root
appears on or crosses the imaginary axis. Recalling that Bn+C > 0, it is easy to see that
λ = 0 is not the root of Eq. (5). From Lemma 4(i) Eq. (5) has no purely imaginary roots
under the assumption. Therefore, the sum of the multiplicities of the roots of Eq. (5) in
the open right half-plane does not change, and all the roots of Eq. (5) have negative real
parts, thus the positive equilibrium E∗ of system (1) is locally asymptotically stable for
any τ > 0.

(ii) From Lemma 4 Eq. (5) has a pair of purely imaginary roots ±iω+
n (±iω−n ) when

τ = τ+
n,j (τ = τ−n,j) for n ∈ D and j ∈ N0. Hence, from the transversality condition in

Lemma 5 and Corollary 2.4 in [21] we can obtain the conclusion.
(iii) From the previous discussion τ∗ is the smallest τ so that the stability will change,

and Reλ′(τ+
n,0) > 0, thus we can obtain the conclusion.

Remark 2. From Lemma 5 we have Reλ′(τ+
n,j) > 0, Reλ′(τ−n,j) < 0 for j ∈ N0,

thus stability switch may occur. If the order for the critical values of Hopf bifurcation for
delay can be verified, then the stable intervals and unstable intervals of τ can be obtained.
However, for system (1), it is not easy to verify the order of τ±n,j , therefore, the stable
intervals and unstable intervals of τ for E∗ cannot be obtained.

Combining Theorems 1 and 2, we have the following results.

Theorem 3. Assume that (H1)–(H3) hold, l22 > 0 and F0 > 0, T0 < 0.

(i) If d2 > d∗2 and 0 6 τ < τ∗, E∗ is asymptotically stable. If d2 > d∗2 and
τ ∈ (τ∗, τ∗ + ε) with some ε > 0, E∗ is unstable.

(ii) Assume that τ∗ = τ+
0,0. E∗ is unstable for 0 < d2 < d∗2 and τ ∈ [0, τ∗ + ε).

Proof. (i) From Theorem 2(iii), if (H5) holds, then E∗ of system (1) is locally asymp-
totically stable when 0 6 τ < τ∗, and E∗ is unstable for τ ∈ (0, τ∗ + ε) with some
ε > 0.
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(ii) From Lemma 3(ii) Eq. (5) has at least one eigenvalue with positive real part if
0 < d2 < d∗2 when τ = 0. Since (H3) holds, we have B0 + C > 0. Combining with
C < 0, we have B0 − C > B0 + C > 0, then we get D0 > 0. If F0 > 0, T0 < 0,
Eq. (5) has a pair of purely imaginary roots ±iω+

0 (±iω−0 ) when τ = τ+
0,0 (τ−0,0). It is

easy to verify that τ = τ+
0,0 < τ−0,0. Similar as Lemma 5, we can get Reλ′(τ+

0,0) > 0. If
τ∗ = τ+

0,0, from Corollary 2.4 in [21] Eq. (5) has at least one eigenvalue with positive real
part when 0 < d2 < d∗2 and τ ∈ (0, τ∗], and it has at least three eigenvalues with positive
real parts when 0 < d2 < d∗2 and τ ∈ (τ∗, τ∗ + ε). This completes the proof.

Remark 3. Suppose that (H1)–(H3) hold, and l22 > 0. If τ = τ∗ and d2 = d∗2, then the
characteristic equation (5) has a pair of purely imaginary roots ±iωn and a simple zero
eigenvalue for n = NT , all other eigenvalues have strictly negative real parts. System (1)
undergoes a Turing–Hopf bifurcation at E∗ when (τ, d2) = (τ∗, d∗2).

3 Normal form of Turing–Hopf bifurcation

In this section, we shall study the spatiotemporal dynamics of system (1) by using the
center manifold reduction and normal form theory. The amplitude equations are finally
obtained to describe dynamics near the critical Turing–Hopf singularity.

Define the real-valued Sobolev space

X :=

{
(u, v)T: u, v ∈ H2(0, lπ),

∂u

∂x
(0, t) =

∂v

∂x
(lπ, t) = 0

}
and the corresponding complexification spaceXC := X⊕iX = {U1+iU2, U1,U2 ∈ X}
with the general complex-valued L2 inner product 〈U1, U2〉 =

∫ lπ
0

(ū1u2 + v̄1v2) dx for
U1 = (u1, v1)T, U2 = (u2, v2)T ∈ XC. Let C := C([−1, 0], XC) denotes the phase
space with the supremum norm. We write U(t) = (u(x, t), v(x, t))T and Ut ∈ C for
Ut(θ) = U(t+ θ), −1 6 θ 6 0.

Let û(x, t) = N(x, τt)−N∗, v̂(x, t) = P (x, τt)−P ∗, and drop the hats for simplicity
of notation, then system (1) can be transformed to

∂u

∂t
= τ

[
d1∆u− (bP ∗ + e)u− bN∗v + kv(t− 1) + f1(ut, vt)

]
,

∂v

∂t
= τ

[
d2∆v + cP ∗u+

θP ∗(P ∗2 − µ2)

(µ2 + P ∗2)2
v + f2(ut, vt)

]
,

(10)

where for φ1, φ2 ∈ C := C([−1, 0], XC),

f1(φ1, φ2) = −bφ1(0)φ2(0),

f2(φ1, φ2) = cφ1(0)φ2(0)− θµ2(µ2 − 3P ∗2)

(µ2 + P ∗2)3
φ2

2(0)

+
4θP ∗µ2(µ2 − P ∗2)

(µ2 + P ∗2)4
φ3

2(0).

(11)
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In order to study the dynamics near the Turing–Hopf bifurcation point, we introduce

BC :=
{
ψ : [−1, 0]→ XC

∣∣∣ ψ is continuous on [−1, 0),

and there exists lim
θ→0−

ψ(θ) ∈ XC

}
.

Denote m = (τ, d2), m∗ = (τ∗, d∗2), mε = (τε, d2ε), and m = m∗ + mε. Then
system (10) undergoes a Turing–Hopf bifurcation at the equilibrium (0, 0) when mε =
(0, 0), and we can rewrite system (10) in the space BC as

dU(t)

dt
= AUt +X0F (mε, Ut), (12)

where

X0(θ) =

{
0, θ ∈ [−1, 0),

I, θ = 0,

and A is an operator from C1
0 := {ϕ ∈ C: ϕ̇ ∈ C, ϕ(0) ∈ dom(∆)} to BC defined by

Aϕ = ϕ̇+X0

[
τ∗D0∆ϕ(0) + τ∗L0(ϕ)− ϕ̇(0)

]
.

Here D0 = D(m∗) = diag(d1, d
∗
2), L0 : C → XC is a linear operator given by L0(ϕ) =

L(m∗)(ϕ) with
L(m)(ϕ) = L′1ϕ(0) + L2ϕ(−1)

with L′1 and L2 defined in (4), and F : R2 ×C → XC is a nonlinear operator defined by

F (mε, φ) =
[
d2ετ

∗ diag{0, 1}+ τεD0

]
∆ϕ(0)

+ τεL(m)(ϕ) + (τ∗ + τε)F (mε, ϕ)

with
F (mε, ϕ) = (τ∗ + τε)

(
f1(ϕ1, ϕ2), f2(ϕ1, ϕ2)

)T
,

where f1 and f2 are defined in (11).
Let C∗ := C([0, 1], XC) be the conjugate space of C. Define (·, ·)k as the adjoint

bilinear form on C∗ × C:

(α, β)k = α(0)β(0)−
0∫
−1

θ∫
ξ=0

α(ξ − θ) dηk(0, θ)β(ξ) dξ, k = 1, 2,

and ηk ∈ BV ([−1, 0], C2×2) are given by

−n
2
k

l2
D0ϕ(0) + L0(ϕ) =

0∫
−1

dηk(0, θ)ϕ(θ), ϕ ∈ C, k = 1, 2.
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Denote A∗ as the adjoint operator of A on C∗ := C([0, 1], XC), and let {φ1(θ)bn1
,

φ2(θ)bn2
} and {ψ1(s)bn1

, ψ2(s)bn2
} be the eigenfunctions of A and A∗ relative to Λ =

{iω0τ
∗, 0} such that φ1, φ2 ∈ C, ψ1, ψ2 ∈ C∗, and

(ψ1, φ1)1 = 1, (ψ1, φ̄1)1 = 0, (ψ2, φ2)2 = 1.

By a straightforward calculation we have

φ1(θ) = q(0)eiω0τ
∗θ, ψ1(s) = M1q

∗(0)e−iω0τ
∗s,

φ2(θ) = p(0), ψ2(s) = M2p
∗(0),

where q(0) = (1, q1)T, q∗(0) = (1, q2), p(0) = (1, p1)T, p∗(0) = (1, p2), and

q1 =
l21

iω0 − l22
, q2 =

iω0 − l11

l21
, p1 =

d1
n2
2

l2 − l11

l12 + k
, p2 =

d1
n2
2

l2 − l11

l21
,

M1 =
1

1 + q1q2 + q1kτ∗e−iω0τ∗ , M2 =
1

1 + p1p2 + p1kτ∗
.

Denote Φ1 = (φ1, φ̄1), Ψ1 = (ψT
1 , ψ̄

T
1 )T, and Φ2 = φ2, Ψ2 = ψ2. From the

discussion above the phase space BC can be decomposed as

BC = P ⊕Kerπ,

where P is center subspace spanned by the basis eigenfunctions of the linear operator A
associated with the eigenvalues {±iω0τ

∗, 0}, and Kerπ is the complementary space of P
with π : BC → P being the projection defined by

πϕ =

2∑
k=1

Φk
(
Ψk,
〈
ϕ(·), bnk

〉)
k
bnk

,

where ϕ(1)
nk = (bnk

, 0)T, ϕ(2)
nk = (0, bnk

)T, and 〈·, bnk
〉 = 〈·, ϕ(1)

nk + ϕ
(2)
nk 〉.

Then Ut ∈ C1
0 can be decomposed as

Ut(θ) =

2∑
k=1

Φk(θ)
(
Ψk, 〈Ut, bnk

〉
)
k
bnk

+ y(θ) =

2∑
k=1

Φk(θ)z̃k(t)bnk
+ y(θ)

with z̃1 = (z1, z̄1), z̃2 = z2, and y ∈ Q1 := C1
0 ∩ Kerπ. Then system (12) on BC is

equivalent to the following system:

ż = Bz + Ψ(0)

(
〈F (mε,

∑2
k=1 Φkz̃k(t)bnk

+ y), bn1
〉

〈F (mε,
∑2
k=1 Φkz̃k(t)bnk

+ y), bn2
〉

)
,

d

dt
y = AQ1y − (I − π)X0F

(
mε,

2∑
k=1

Φkz̃k(t)bnk
+ y

)
,
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where z = (z1, z̄1, z2), B = diag(iω0τ
∗,−iω0τ

∗, 0), Ψ = diag(Φ1, Φ2), and AQ1 is the
restriction of A as an operator from Q1 to Kerπ.

From Theorem 3.2 in [1, 26] the normal forms of system (1) up to third order near
a Turing–Hopf singularity m = m∗ are obtained:

ż1 = iω0τ
∗z1 +

1

2
f11
11α1z1 +

1

2
f11
21α2z1 +

1

6
g11

210z2
1z̄1 +

1

6
g11

102z1z2
2 + h.o.t.,

˙̄z1 = −iω0τ
∗z1 +

1

2
f12
11α1z̄1 +

1

2
f12
21α2z̄1 +

1

6
g12

210z̄2
1z1 +

1

6
g12

102z̄1z2
2 + h.o.t.,

ż2 =
1

2
f13

12α1z2 +
1

2
f13

22α2z2 +
1

6
g13

111z1z̄1z2 +
1

6
g13

003z
3
2 + h.o.t.

(13)

with (α1, α2) = (τε, d2ε), f12
mn = f̄11

mn, g12
mnk = ḡ11

mnk, and

f11
11 = 2ψ1(0)

[
L′1φ1(0) + L2φ1(−1)

]
, f11

21 = 0,

f13
12 = 2ψ2(0)

[
−n

2
2

l2
D0φ2(0) + L′1φ2(0) + L2φ2(−1)

]
,

f13
22 = 2ψ2(0)

[
−n

2
2

l2
τ∗ diag{0, 1}φ2(0)

]
,

g11
210 = f11

210 +
3

2iω0τ∗

(
−f11

110f
11
200 + f11

110f
12
110 +

2

3
f11

020f
12
200

)
+

3

2
ψ1(0)

[
Syz1

(〈
h110(θ)bn1

, bn1

〉)
+ Syz̄1

(〈
h200(θ)bn1

, bn1

〉)]
,

g11
102 = f11

102 +
3

2iω0τ∗
(
−2f11

002f
11
200 + f12

002f
11
110 + 2f11

002f
13
101

)
+

3

2
ψ1(0)

[
Syz1

(〈
h002(θ)bn1

, bn1

〉)
+ Syz2

(〈
h101(θ)bn2

, bn1

〉)]
,

g13
111 = f13

111 +
3

2iω0τ∗
(
−f13

101f
11
110 + f13

011f
12
110

)
+

3

2
ψ2(0)

[
Syz1

(〈
h011(θ)bn1 , bn2

〉)
+ Syz̄1

(〈
h101(θ)bn1

, bn2

〉)
+ Syz2

(〈
h110(θ)bn2

, bn2

〉)]
,

g13
003 = f13

003 +
3

2iω0τ∗
(
−f11

002f
13
101 + f12

002f
13
011

)
+

3

2
ψ2(0)

[
Syz2

(〈
h002(θ)bn2

, bn2

〉)]
,

where f12
mnk = f̄11

mnk and

f11
mnk =

1√
lπ
ψ1(0)Fmnk, f13

mnk =
1√
lπ
ψ2(0)Fmnk when m+ n+ k = 2,

f11
mnk =

1

lπ
ψ1(0)Fmnk, f13

mnk =
1

lπ
ψ2(0)Fmnk when m+ n+ k = 3,

〈
h200(θ)bn1 , bn1

〉
=

e2iω0τ
∗θ

lπ

[
2iω0τ

∗ − τ∗L0

(
e2iω0τ

∗
· Id

)]−1
F200

− 1

iω0τ∗
√

lπ

[
f11

200φ1(θ) +
1

3
f12

200φ̄1(θ)

]
,
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〈
h110(θ)bn1 , bn1

〉
= − 1

lπ

[
τ∗L0(Id)

]−1
F110 +

1

iω0τ∗
√

lπ

[
f11

110φ1(θ)− f12
110φ̄1(θ)

]
,〈

h110(θ)bn2 , bn2

〉
=
〈
h110(θ)bn1 , bn1

〉
,〈

h101(θ)bn2 , bn1

〉
=

eiω0τ
∗θ

lπ

[
iω0τ

∗ +
n2

2

l2
τ∗D0 − τ∗L0

(
eiω0τ

∗
· Id

)]−1

F101

− 1

iω0τ∗
√

lπ
f13

101φ2(0),

〈
h011(θ)bn1

, bn2

〉
=

e−iω0τ
∗θ

lπ

[
−iω0τ

∗ +
n2

2

l2
τ∗D0 − τ∗L0

(
e−iω0τ

∗
· Id

)]−1

F011

+
1

iω0τ∗
√

lπ
f13

011φ2(0),

〈
h002(θ)bn1

, bn1

〉
= − 1

lπ

[
τ∗L0(Id)

]−1
F002 +

1

iω0τ∗
√

lπ

[
f11

002φ1(θ)− f12
002φ̄1(θ)

]
,

〈
h002(θ)bn2

, bn2

〉
=

1

2lπ

[
(2n2)2

l2
τ∗D0 − τ∗L0(Id)

]−1

F002 +
〈
h002(θ)bn1

, bn1

〉
,

and Syzi (i = 1, 2), Syz̄1 are linear operators from Q1 to XC given by

Syzi(ϕ) = (Fy1(0)zi , Fy2(0)zi)ϕ(0) + (Fy1(−1)zi , Fy2(−1)zi)ϕ(−1),

Syz̄1(ϕ) = (Fy1(0)z1 , Fy2(0)z1)ϕ(0) + (Fy1(−1)z1 , Fy2(−1)z1)ϕ(−1).

We leave the specific expressions of formulas Fyi(·)zj and Fmnk in Appendix.
Through the cylindrical coordinate transformation

z1 = ρ̃eiσ, z̄1 = ρ̃e−iσ, z2 = η̃

and variable substitution

ρ =

√
|Re(g11

210)|
6

ρ̃, η =

√
|g13

003|
6

η̃, ε = Sign
(
Re(g11

210)
)
, t̃ =

t

ε
,

Eq. (13) can be written as

dρ

dt̃
= ρ
(
ε1(mε) + ρ2 + b0η

2
)
,

dη

dt̃
= η

(
ε2(mε) + c0ρ

2 + d̂η2
)
,

(14)

where

ε1(mε) =
ε

2

[
Re
(
f11

11 )τε + Re
(
f11

21

)
d2ε

]
, ε2(mε) =

ε

2

[
f13

12 τε + f13
22 d2ε

]
,

b0 =
εRe(g11

102)

|g13
003|

, c0 =
εg13

111

|Re(g11
210)|

, d̂ =
εg13

003

|g13
003|

= ±1.

From [12] there are 12 distinct types of unfoldings according to the signs of coeffi-
cients b0, c0, d̂, and d̂− b0c0.
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4 Numerical simulations

In this section, we carry out some simulations to illustrate the results. Fix parameters:

a = 0.3, b = 0.5, c = 0.5, d = 0.2, e = 0.02,

θ = 0.26, µ = 0.18, d1 = 0.1, l = 3.
(15)

4.1 Hopf bifurcation

In this section, we consider the effect of delay on the dynamics of system (1). Fix d2 =
0.04.

It turns out that the strength of k plays an important role in the occurrence of Hopf
bifurcation. Choose k = 0.19 such that the value of k is high. We can verify that l22 > 0,
and (H1)–(H3) hold. We can get that d2 > d∗2 = d2(92) = 0.003, which means that
(H4) holds. Moreover, we have Fn > 0, Tn > 0. From Theorem 2 E∗ is asymptotically
stable for τ > 0, and Hopf bifurcation does not occur. When the value is decreased
to k = 0.15, similarly, we can verify l22 > 0, and (H1)–(H3) hold. We can get that
d2 > d∗2 = d2(52) = 0.033, which means that (H4) holds. Furthermore, Fn > 0, Tn < 0
for n = 0, 1, 2. According to Lemma 4, we know that Eq. (5) has two pairs of purely
imaginary roots±iω±n at τ±n,j and Reλ′(τ+

n,j) > 0, Reλ′(τ−n,j) < 0. Through calculation,
we can get

τ+
0,0 < τ+

1,0 < τ+
2,0 < τ+

0,1 < τ−2,0 < τ+
1,1 < τ+

2,1 < τ−1,0

< τ−0,0 < τ+
0,2 < τ+

1,2 < τ+
2,2 < τ−2,1 < · · · .

Thus, τ∗ = min{τ±n,j} = τ+
0,0 = 9.9788. From Theorem 3 positive equilibriumE∗(1.1061,

0.6894) is locally asymptotically stable when τ ∈ [0, τ+
0,0) (see Fig. 2), and the bifurcating

periodic solutions exist for τ > τ+
0,0 (see Fig. 3).

If we decrease θ to 0 and keep the other parameters the same as in (15), we can verify
that Fn > 0 and Tn > 0 when k = 0.19 or k = 0.15, which means that all the roots of
Eq. (5) have negative parts, and Hopf bifurcation will not occur.

Figure 2. Numerical simulations of system (1) for (15) and τ = 5 < τ∗ = 9.9788. The positive
equilibrium E∗(1.1061, 0.6894) of (1) is locally asymptotically stable with the initial condition N0(x, t) =
1− 0.01 cos(2x) and P0(x, t) = 0.5 + 0.01 cos(2x).
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Figure 3. When τ = 10 > τ∗, the positive equilibrium E∗(1.1061, 0.6894) of (1) is unstable, and there
are bifurcating periodic solutions, where the initial condition N0(x, t) = 1 − 0.01 cos(2x) and P0(x, t) =
0.5 + 0.01 cos(2x).

4.2 Complex dynamics near Turing–Hopf bifurcation

In the following, we demonstrate complex phenomena of system (1) near Turing–Hopf
bifurcation point. Fix the parameters as in (15) and k = 0.15, choose d2 and τ as
bifurcation parameters. We can draw Turing bifurcation curves and Hopf curves on d2, τ -
plane (see Fig. 4). The dashed lines are Turing bifurcation curves with n = 3, 4, 5 from
left to right, while the solid lines are Hopf bifurcation curves τ+

n,0 with n = 0, 1, 2 from
bottom to top, respectively, and the dot marked with ∗ is the Turing–Hopf intersection
(d∗2, τ

∗) ≈ (0.0330, 9.9788), where d∗2 = d2(52), τ∗ = τ+
0,0. From Theorem 3, when

d2 > d∗2 and τ < τ∗ (the pocket of dark blue), E∗ is stable. According to the normal form
procedure with n2 = 5, the key parameters are obtained.

ε1 = −0.12322τε, ε2 ≈ 18.90161d2ε, ε = −1,

d̂ = 1, b0 = 2.764626, c0 = −0.015448, d̂− b0c0 = 1.042708.

System (14) can be written as

ρ̇ = −ρ
(
−0.12322τε + ρ2 + 2.764626η2

)
,

η̇ = −η
(
18.90161d2ε − 0.015448ρ2 + η2

)
.

(16)

0 0.05 0.1 0.15

d
2

0

2

4

6

8

10

12

14

16

*

Hopf Curves

Turing Curves

d
2

*

*

Figure 4. The stable region and bifurcation curves in d2, τ -plane.
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Figure 5. The bifurcation set on the τε, d2ε-plane. Figure 6. The dynamical classifications in regions
D1−D6.

Note that ρ > 0 and η is an arbitrary real number. By some simple calculations we find
that system (16) admits the following equilibria:

A0 = (0, 0), A1 = (
√

0.12322τε, 0) for τε > 0,

A±2 = (0,±
√
−18.90161d2ε) for d2ε < 0,

A±3 = (
√

50.1155d2ε + 0.11817τε, ±
√

0.001826τε − 18.1274d2ε)

for 50.1155d2ε + 0.11817τε > 0 and 0.001826τε − 18.1274d2ε > 0.

Moreover, the critical bifurcation lines for system (16) are

L1: τε = 0; T1: d2ε = −0.00236τε (τε > 0);

L2: d2ε= 0; T2: d2ε = 0.00010τε (τε > 0).

From [12, Sect. 7.5] boundary equilibria A1 and A±2 of (16) are bifurcated from the
origin A0 on the critical lines L1 and L2 through pitchfork bifurcation, respectively. The
pair of equilibria A±3 are bifurcated from the boundary equilibria A1 and A±2 on the
critical lines T2 and T1 through pitchfork bifurcation, respectively.

Notice that the zero equilibrium A0 of (16) corresponds to the positive equilibrium
E∗ of the original system (1). A1 of (16) corresponds to the spatially homogeneous
periodic solution of the original system (1). The equilibria A±2 in (16) correspond to the
nonconstant steady state solutions of the original system (1). A±3 corresponds to spatially
inhomogeneous periodic solutions.

The four straight lines divide the τε, d2ε-plane into six regions denoted by D1–D6

(see Fig. 5) with the corresponding phase portraits shown in Fig. 6.
In region D1, system (16) has only one equilibrium A0, which is stable. It means that

the positive equilibrium E∗(N∗, P ∗) of system (1) is asymptotically stable (see Fig. 7).
When the parameters pass through the line L1 from D1 to D2, A1 is bifurcated from

A0 on the pitchfork bifurcation line L1. In region D2, system (16) has two equilibria
A0 and A1. A0 is unstable, and A1 is stable. It means that the positive equilibrium
E∗(N∗, P ∗) of system (1) is unstable, and the spatially homogeneous periodic solution
is stable (see Fig. 8).
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Figure 7. E∗ is locally asymptotically stable for (τε, d2ε) = (−0.9788, 0.027) ∈ D1.

Figure 8. The positive equilibrium E∗(1.1061, 0.6894) of (1) is unstable, and there exists stable spatially
homogeneous periodic solutions for (τε, d2ε) = (2.0212, 0.022) ∈ D2.

When the parameters pass through the line T2 from D2 to D3, A+
3 and A−3 are bifur-

cated from the boundary equilibria A1 on the critical line T2. In region D3, system (16)
has four equilibriaA0, A1, andA±3 . A0, A1 are unstable, andA±3 are stable. It means that
the positive equilibrium of system (1) is unstable, the spatially homogeneous periodic so-
lution is unstable, while there are two stable spatially inhomogeneous periodic solutions.

As the parameters pass through the line L2 from D3 to D4, A±2 are bifurcated from
the boundary equilibria A0 on the critical line L2. In region D4, there are six equilibria:
A0, A1, A±2 , and A±3 , where A±3 are stable and the rest equilibria are unstable. It means
that two unstable spatially inhomogeneous steady-state solutions of system (1) appear,
and the rest is the same as in D3. When (τε, d2ε) = (0.0212,−0.001) lies in region D4,
Fig. 9 shows the existence of two stable spatially inhomogeneous periodic solutions for
the initial values N0(x, t) = 1.2∓ 0.01 cos(5x/3) and P0(x, t) = 0.6± 0.01 cos(5x/3).

As the parameters pass through the line T1 from D4 to D5, A±3 disappear on the
critical line T1 through pitchfork bifurcation. In region D5, there are four equilibria: A0,
A1, and A±2 , where A±2 are stable, and the rest equilibria are unstable. It means that the
positive equilibrium and the spatially homogeneous periodic solution of system (1) are
unstable, while two spatially inhomogeneous steady-state solutions are stable.

When the parameters (τε, d2ε) finally enter region D6 from region D5, A1 disap-
pears on the critical line L1 through pitchfork bifurcation. In region D6, there are three
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Figure 9. Two stable spatially inhomogeneous periodic solution for (τε, d2ε) = (0.0212,−0.001) ∈ D4.

Figure 10. Two stable spatially inhomogeneous steady-state solutions appear for (τε, d2ε) = (−1.9788,
−0.008) ∈ D6.
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equilibria: A0 andA±2 , whereA±2 are stable, andA0 is unstable. It means that the spatially
homogeneous periodic solution disappear, while the positive equilibrium of system (1)
is unstable and two spatially inhomogeneous steady-state solutions are still stable. For
(τε, d2ε) = (−1.9788,−0.008) ∈ D6, Fig. 10 shows the existence of two stable spa-
tially inhomogeneous steady-state solutions with the initial values N0(x, t) = 1.2 ∓
0.01 cos(5x/3) and P0(x, t) = 0.6± 0.01 cos(5x/3).

5 Conclusion

In this paper, we investigate the spatiotemporal dynamics of a diffusive nutrient-phyto-
plankton model with the effect of toxic chemicals released by phytoplankton and delayed
nutrient recycling. Firstly, we analyze the stability of positive equilibrium and diffusion-
driven instability of the nondelayed system, and we give the conditions for the stability
and Turing instability. We also reveal the effect of nutrient recycling delay on our model.
When the strength of k is high, the delay will not destabilize the positive equilibrium, and
Hopf bifurcation will not occur. When the strength of k is low, Hopf bifurcation induced
by delay can be observed. We find that the strength of k plays an important role in Hopf
bifurcation. The results can help to understand the periodic outbreak of algae bloom. If
we decrease θ to 0 and keep the other parameters the same, it turns out that neither Turing
instability nor Hopf bifurcation will occur. It tells that in the absence of toxic effects,
the distribution of phytoplankton remains homogeneous in spite of spatial movements of
nutrient and phytoplankton. However, the presence of toxic effect makes phytoplankton
distribution inhomogeneous in space induced by Turing instability and phytoplankton
oscillation in time caused by delay-induced Hopf bifurcation.

To reveal the spatiotemporal dynamics induced by spatial diffusion and time delay,
Turing–Hopf bifurcation analysis is carried out. We derive the normal form of Turing–
Hopf bifurcation and obtain the dynamics classification near Turing–Hopf bifurcation.
The parameter plane near Turing–Hopf bifurcation point can be de divided into six re-
gions, and for each region, the dynamics are obtained clearly. When the parameters
(τε, d2ε) is in region D1, the positive equilibrium is asymptotically stable. In D2, there
is a stable spatially homogeneous periodic solution. In D3, two stable spatially inho-
mogeneous periodic solutions appear. When the parameters (τε, d2ε) is in region D4

and D5, the stability of two spatially inhomogeneous steady-state solutions changes from
unstable to stable. When (τε, d2ε) enter D6, the spatially homogeneous periodic solution
disappears.

Although there have been many literature on models for interacting nutrient phyto-
plankton systems with toxic effects or nutrient recycling, the model we considered in
this paper are different from the previous models. Chakraborty et al. [7] investigated
a nutrient-phytoplankton system with toxic effect on phytoplankton, but they did not
consider the effect of nutrient recycling. They focus on the effect of toxicity level on
the spatial distribution. Singh et al. [25] took B–D-type response function to express
the biomass conversion of nutrient, and they considered time delay not in nutrient re-
cycling but in toxin liberation. They considered Turing and Hopf bifurcation, and they
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demonstrated spatiotemporal dynamics by numerical simulation. Chakraborty et al. [6]
considered such a model without diffusion and delay. They mainly discussed the dy-
namical behaviours by varying the toxin liberation rate and displayed phenomena from
simple cyclical blooms to irregular chaotic blooms. In the previous work, Turing or Hopf
bifurcation was investigated. Spatiotemporal dynamics in nutrient phytoplankton systems
were obtained mainly by numerical simulations [7, 25], but not through Turing–Hopf
bifurcation analysis. Different from the previous work, we focus on the joint effect of
spatial diffusion and nutrient recycling delay through Turing–Hopf bifurcation analysis.
Using Turing–Hopf bifurcation analysis, we can easily qualitatively classify dynamical
behaviours on a two-parameter plane and understand the combined effects of diffusion
and delay on nutrient and phytoplankton interactions.

In this paper, we incorporate a discrete delay to model the nutrient recycling. In fact,
the dead plankton move during the recycling process, and they have not been at the same
point in space at previous times. Thus, incorporating a nonlocal delay to model the process
is more reasonable. There have been some studies on predator-prey or population systems
incorporating nonlocal delays on a infinite or finite domain [11, 28]. We leave this for
future investigation.

Acknowledgment. The authors wish to express their gratitude to the editors and the
reviewers for the helpful comments.

Appendix

The coefficient vectors Fyi(θ)zj , Fmnk presented in normal form (13) can be obtained by
using the following calculation formulas:

Fy1(0)z1 = 2(Fuu + q1Fuv), Fy1(−1)z1 = 0,

Fy1(0)z2 = 2(Fuu + p1Fuv), Fy1(−1)z2 = 0,

Fy2(0)z1 = 2Fuv, Fy2(−1)z1 = 0,

Fy2(0)z2 = 2Fuv, Fy2(−1)z2 = 0,

F200 = q2
1Fvv + 2q1Fuv, F002 = p2

1Fvv + 2p1Fuv,

F110 = 2
[
q2
1Fvv + Fuv(q1 + q̄1)

]
, F020 = F200,

F101 = 2
[
p1q1Fvv + Fuv(p1 + q1)

]
, F011 = F101,

F210 = 3Fvvvq
2
1 q̄1, F111 = 6Fvvvq1q̄1p1,

F102 = 3Fvvvq1p
2
1, F003 = Fvvvp

3
1,

where

Fuv =

(
−b
c

)
, Fvv =

(
0

− 2θµ2(µ2−3P∗2)
(µ2+P∗2)3

)
,

Fvvv =

(
0

24θP∗µ2(µ2−P∗2)
(µ2+P∗2)4

)
.
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