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Abstract. In this article, a fractional-order epidemic model for cholera is proposed and analyzed.
Two transmission routes for cholera are considered to develop the compartmental epidemic model.
The basic biological properties of the solutions of the fractional-order model are investigated.
The global asymptotic stability of the equilibrium points have been established using appropriate
Lyapunov functional. Moreover, a fractional-order control problem is presented, and its analytical
solution is derived using Pontryagin’s maximum principle. Also, some graphical visualizations of
the theoretical results are provided. It is found that the factional-order derivative only affect the
time to reach the stationary states. Sensitivity analysis reveals that by reducing the rates of new
recruitment and both the disease transmission rates, it may be possible to reduce the value of the
basic reproduction number.

Keywords: cholera model, fractional-order derivative, global stability, Lyapunov functional,
fractional optimal control.

1 Introduction

Cholera is considered as a major water borne disease caused by the bacteria Vibrio Chol-
erae. Generally, it takes 12 hours to 5 days to show symptoms after ingesting the contam-
inated food or water. It causes mainly diarrhea, vomiting and leg cramps. Although, the
high income developed countries has been able to eradicate the cholera transmission due
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to their better sanitation facilities. However, millions of people of under-developed and
developing countries got affected by this bacterial disease due to the poor sanitation
infrastructure and unavailability of hygienic drinking water. It has been estimated by the
researchers that nearly 1.3 million to 4 million cases of cholera and 21000 to 143000
deaths due to cholera occur worldwide annually [35]. Moreover, in 2017, the Global Task
Force on Cholera Control (GTFCC) had taken a strategy to reduce the deaths due to
cholera by 90% [35]. Therefore, research works on the transmission process and control
of cholera are very necessary and of great practical importance.

In last few decades, mathematical modelling is applied to predict the future dynamics
of various emerging and reemerging infectious diseases. The results obtained from the
model based studies have been used to guide the public health administrations and policy
makers. The pioneering work of Kermack and McKendrick [10] is considered as the
standard framework of the mathematical epidemiology. After that, numerous types of
epidemic models have been developed incorporating many biological phenomena such
as delay, age-structure, mobility, seasonality, spatial-heterogeneity etc. Some of those
study can be found in [9, 11–13, 21] and the references cited therein. Several types of
compartmental mathematical models have been also applied to understand the transmis-
sion mechanisms of cholera. Paio et al. [14] studied an SIQRB (susceptible-infectious-
quarantine-recovered)-type model with a class of bacterial concentration. Also, they pro-
posed and solved an optimal control problem in their system. Sun et al. [27] formulated
a compartmental model for cholera that includes both person-to-person transmission and
environment-to-person transmission. As an application of their work, they calculated the
basic reproduction number in China. Wang et al. [31] presented a ODE-based cholera
model first, incorporating the human behavior, and then they focused on a reaction–
diffusion-type model considering the movement of humans and bacteria. They mainly
investigated the spreading speed of cholera. Many other compartmental-type models us-
ing classical integer-order derivative can be found in [28,33,34] and the references therein.
It is to be noted that all these systems are modeled by using integer-order derivatives.

Fractional calculus is a generalized version of the integer-order calculus. It has been
used extensively in last few decades in different branches of sciences and technology [24],
including electronic circuit analysis, control theory, heat transfer, fluid dynamics. The
main motivation for using the fractional derivative is that it can incorporate memory,
and most of the biological systems are equipped with memory. Moreover, the fractional-
order derivative possesses nonlocal property. Also, fractional-order derivative enlarges the
stability region of the dynamical systems. In last few years, it is being used immensely
to solve many biological problems. Fractional-order differential equations are utilized
to model the problems. In this context, we may refer some works in which fractional-
order derivatives has been used to model and study the transmission of different types
of diseases other than cholera (see [17, 22, 32]). Almedia [1] formulated a SEIR-type
epidemic model using fractional-order derivatives. Torres et al. [26] studied the uniform
asymptotic stability of a fractional-order model of tuberculosis. Huo et al. [7] presented
a model of HIV with fractional derivatives and shown the influence of vaccination on
occurring backward bifurcation. Several works with fractional derivatives can be found
in literature [3,8,18,20,26,32]. Motivated by those works, we propose a fractional-order
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epidemic model to study the dynamical behavior of cholera. The remaining of this article
is as follows.

In Section 2, the model is developed considering the transmission paths of cholera.
The dynamical behavior of the system including the existence and uniqueness of the so-
lutions and stability analysis of the model system are discussed in Section 3. A fractional-
order control problem is framed and solved analytically in Section 4. In Section 5, effects
of model parameters on the basic reproduction is studied. Also, some numerical simula-
tions of the theoretical results are provided in Section 6. Finally, in Section 7, this article
comes to an end with some conclusions.

2 Model formulation

Here we formulate a fractional-order compartmental model to analyze the transmission
dynamics of cholera. Both the direct and indirect routes of transmission and fractional-
order derivatives have been considered to model the system. We consider three compart-
ments, namely, the susceptible group S, the infected group I and the recovered group R
for the total human population, and also, another compartment is considered for the bacte-
rial concentration B. Two major transmission paths of cholera are considered: human-to-
human and environment-to-human. As a result, two transmission rates are taken. The con-
stants βh and βe stand for the human-to-human and environment-to-human transmissions,
respectively. Bilinear incidence rates are considered for both types of transmission, and γ
is taken as the recovery rate of the infected individuals. The positive constantA is taken as
the recruitment rate to the susceptible class, and µ (> 0), δ are natural and disease related
death rate, respectively. Also, when the number of infected individuals increases, then
the bacterial concentration also increases. Let σ denotes the bacterial concentration rate
contributed by the each infected individual, and d denotes diminishing rate of bacteria.

Based on these assumptions and utilizing fractional-order derivative in Caputo sense,
we write down the following system for the transmission of cholera:

Dα
t S = A− βhSI − βeSB − µS,

Dα
t I = βhSI + βeSB − (γ + µ+ δ)I,

Dα
t R = γI − µR,

Dα
t B = σI − dB,

where Dα
t denotes Caputo fractional derivative, and α ∈ (0, 1]. The Caputo fractional

derivative of order α is defined as

Dα
t f(t) =

1

Γ (n− α)

t∫
0

(t− s)n−α−1f (n)(s) ds,

n − 1 < α < n, n ∈ N, and if α = n ∈ N, then Dα
t f(t) = f (n)(t) [2]. The advantage

of using Caputo’s definition is that the initial conditions for both the fractional-order
differential equation with Caputo derivative and integer differential equation are same.
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Figure 1. Schematic diagram representing the disease transmission.

We consider the initial values as S(0) > 0, I(0) > 0, R(0) > 0, B(0) > 0. The disease
transmission scenario is presented in Fig. 1.

It is easy to note that the equations corresponding to state variables S, I and B are
independent of R. So it is equivalent to study the following subsystem:

Dα
t S = A− βhSI − βeSB − µS,

Dα
t I = βhSI + βeSB − (γ + µ+ δ)I,

Dα
t B = σI − dB,

(1)

where the initial values are same as earlier.

3 Dynamical analysis

3.1 Basic properties of the solutions

Theorem 1. There is a unique solution of model (1).

Proof. Denote X(t) = (S, I,B) = (x1, x2, x3)T. Then model (1) becomes

Dα
t X(t) = A1X(t) + x1A2X(t) +A3,

where

A1 =

−µ 0 0
0 −(µ+ γ + δ) 0
0 σ −d

, A2 =

0 −βh −βe
0 βh βe
0 0 0

 and A3 =

A0
0

.
Let us denote Γ (t,X(t)) = A1X(t) + x1A2X(t) +A3. Now∥∥Γ (t,X(t)

)
− Γ

(
t, Y (t)

)∥∥
=
∥∥(A1X(t) + x1A2X(t) +A3

)
−
(
A1Y (t) + x1A2Y (t) +A3

)∥∥
=
∥∥A1

(
X(t)− Y (t)

)
+ x1A2

(
X(t)− Y (t)

)∥∥
=
∥∥(A1 + x1A2

)(
X(t)− Y (t)

)∥∥ 6 L∥∥(X(t)− Y (t)
)∥∥,
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where L = max(A1 + x1A2), the norm ‖·‖ denotes the usual Euclidean norm, and the
complete normed space is the 3-dimensional Euclidean space.

Therefore, Γ (X) satisfies the Lipschitz condition, and hence, following the work of
Diethelm and Ford [5], we conclude that the system has a unique solution.

Theorem 2. All the solutions of model (1) are nonnegative and uniformly bounded.

Proof. From our proposed model (1) we have

Dα
t S
∣∣
S=0

= A > 0,

Dα
t I
∣∣
I=0

= βeSB > 0,

Dα
t B
∣∣
B=0

= σI > 0.

Hence, it follows from the work of Odibat and Shawagfeh [23] that all the solutions will
always remain in R3

+.
Assuming N(t) = S(t) + I(t) and adding first two equations of (1), we get

Dα
t N = A− µ(S + I)− (γ + δ)I

= A− µN − (γ + δ)I

6 A− µN.

Now integrating and using the Lemma 3 of [15], we have

N(t) 6
A

µ
+

(
−A
µ

+N(0)

)
Eα
(
−µtα

)
.

Here Eα denotes the Mittag-Leffler function.
Thus, N(t)→ A/µ when t→∞, and hence 0 < N(t) 6 A/µ.
Also, from the last equation of (1) we get

Dα
t B = σI − dB 6 σA

µ
− dB,

i.e.,

Dα
t B + dB 6

Aσ

µ
.

Now using the Lemma 3 of [15], we get

B(t) 6

(
B(0)− σA

µd

)
Eα
(
−dtα

)
+
σA

µd
.

Thus, B(t)→ σA/µd when t→∞, and hence 0 < B(t) 6 σA/(µd).
Therefore, all the solutions originating in R3

+ are restricted in the domain ΩH ×ΩB ,
where

ΩH =

{
(S, I)

∣∣∣ 0 6 S + I 6
A

µ

}
and ΩB =

{
B
∣∣∣ 0 6 B 6

σA

µd

}
. �
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3.2 Equilibria and stability analysis

In order to investigate the dynamics of the proposed system, first, we have derived the
expression of basic reproduction number following the next generation matrix method
[29]. The basic reproduction number of system (1) is obtained as

R0 =
A(βhd+ βeσ)

µd(γ + µ+ δ)
.

Now the equilibrium points of system (1) are obtained as a solution of the following
system of simultaneous equations:

Dα
t S = 0, Dα

t I = 0, Dα
t B = 0.

Thus, we get two equilibrium points, namely, disease free equilibrium E0 = (S0, 0, 0) =
(A/µ, 0, 0) and endemic equilibrium E1(S∗, I∗, B∗), where

S∗ =
d(γ + µ+ δ)

βhd+ βeσ
, I∗ =

µd

βhd+ βeσ
(R0 − 1) and B∗ =

σI∗

d
.

It is easy to observe that the infected equilibrium point exist only when R0 > 1.
Now the stability of the equilibria E0 and E1 have been studied.

Theorem 3. The disease-free equilibrium point E0 of the fractional-order system (1) is
locally asymptotically stable if R0 < 1.

Proof. The Jacobian matrix of (1) at E0(A/µ, 0, 0) is

J(E0) =

−µ
−βhA
µ

−βeA
µ

0 βhA
µ − γ − µ− δ

βeA
µ

0 σ −d

 .

Therefore, the characteristic equation of the system at E0 is

(s+ µ)

[
s2 +

(
µ+ γ + δ + d− βhA

µ

)
s

+ (γ + µ+ δ)d− A

µ
(βhd+ βeσ)

]
= 0.

Now one root of the above equation is s1 = −µ, and the remaining two roots s2, s3 are
solution of the following equation:

s2 +

(
µ+ γ + δ + d− βhA

µ

)
s+ (γ + µ+ δ)d− A

µ
(βhd+ βeσ) = 0. (2)

Now when R0 < 1, we observe that

s2 + s3 =
βhA

µ
− µ− γ − δ − d < 0,

s2s3 = (γ + µ+ δ)d− A

µ
(βhd+ βeσ) > 0.
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Hence, the roots of Eq. (2) have negative real parts. So, we observe that |arg(si)| > απ/2
for all α ∈ (0, 1], i = 1, 2, 3. Therefore, we conclude that the infection-free equilibrium
point of the system is locally asymptotically stable when R0 < 1.

Now the Jacobian matrix of (1) evaluated at E1 is

J(E1) =

−βeB∗− βhI∗− µ −βhS∗ −βeS∗

βeB
∗+ βhI

∗ βhS
∗− γ − µ− δ βeS

∗

0 σ −d

 .

The characteristics equation at E1 is

f(ψ) = ψ3 + r1ψ
2 + r2ψ + r3 = 0, (3)

where

r1 = βeB
∗+ βhI

∗+ γ + d+ 2µ+ δ − βhS∗,

r2 = (γ + 2µ+ δ + βeB
∗+ βhI

∗)d

+ (γ + µ+ δ − βhS∗)(βeB
∗+ βhI

∗+ µ)

+ βhS
∗(βeB

∗+ βhI
∗)− (βhd+ βeσ)S∗,

r3 = S∗(βhd+ βeσ)(βeB
∗+ βhI

∗)

− (βeB
∗+ βhI

∗+ µ)
{
βeσS

∗+ d(βhS
∗− γ − µ− δ)

}
.

Let D(f) denote the discriminant of the polynomial f(ψ), and it is given by

D(f) =

∣∣∣∣∣∣∣∣∣∣
1 r1 r2 r3 0
0 1 r1 r2 r3
3 2r1 r2 0 0
0 3 2r1 r2 0
0 0 3 2r1 r2

∣∣∣∣∣∣∣∣∣∣
= 18r1r2r3 + (r1r2)2 − 4r3r

3
1 − 4r32 − 27r23.

Now we get the following theorem.

Theorem 4. Suppose that E1 exists in R3
+. Then

(i) If D(f) > 0, r1 > 0, r3 > 0, and r1r2 > r3, then for all α ∈ (0, 1], E1 is locally
asymptotically stable.

(ii) If D(f) < 0, r1 > 0, r2 > 0, r3 > 0, and 0 < α < 2/3, then E1 is locally
asymptotically stable.

(iii) If D(f) < 0, r1 < 0, r2 < 0, α > 2/3, then E1 is unstable.

Proof. (i) If D(f) > 0, then all the roots of Eq. (3) are real and distinct. If not, let us
consider that Eq. (3) has one real root ψ1 and two complex conjugate roots ψ2, ψ3. Now,
following [19], the discriminant is written as

D(f) =
[
(ψ1 − ψ2)(ψ1 − ψ3)(ψ2 − ψ3)

]2
.
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Now

(ψ1 − ψ2)(ψ1 − ψ3)(ψ2 − ψ3)

= (ψ1 − ψ2)(ψ1 − ψ̄2)(ψ2 − ψ̄2) = (ψ1 − ψ2)(ψ1 − ψ̄2)2 Im(ψ2)i

= (ψ1 − ψ2)(ψ1 − ψ2)2 Im(ψ2)i = 2|ψ1 − ψ2|2 Im(ψ2)i.

Therefore,
D(f) =

[
2|ψ1 − ψ2|2 Im(ψ2)i

]2
< 0,

which violates the condition that D(f) > 0. Thus, Eq. (3) has three distinct real roots
whenever D(f) > 0. Now, due to r1 > 0, r3 > 0 and r1r2 > r3, all the roots of (3) are
negative or have negative real parts. Since D(f) > 0, all roots of (3) are negative. As
a result, | arg(ψi)| = π > απ/2 for all α ∈ (0, 1], i = 1, 2, 3, and hence, E1 is locally
asymptotically stable.

(ii) In case (i), we have observed that for D(f) < 0, Eq. (3) has one real and two
complex conjugate roots. Since r3 > 0, so the real root is negative. We consider that the
roots are ψ1 = −k(k > 0), ψ2,3 = φ1 ± iφ2(φ1, φ2 ∈ R) and

f(ψ) = (ψ + k)(ψ − φ1 − iφ2)(ψ − φ1 + iφ2).

Comparing this with (3), we get r1 = k−2φ1, r2 = φ21+φ22−2kφ1, r3 = k(φ21+φ22). Now
r1 > 0 implies k > 2φ1. Observing φ21 sec2 θ = φ21 + φ22 and r2 > 0, we get sec2 θ > 4.
So, θ = | arg(ψ)| > π/3. As α ∈ (0, 2/3), then |arg(ψ)| = θ > π/3 > απ/2 holds
good. Hence, all the roots of (3) satisfy |arg(ψi)| > απ/2 for all α ∈ (0, 1]. So, E1 is
locally asymptotically stable.

Result (iii) can be proved in a similar way as (ii), and so we omit it.

Now we aim to study the global asymptotic stability of the different equilibrium
points. The lemma written below is employed, while proving the global stability of
disease-free and endemic equilibrium.

Lemma 1. (See [30].) Let g(t) ∈ R+ be a continuous and derivable function. Then for
any time t > t0, we have

Dα
t

(
g(t)− g∗(t)− ln

g(t)

g∗(t)

)
6 1− g∗(t)

g(t)
Dα
t g(t), g∗∈ R+, α ∈ (0, 1).

Theorem 5. The infection free equilibrium is globally asymptotically stable if R0 < 1.

Proof. Let us consider the Lyapunov functional W (t) as follows:

W (t) =
1

µ+ γ + δ

(
S(t)− S0 − S0 ln

S(t)

S0

)
+

1

µ+ γ + δ
I(t)

+
βeS

0

d(µ+ γ + δ)
B(t).
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Now computing the fractional derivative of W (t) and applying Lemma 1, we obtain

Dα
t W (t) 6

1

µ+ γ + δ

(
1− S0

S

)
Dα
t S(t) +

1

µ+ γ + δ
Dα
t I(t)

+
βeS

0

d(µ+ γ + δ)
Dα
t B(t)

=
1

µ+ γ + δ

(
1− S0

S

)
(A− βhSI − βeSB − µS)

+
1

µ+ γ + δ
(βhSI + βeSB − γI − µI − δI) +

βeS
0

d(µ+ γ + δ)
(σI−dB)

=
1

µ+ γ + δ

(
1− S0

S

){
µ
(
S0 − S

)
− βhSI − βeSB

}
+

1

µ+ γ + δ
(βhSI + βeSB − γI − µI − δI) +

βeS
0

d(µ+ γ + δ)
(σI−dB)

=
−µ

S(µ+ γ + δ)

(
S − S0

)2
+

{
βeS

0σ

d(µ+ γ + δ)
+

βhS
0

µ+ γ + δ
− 1

}
I

=
−µ

S(µ+ γ + δ)

(
S − S0

)2
+

{
A(βhd+ βeσ)

µd(µ+ γ + δ)
− 1

}
I

=
−µ

S(µ+ γ + δ)

(
S − S0

)2
+ (R0 − 1)I.

Observe that Dα
t W (t) = 0 at E0 = (S0, 0, 0) = (A/µ, 0, 0), and Dα

t W (t) 6 0 if
R0 < 1. Hence, from LaSalle’s invariance principle it is concluded that the equilibrium
point E0 is globally asymptotically stable if R0 < 1.

Theorem 6. The infected steady state E1 = (S∗, I∗, B∗) is globally asymptotically stable
if R0 > 1.

Proof. Consider the Lyapunov functional V (t) as follows:

V (t) = V1
(
S(t)

)
+ V2

(
I(t)

)
+
βeS

∗B∗

σI∗
V3
(
B(t)

)
,

where

V1 = S(t)− S∗− S∗ln
S(t)

S∗ ,

V2 = I(t)− I∗− I∗ln
I(t)

I∗
,

V3 = B(t)−B∗−B∗ln
B(t)

B∗ .

The above defined function V (t) is continuously differentiable and positive definite for all
(S(t), I(t), B(t)) 6= (S∗, I∗, B∗), and V (t) = 0 when (S(t), I(t), B(t)) = (S∗, I∗, B∗).
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Now, computing the fractional derivative of V (t) and applying Lemma 1, we obtain

Dα
t V (t) 6

(
1− S∗

S

)
Dα
t S(t) +

(
1− I∗

I

)
Dα
t I(t) +

βeS
∗B∗

σI∗

(
1− B∗

B

)
Dα
t B(t)

=

(
1− S∗

S

)
(A− βhSI − βeSB − µS)

+

(
1− I∗

I

)
(βhSI + βeSB − γI − µI − δI)

+
βeS

∗B∗

σI∗

(
1− B∗

B

)
(σI − dB)

=

(
1− S∗

S

)
(βhS

∗I∗+ βeS
∗B∗+ µS∗− βhSI − βeSB − µS)

+

(
1− I∗

I

)
(βhSI + βeSB − γI − µI − δI)

+
βeS

∗B∗

σI∗

(
1− B∗

B

)
(σI − dB)

= µS∗(2− S

S∗ −
S∗

S
) + βhS

∗I∗
(

1− S∗

S
− S

S∗
I

I∗
+
I

I∗

)
+ βeS

∗B∗
(

1− S∗

S
− S

S∗
B

B∗ +
B

B∗

)
+

(
1− I∗

I

)
(βhSI + βeSB − γI − µI − δI)

+
βeS

∗B∗

σI∗

(
1− B∗

B

)
(σI − dB).

At the endemic equilibrium, (γ + µ + δ)I∗ = βeS
∗B∗ + βhS

∗I∗. Using this and after
some simplifications, we have

Dα
t V (t) 6 µS∗

(
2− S

S∗ −
S∗

S

)
+ βhS

∗I∗
(

1− S∗

S
− S

S∗ +
I

I∗

)
+ βeS

∗B∗
(

1− S∗

S
− S

S∗
B

B∗
I∗

I
+
B

B∗

)
− (γ + µ+ δ)I + (γ + µ+ δ)I∗+

βeS
∗B∗

σI∗

(
1− B∗

B

)
(σI − dB)

= µS∗
(

2− S

S∗ −
S∗

S

)
+ βhS

∗I∗
(

2− S

S∗ −
S∗

S

)
+ βeS

∗B∗
(

2− S∗

S
− I

I∗
+
B

B∗ −
S

S∗
B

B∗
I∗

I

)
+
βeS

∗B∗

σI∗

(
1− B∗

B

)
(σI − dB).
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Moreover, using the relation σI∗− dB∗ = 0, we have

Dα
t V (t) 6 µS∗

(
2− S

S∗ −
S∗

S

)
+ βhS

∗I∗
(

2− S

S∗ −
S∗

S

)
+ βeS

∗B∗
(

2− S∗

S
− I

I∗
+
B

B∗ −
S

S∗
B

B∗
I∗

I

)
+
βeS

∗B∗

σI∗

(
σI − dB − σIB∗

B
+ σI∗

)
.

Finally, using again the relation σI∗− dB∗ = 0 and after some simplifications, we obtain

Dα
t V (t) 6 µS∗

(
2− S

S∗ −
S∗

S

)
︸ ︷︷ ︸

I

+βhS
∗I∗
(

2− S

S∗ −
S∗

S

)
︸ ︷︷ ︸

I

+ βeS
∗B∗

(
3− S∗

S
− I

I∗
B∗

B
− S

S∗
B

B∗
I∗

I

)
︸ ︷︷ ︸

II

.

Now, since A.M. > G.M., we get I 6 0 for S > 0, and I = 0 iff S = S∗; II 6 0 if
S > 0, I > 0, B > 0, and II = 0 iff S = S∗, I = I∗, B = B∗.

Hence, Dα
t V (t) 6 0 for all S, I,B > 0, and Dα

t V (t) = 0 at (S∗, I∗, B∗), so, the
invariant set for the system in which Dα

t V (t) = 0 is {(S∗, I∗, B∗)}. Hence, following
LaSalle’s invariance principle, we conclude that the steady state E1 is globally asymptot-
ically stable if R0 > 1.

4 Fractional-order optimal control

In the last section, we have thoroughly analyzed the dynamical behavior of the system.
But any kind of control measure for the infected persons is not considered. Now we wish
to explore the situation when some treatment is given to the infectious individuals. So, we
incorporate a control function u(t) (0 6 u(t) 6 1) denoting treatment control into our
model. We aim to minimize number of infected persons and associated treatment cost.

We consider the objective functional for the optimal control problem as follows:

min J
(
I(t), u(t)

)
=

tf∫
0

(
C1I(t) + C2u

2(t)
)

dt (4)

subject to the system

Dα
t S = A− βhSI − βeSB − µS,

Dα
t I = βhSI + βeSB − (γ + µ+ δ)I − u(t)I,

Dα
t R = γI − µR+ u(t)I,

Dα
t B = σI − dB

with positive initial values.
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Now we utilize Pontryagin’s maximum principle [25] for fractional optimal control to
solve above problem.

Theorem 7. Let the control variable u(t) be measurable function in [0, tf ] and bounded
in [0, 1]. Then there is an optimal control u∗, which minimizes the objective functional J
of (4) with

Dα
t p1(t) = p1(t)(βhI + βeB + µ)− p2(t)(βhI + βeB),

Dα
t p2(t) = −C1 + p1(t)βhS − p2(t)βhS + p2(t)

(
γ + µ+ δ + u(t)

)
− p3(t)(γ + u)− p4(t)σ,

Dα
t p3(t) = p3(t)µ,

Dα
t p4(t) = p4(t)d+ p1(t)βeS − p2(t)βeS,

where

u∗ = max

{
min

{
(p2(t)− p3(t))I(t)

2C2
, 1

}
, 0

}
.

Proof. The Hamiltonian of our optimal control problem is

H = C1I(t) + C2u
2(t) + p1(A− βhSI − βeSB − µS)

+ p2
(
βhSI + βeSB − (γ + µ+ δ)− u(t)I

)
I

+ p3
(
γI − µR+ u(t)I

)
+ p4(σI − dB),

where C1, C2 are the weight factors, and pi(t), i = 1, 2, 3, 4, are the adjoint variables,
which satisfy the transversality conditions pi(tf ) = 0, i = 1(1)4, and the adjoint variables
are obtained as the solution of the following system of equations:

Dα
t p1(t) = −∂H

∂S
= p1(t)(βhI + βeB + µ)− p2(t)(βhI + βeB),

Dα
t p2(t) = −∂H

∂I

= −C1 + p1(t)βhS − p2(t)βhS + p2(t)
(
γ + µ+ δ + u(t)

)
− p3(t)(γ + u)− p4(t)σ,

Dα
t p3(t) = −∂H

∂R
= p3(t)µ,

Dα
t p4(t) = −∂H

∂B
= p4(t)d+ p1(t)βeS − p2(t)βeS.

Now, we are at the stage where the problem of obtaining u∗ minimizing J is same as to
minimizing the Hamiltonian with respect to u. Therefore, using Pontryagin’s maximum
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principle, the optimal condition is

∂H

∂u
= 2C2u− p2(t)I(t) + p3(t)I(t) = 0

that can be solved using the state and costate variables resulting ū = (p2(t)−p3(t))I(t)/
(2C2).

Now, for the optimal value of the control u∗, we consider the restrictions of the control
and the sign of ∂H/∂u. So, we get

u∗ =


0 if ∂H∂u < 0,

ū if ∂H∂u = 0,

1 if ∂H∂u > 0,

and u∗ = max{min{ū, 1}, 0}, where ū = (p2(t)− p3(t))I(t)/(2C2).

5 Sensitivity analysis of R0

In order to measure the impacts of the parameters on the system, we perform sensitivity
analysis in this section. Sensitivity indices reflect whether the parameters have a positive
or negative effect on the system. Here we have calculated the sensitivity indices of the
parameters on the basic reproduction number following the work of Das et al. [4]. Also,
we choose the parameters values as A = 6, βh = 0.08, βe = 0.3, µ = 0.3, δ = 0.2,
γ = 0.6, σ = 0.2, d = 0.7. Following [4], we consider the following definition of
sensitivity index.

Definition 1. The normalized forward sensitivity index of a variable A is denoted by
ΓR0

A , and it is defined as

ΓR0

A =
∂R0

∂A
· A
R0

.

Sensitivity indices of the parameters are provided in Table 1. We note that the recruit-
ment rate to the susceptible class A is the most positively sensitive parameter, while the
natural mortality rate has the most negative impact on the basic reproduction number. In
Fig. 2, the bar diagram of the sensitivity indices is shown.

Table 1. Sensitivity indices of the parameters associated to R0.

Parameters Description of parameters Sensitivity indices
A Recruitment rate +1
βh Human to human transmission rate +0.4828
γ Recovery rate from infected class −0.5455
βe Environment to human transmission rate +0.5172
δ Death rate due to disease −0.1818
d Diminishing rate of bacteria −0.5172
µ Natural death rate −1.0909
σ Bacteria concentration rate +0.5172
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Figure 2. Bar diagram of the sensitivity indices of the parameters related to R0.

6 Numerical simulations

It is very essential to verify the analytical results numerically. The present section is
composed with the simulations of system (1) and the fractional optimal control problem.
It may also be noted that the simulations presented in this paper should be considered
from a qualitative rather than a quantitative point of view. We have used flmm2 MATLAB
function to solve system (1) numerically. The function is based on some fractional linear
multistep methods (FLMMs) of second order (see Garrappa [6] and Lubich [16]). More-
over, we have used the Euler’s forward–backward iterative scheme in MATLAB interface
to solve the fractional control problem numerically. We have briefly described the process
below. The fractional optimal control problem is a two-point boundary value problem
consisting with a set of fractional-order differential equations. The system with the state
variables is an initial value problem, whereas the system with the adjoint variables is a
boundary value problem. We use forward iteration method to solve the state system and
backward iteration method to the costate system.

The state system is solved using the following iterative scheme:

S(i) =
(
A− βhS(i− 1)I(i− 1)− βeS(i)B(i)− µS(i)

)
hα −

i∑
j=1

c(j)S(i− j),

I(i) =
(
βhS(i)I(i− 1) + βeS(i)B(i− 1)− (γ + µ+ δ)I(i− 1)− uI(i− 1)

)
hα

−
i∑

j=1

c(j)I(i− j),

R(i) =
(
γI(i)− µR(i− 1) + uI(i)

)
hα −

i∑
j=1

c(j)R(i− j),

B(i) =
(
σI(i)− dB(i− 1)

)
hα −

i∑
j=1

c(j)B(i− j),

where c(0) = 1 and c(j) = (1− (1 +α)/j)cj−1, j > 1, and hα is the time step size. The
last term in the above system of equations stands for memory.
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The system of the adjoint variables is solved using the following iterative scheme:

p1(i) =
(
p1(i− 1)

(
βhI(i) + βeB(i) + µ

)
− p2(i− 1)

(
βhI(i) + βeB(i)

))
hα

−
i∑

j=1

(
c(j), p1(i− j)

)
,

p2(i) =
(
−C1 + p1(i)βhS(i)− p2(i− 1)βhS(i) + p2(i− 1)(γ + µ+ δ + u)

− p3(i− 1)(γ + u)− p4(i− 1)σ
)
hα −

i∑
j=1

(
c(j), p2(i− j)

)
,

p3(i) =
(
p3(i− 1)µ

)
hα −

i∑
j=1

(
c(j), p3(i− j)

)
,

p4(i) =
(
p4(i− 1)d+ p1(i)βeS(i)− p2(i)βeS(i)

)
hα −

i∑
j=1

(
c(j), p4(i− j)

)
.

The value of the optimal control is updated using the following scheme:

u(t) = max

{
min

{
(p2(i)− p3(i))I(i)

2C2
, 1

}
, 0

}
. (5)

First, for DFE, we choose A = 0.5, βh = 0.1, βe = 0.3, µ = 0.1, δ = 0.2, γ = 0.6,
σ = 0.01, d = 0.7. For these values of the parameters, we get R0 = 0.579365, and the
DFE is (5, 0, 0). The local stability of the DFE is shown in the following Fig. 3. Now we
take the same values of the parameters as earlier and choose α = 0.92. In this case, also
we have R0 = 0.579365 < 1, and we observe that all the solution curves of the system
with different initial values converge to the point E0(5, 0, 0) (Fig. 4). This establishes the
global asymptotic stability of the infection-free fixed point. Biologically, global stability
of the disease-free equilibrium indicates that the system can be made free from the disease
if we can achieve the specified condition.

For the endemic state, we choose the parameters values as A = 6, βh = 0.08,
βe = 0.3, µ = 0.3, δ = 0.2, γ = 0.6, σ = 0.2, d = 0.7. In this case, we obtain
R0 = 3.01299 (> 1). So, there is a unique infected equilibrium as (S∗, I∗, B∗) =
(6.63793, 3.64421, 1.0412). Also, we note that for these values of the parameters, r1 =
2.17286 > 0, r2 = 1.4677 > 0, r3 = 0.465 > 0 and r1r1 − r3 = 2.72411 > 0.
Hence, it follows from Theorem 4 that the infected state is locally stable (Fig. 5). We
have plotted the solution trajectories for different values of α, and we observe that the
solutions trajectories converges to the steady states as fast as the fractional order α → 1.
Figure 6 depicts that the solution curves converges to the endemic steady state starting
from different initial conditions. This characterizes the global stability of the infected
equilibrium point. The global stability of the endemic steady state indicates the disease
persist in the community.
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Figure 3. Time series plot showing the local stability of infection-free equilibrium.
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Figure 4. Phase space showing the global stability of infection free state.

To solve the fractional-order control problem numerically, we choose the values of
the model parameters as A = 64, βe = 0.01, βh = 0.08, µ = 0.3, γ = 0.6, σ =
0.2, k = 0.7, δ = 0.2, α = 0.5, C1 = 2, C2 = 1. In Fig. 7, we have plotted the
infected populations considering with control and without control. It is noted that in the
presence of the treatment control and memory, the number of infected population reduces
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Figure 5. Time series plot showing the local asymptotic stability of the endemic steady state.
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Figure 6. Phase space showing the global stability of endemic steady state.

as compared to the no control situation. So, in the presence of memory, treatment control
has a positive effect on the management of the disease. Also, in Fig. 8, the variation of
the treatment control with respect to time is shown. It is very interesting to note that the
control profile depicts that the control should be applied when the disease prevalence
become high, otherwise it should be stopped.
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Figure 8. Variation of the treatment control with respect to time.

7 Conclusions

In this article, we have presented a cholera model with fractional-order derivative. Incor-
porating fractional-order derivative to any biological system make the system more realis-
tic, and it includes more features than the traditional integer-order derivative. Fractional-
order derivative allow us to model a higher-order system by a lower-order model. Fur-
thermore, in control theory, fractional-order calculus is better than the integer-order in the
sense that it is capable to handle the time-dependent impacts as noticed in the real-world
process. In particular, it include the memory like behavior of the circuits.

First, we have studied the biological well-posedness of the formulated model. The
expression of the epidemic threshold, i.e., basic reproduction number is derived using
the next generation matrix approach. The theoretical analysis implies that the system
has a infection-free equilibrium when R0 < 1 and a unique infected equilibrium when
R0 > 1. The global asymptotic stability of both equilibrium points are established using
Lyapunov technique. It is observed that the fractional order of the derivative and basic
reproduction number play a crucial role in the stability behavior of the steady states.
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The numerical works support the analytical results. From the numerical simulations it is
evident that the solutions trajectories converge to the steady states as fast as the fractional
order α → 1. So, we can conclude that the stability of the equilibrium points is indepen-
dent of different fractional-order derivatives, while the fractional-order derivative only
affects the time to reach the stationary states. Also, the simulation works of the control
problem suggest that in the presence of memory, optimal application of treatment control
reduces the number of infected people. Moreover, from sensitivity analysis it is found
that the natural death rate and the diminishing rate of bacteria have the negative impact on
R0. So, by controlling these two parameters and applying appropriate treatments to the
infected people, it is possible to reduce the cholera prevalence. In addition to the treatment
control, it will be interesting to investigate the impacts of the other control measures like
vaccination, isolation, awareness program on the transmission dynamics of cholera. We
left this point as our future research topic.
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