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Abstract. In the present paper, a nonlinear system of sine-Gordon equations that describes the DNA
dynamics is considered. A novel unconditionally stable second-order accuracy difference scheme
corresponding to the system of sine-Gordon equations is presented. In this work, for the first time
in the literature, weak solution of this difference scheme is studied. The existence and uniqueness
of the weak solution for the difference scheme are proved in the space of distributions, and the
methods of variational calculus are applied. The finite-difference method and the fixed point theory
are used in combination to perform numerical experiments that verify the theoretical statements.
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1 Introduction

In many branches of science such as mathematics, physics, biology, engineering, in
particular, relativistic quantum mechanics, acoustics, biomedical engineering, and field
theory problems, the wave equations are of great interest (see [2,11,17,20,28]). In the lit-
erature, many scientists have studied the theoretical and numerical aspects of the system of
nonlinear wave equations such as sine-Gordon, Klein—Gordon, and coupled sine-Gordon
equations (see [10, 17,20]). In recent decades, these types of problems have had more at-
tention due to the presence of soliton solutions. Soliton-type nonlinear equations describe
waves that occur in proteins, signal conduction between neurons and deoxyribonucleic
acid (DNA) (see [28] and the references given therein).

In the study of partial differential equations (PDEs), the weak solutions play an im-
portant role since many real-world biological models yield problems with nonsmooth so-
lutions (see [9,20-27]). In the case of low regularity of coefficients and source functions,
weak solutions are of great interest in many problems, including coupled sine-Gordon
equations, and are often easier than finding smooth solutions. They allow us to study sys-
tems that would be difficult or impossible to study using smooth solutions. This is because
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the constraints on weak solutions are less stringent. The weak solution may have discon-
tinuities or other irregularities, but it still satisfies the problem in a small region. Weak
solutions can model the spread of cancer in the body, the dynamics of populations of
competing species, and the spread of viruses and other diseases in populations (see [12,18,
30]). In mathematical biology, the existence of traveling wave front solution and analysis
for Nicholson’s blowflies equation are studied in [14] and [15]. The finite-time stability
for cellular neural networks with neutral proportional delays and time-varying leakage
delays are studied by using the differential inequality technique in [19]. In the theory of
PDE:s, these types of solutions are generally obtained in the space of distributions by the
energy method also known as the variational method (see [9, 13,20-26]).

In the present work, the methods of Roger Temam et al. (see [7,21,24-27]) are used.
The study is based on the following second-order hyperbolic evolution equations. Let
Qr = 2 x(0,T)with T > 0and S = [0,7] x [ for I' = 92, 2 = 2 x I', and
£2 C R™ be an open and bounded set. A widely-known (see [10]) initial/boundary-value
problem is

Wyt + Lw = f, in .QT,
w=0 onS, (1
w=g,w,=h onf?
with given functions f : 27 — R, g,h: 2 — R, and w : 27 — R, the unknown
w(z,t). Here L denotes a differential operator for each time ¢ in the form

n

Lw=— 3" a9 (@, thwee, + U@, thwg, + ez, hw

i,j=1 i=1

with coefficients a®/, b?, ¢ (i,j = 1,...,n). In the present study, the second-order differ-
ential operator

2 2
Lw=— Z aTwy, + Zbiwx + cw
i=1

4,5=1

to a coupled system (1) for 27 and 2 C R?, f: 27 — R, g,h: 2 — R, and w :
27 — Ris considered. Here a™, b7, c (3, j = 1, 2) are given constant coefficients.

In this paper, the weak solution of second-order unconditionally stable difference
scheme corresponding to the nonlinear system of coupled sine-Gordon equations

0%u ou Ov .

ﬁ —+ alla —+ 04125 — ﬁlAu —+ Y1 8111(51111, + 612"0)
+pru+prev=f, f€Or, @

9%v ou ov .

el + Q215 + Q22 g B2 Av + o sin(dz1u + d22v)

+ po1u+ pov =g, g€ 7,
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with boundary conditions

u=0 and v=0 onS 3)
and initial conditions
ou =
u(0,2) = p1(x) and E(O,x) =1(x) in {2, 4
v(0,2) = p2(x) and %(O,x) =y(x) inf %)

is studied. Here 2 C R? is a bounded open set, and A is the Laplacian. The coefficients
aij, Bi, Vi» 045, pi; are bounded nonzero real numbers for 4, j = 1,... . Let us denote the
source functions as

f(ta x,Uu,v,Ut, vt) = f(t, l’) -7 Sin(éllu + 612’0)
— P11U — P12V — Q11U — Q12,
g(ta Z,U,v, Ut, 'Ut) = g(t7 .'L') — 72 Sin(62lu + 6221})

— P21U — P22V — Q21U — 22Vt
The functions f and § satisfy the Lipschitz conditions

‘f(t,$7U1,U2,’LLt,'Ut) - f(ta‘rvvlvaautvvt)’
< IJuy — 1| + Jug — va| + [(u1) — (v1)e] + [(u2)s — (v2)¢]]
on (27, where [ is a positive constant.

Let A = —A be a self-adjoint, positive-definite, unbounded operator in a Hilbert
space H. One can write problem (2)—(5) in the following form:

9%u ou ov .
ol + a5y + Q125 + B1Au + vy sin(d11u + 0120)

+puut+ppv=Ff 0<t<T,
0% ou ov

vl + ao 5 + Qg + BoAv + 2 sin(da1u + d22v) (6)

+pautprov=g 0<t<T,
u(0) =1 €V, u'(0) =4, € H,
v(0) =g €V, v'(0) = 1o € H.
Here V is the Hilbert space satisfying the relation V' C H. A simpler form of system (6) is
Upp — Upy = —0° sin(u — v),

Vit — Vg = sin(u — v).

This type of system models the open states in DNA double helices and is studied by many
scientists (see [17,29]).

https://www.journals.vu.lt/nonlinear-analysis
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Existence and uniqueness of problem (6) is presented as the limit of second-order
accuracy unconditionally stable difference scheme

_ B
772 (w1 — 2up + up—1) + zlA(ukH + 2up + ug—1)

o @ i
+ %(ukﬂrl —up-1) + #(Ukﬂ = k1) + 7y sin(Onug + d1204)

+ %(Ukﬂ + 2up + up—1) + %(Ula+1 +2u, + V1) = fi,

fk:f(tk,uk,vk), tk:kT,].gng—]., N’T:1,
_ B
772 (Vg1 — 20 + vp—1) + ZzA(ka + 2ug + V1)

o @ i
* 27271(151#1 —ug—1) + 2727-2(Uk+1 = Uk—1) + Y280 (021up + O220k)
P21
4

@)
+ == (upq1 + 2up +up—1) + %(Uk+1 + 20 + V1) = G,

gk = g(tk,ug,v), tp =k, 1<E<N-1, NT=1,
u(0) = ug = 1, v(0) = vy = o,

2 ~
) = (14 2 ) = o) = 5o~ Aug) = v,

ZA
v'(0) = (I—i— T4>7_1(v1 —vg) — %(ﬁo — Avg) = 1o,

f(0) = fo,90(0) = go
with a modification to a damped nonlinear system. For the solution of problem (7), we
consider the set of a family of grid points
.Qh = [O,T]T X [O,L}h
= {(tk,xn): ty, =k7, 0< k<N, Nt =T,
xn:nh,OgnéM,Mh:L} ®)
with step sizes 7, h and constants 7', L. Here fi, gr, 1, @2, ¥1, and 1o are given
nonzero functions. Unconditional stability and the convergence of linear undamped form
of difference scheme (7) are presented in [2—4].
The weak and global solutions, nonlinear dynamics of PDEs, finite-difference and

finite-element methods are extensively studied by many scientists (see [1,6,13-23,28,32]
and the references given therein).

2 Theoretical background and problem settings

In the present section, some theoretical preliminaries that are necessary in the sequel
will be presented. For the overall literature on the elementary spectral theory and bilinear
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forms, we refer to [5,7, 16,22, 25,31]. Let us denote Hilbert spaces H, V and the dual
space V' as H = L*(2), V = H}(2), and V' = H; ' (£2), respectively. These spaces
are equipped with the following inner products and norms:

W, 6) = / P@)d(z)de, [o] = @) Vov € LA(2),
N

n

o) =3 / %(w)a%mmdx, loll = (. )2 Ve € HY().
N

ox;
i=1 v

The pair (V, H) is a Gelfand triple space with V. — H = H' — V' for V' =
H~=1(£2). The embeddings V C H and H C V' are continuous, dense, and compact.
The unique solvability results are presented in the setting of the triple space. The bilinear
form

a(, ) = / Vo Vodr = (6,¢) YopeV = HY(R)
0

will be used in variational formulation. This form is bounded, symmetric on V' x V =
H}(£2)?, and coercive, that is,

a(¢,¢) >M1||¢H27 Z:LaGa ¢€V (9)

Letting A = —A, we have
Ao, ) = al(9, ¢)) (10)

for the operator A that is an isomorphism from V" onto V’. Operator A is an unbounded
self-adjoint operator in H with dense domain D(A) = {¢ € V: A¢ € H} in V and in
H. If the bilinear form a is symmetric, then the operator A is self-adjoint:

(Au,v) = (Av,u) = a((u,v)) VYu,veV

(from V into V"’ and as an unbounded operator in H), and moreover, inverse A~1is also
self-adjoint (in H).

The complete theory of the function spaces D(A), V', and H, as well as the operators
A and a, are given in the references (see, e.g., [7,24,25]).

The solution space, which is the space of distributions, can be expressed in the fol-
lowing form:

W(0,T) = {g: g€ L*(0,T; H}), ¢ € L*(0,T; H), ¢’ € L*(0,T; Hy ') }.
In this article, we assume that f,g € L (R, ; L?(£2)?), and we set
|floo = [flLoe Ry s22(2)2)5 19loo = [g]Lo (R, ;12(2)2)-
The definition of the weak solution for (7) can be stated in the following lemma.

Lemma 1. (See [24].) Let X be a given Banach space, X' be the dual, and let v and g
be functions in L (a,b; X ). The following conditions are equivalent:

https://www.journals.vu.lt/nonlinear-analysis
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(1) visae. equal to the primitive function of g, i.e., there exists w € X with v(t) =
w—i—fo s)ds fora.e. t € [a,b].
(i) For each test function p € B(]a,b]), f; v(t)y' = - f g(t)p(t) dt, where

¢’ (t) = dep/dt.
(iil) Foreveryn € X', d/dt(v,n) = (g,n) on|a, b| in the scalar distribution sense.

When conditions (1)—(iii) are satisfied, then g is said to be the (X-valued) distribution
derivative of v, and v is a.e. equal to a function from [a, b] into X, which is continuous.

Next, the weak solutions that are established via variational formulation for a nonlin-
ear coupled system of difference equations (7) will be studied. Some results on the strong
convergence of the sequences will be derived using the theorems on the compactness.

3 Weak solution of the second-order accuracy difference scheme gen-
erated by A

In the present section, some theoretical statements on the weak approximate solution of
(6) is established for the unconditionally stable difference scheme (7). Applying varia-
tional formulation, it will be shown that the difference problem (7) converges to a unique
weak solution. _

Note that, throughout this paper, K;, K;, ¢;, d;, pi; represent generic constants, which
may have different values at different places.

Definition 1. The set of mesh functions {u}'} and {v}'} are said to be the approximate
weak solutions of (7) if uz, v,’? € V" satisfy the weak formulation of (7). The family of
grid points (8) are used to present Hilbert space

Lop(£2) = Lop(£2p,).

The space is equipped with the following norm:

N 1/2
[k 20, (2) = (ZM%) :
=1

Now, we will give our main theorem on the weak solvability of (7). By the theorem
the solutions u} and v} of (7) will be proved to be bounded.

Theorem 1. Let {2 C R™ be a bounded open set with piecewise smooth boundary, ug €
L2(02), uy € HH(R), and f,g € L= (Ry; L?(£2)?). Then the solutions u} and v} of (7)
are bounded in the following sense:

> <o, | < k=0,...,N, (11)

Z

-1

|uk+1—uk‘i<0, Z |1}Z+1—’02’i<0, (12)

>
Il

1
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N-—1 ) 1 N-—1 )
2 h 2 h <
P S lkalh < gn0 7 Sl < g0
(13)
N-—1 9
2 h
7 3 Il < 50
2Nfl . ) 1 2Nfl 2 1
P bl <50 X k<50
- B (14)
N-—1 9
2 < —
? 5 lokall < 50

where C' =

T
[ugli, + [wgl +dr Jy 1f(

s)[>ds +ds [ |g(s

)2 ds.

Proof. In the proof, it will be shown that |u}|,, ||u}||;, are uniformly bounded. For
that purpose, we take the inner product of the equations in (7) with 2ujy; and 2vg4q,

respectively, and we obtain

(UZH uy, 2u2+1) + (UZA

hoo h
— g, 2up )

Bl 2[(v2uk+1’2uk+l)+2<v2uk72uk+1) (VQUZ—MQUZH)]

+ 7%y, (81n(511uk + 512vk) 2uk+1) +

Q127 /o py h
+— [(Uk+172uk+1) -
7'2,011
+ 7'2,012

= (TszvQUZH)’

(vl}(,‘L+1 UZJUZH) +('Ul}clfl

(vi_y,2upy)]

h o, h
— Uk 2'Uk+1)

2

«
aur [(Uk-Ha 2UZ+1) -

4 [(“Z+172U2+1) + 2(“2@“24—1) + (UZ—172U2+1)]

4 [(”Z+1a2UZ+1) + 2(”1}5,271214-1) + (vﬁ—la2uﬁ+1)]

(uﬁ—la 2“24—1”

15)

’82 72 [(V20k+1, 2vk+1) + Z(VQUk,2v2+1) + (Av,};_l, QULLH)]

+ 7' Y2 (s1n((521uk + 622vk)a 2’()/;_;’_1) +

Q22T

+ o [(UZ+172UZ+1) -

2
T p21

+

+ 7'2,022

= (ngk,%,gﬂ).

(Ullcl—p QUI}CL-&-I)]

Qo1 T
2

[(UZ-H? 2“Z+1) -

1 (w1, 20840) +2(uf, 2041) + (ufi_y, 20741)]

[(Uliel+1a2vl}cl+1) + 2(”1};72”2“) + (UZ—MQUIQLH)]

(UZ—p QUI}JH)}

(16)

https://www.journals.vu.lt/nonlinear-analysis
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Using relations

20p — ¥, 0)n = lolh — |05 + o — ¥l Vo,9 €,
200 — b, V) = |l — Y[} — e —¥[E Ve,9 €t

and denoting A = — A, we obtain

|UZ+1|;L |uk|h + |“k+1 UZ‘i + (UZ—172UZ+1) - (uZ,ZuZH)

'81 72 [(Auk_H, 2uk+1) + Z(Auk, 2uk+1) (Auz_l, QUZ_H)]

+ 72 (sin (Sl + S100) ), 2uf ) + o (w2l ) — (ufy, 2uf )]
+ % [(UZ+172U]/3+1) - (”2—172“Z+1)]

TQZ“ [y, 20l y) + 2(uf, 2ul ) + (b g, 20l )]
ST ) (el ) + (ol 2)]

= (Tka>2“Z+1)’
|U1?+1‘i - Wﬁl + vy — ”Z’i + (V15 2041) — (07 20704)

52 P I(A0k 200 ) + 2(Auk, 200 0) + (A1 200 )]

+ 72, (sm(égluk + (522vk) 2vk+1) + % [(UZJFD ZUZH) — (uﬁfl, ZUIZLH)}

Q2T h

+t— (0741, 20040) = (031, 2004) ]

2

n T ZT21 [(u2+172v2+1) + 2(u2,2v2+1) + (szhzvlgﬂ)]
2

+ %522 (0 1: 20041) + 2(v1 20741) + (V—15 205 11) ]

= (%gr, 201, 1). (17)

Replacing the operator A with bilinear form (10) and rewriting the equations of sys-
tem (17) separately, we get

e U e L R

+ %72 [a((uzﬂ, “k+1)) + QCL((UJC,U;@H)) + a((uk 1s uzﬂ))]
1
= (72 fi, 20i 1) — (0‘127 + 272/)12) (Vh1s uh41)

1 1
+ (04127' — 27‘2p12) (UI}CL—17UZ+1) — <Oé117— + 27'2p11> ('LLZ+1, U2+1)

Nonlinear Anal. Model. Control, 29(2):244-264, 2024
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1
+ (OéllT - 572011 - 2) (UZLDUZH) - 7'2P12 (UZa UZH)

+ (2= 7 pun) (ufs wiigr) — 70 (sin (Gnau + G120F), 2ui4y), (18)

|01}§+1‘i - }”Z‘i + |”k+1 - Ul}cl’i

+ 270k vkn) + 20((eks o) + (e k)]
1
= (T gk, 21)k+1) — <O[217' + 2T2p21> (U,Z+17v2+1)
1 1
# (amr = 57m ) (o) = (0aar + 3720 ) (s o)

1
+ (04227' - §T2p22 - 2) (UZ_D ULLH) - 7'2p21 (UZ, Uﬁ+1)

+ (2 — 72p22) (v,@, v,}jﬂ) 729, (sm(égluk + (522vk) 2vk+1) (19)
The estimates
cilug, < |luill,, i=1,...,9 ug e V", (20)
and
|(sin(511u2 + 612112) uZ+1)|
< |sm(511uk + 512vk) | |uk+1|
2 2
< = (\511|M1 (Jup ‘ + ’Uk+1’ + 81| (k" + [wkia ")) 2D
are used to obtain a priori estimates for the nonnegativity and boundedness of the terms
in Egs. (18), (19) of system (16) (see, e.g., [24]). Next, using the coercivity estimate (9),
spectral properties of the operator A, estimates (20), (21), Cauchy—Schwarz inequality,

Young’s inequality, triangle inequality, and some simple identities together, the following
inequalities are obtained:

el = Ly + un = ik
A
2

|M2|(‘UIZL+1’Z + |“Z+1|;21)

B+ o + B 7%l )

2

1 1
< 27-2|fk|oo’u2+1’h + 5|27 + 57'2,012

1 1 1

52T = 57%12 |M3|(]v,'j,1|i + ’u2+1’i) + |onT + 572/’11 {“Zﬂli
1 1

+ 5|t - 572/)11 — 2‘|M4|(|u2_1|i + |UZ+1|2)

1
+ *72\P12||M5 (\vklhﬂukﬂ! ) {2_7 P11|\M6 (|Uk|h+|uk+1| )

+ 72|y |e2 011 ]| M| !uk’h+|uk+1| )+72|71|\02||512||M7 (|Uk|h+|uk+1| )

https://www.journals.vu.lt/nonlinear-analysis
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and

|UZ+1|h |Uk|h+|”k+1 vZ!i

+ 22 ol |+ Bl + o |

2
1 1
< 27‘2|gk‘oo‘7];?+1’h + 5 Q91T + 57’ P21 |M2|(‘u2+1‘i + ‘Ug+1’i)
1 1 —~ 1
+ 5% 572P21 |M3|(|uZ,1|i + ’”Z+1|i) + |27 + 572/’22 |U£+1‘i
1 1 —~
+ (@227 — 57'2022 - 2‘|M4|(|711}§—1|;21 + }UZ+1|2)

1
+ *72\P21||M5 (‘Uk|h+|vk+1| ) |2*T P22HM6 (|vk|h+}vk+1| )
+T2|’Y2\|C4||521||]\/-"7 !uk’h+|vk+1| )+72|’Y2||C4H522||M7| ‘vk|h+|vk+1| )

Using estimate (20), we have

|U’Z+1|h |“k|h+|“k+1 ]},

2l |2+ B2l 2+ e

\M2|(|v,’j+1|i + |UZ+1|;21)

1,
Q12T + 57' P12

1
< 2T201|fk|00HuZ+1||h t3

1 1 1

+ 5 o2 = 5r2pna M| (ol oy + )+l + 572pn
1 1

+ § 11T — 572[)11 - 2’M4|(’u21|}21 + ‘uerl‘i)

1
+ 512 = 7o ||l (Ju]  + [ )

+ 72 feal 1 || M| (Jul |2+ uf i |[2) + 72 el |12l M| [0k + [l

1
+ 572|p12||M5|(}vﬁ\iﬂuf;ﬂ]i)

and

[l = ok, + ot = o,

+%*m%hﬂ“ﬂwﬁmvﬂ+@#mMLm2

< 27’203|gk|00|‘112+1HZ + % a9 T + 57 p21 Iﬂzl(\uﬁﬂ}i + |”Z+1|i)
¥ g lamr = 2| (W) ([} + el 2) + [aoar + 5720 | ol
+ % Q22T — %szm - 2‘M4|(|”Z—1};21 + |”Z+1|;2L)

Nonlinear Anal. Model. Control, 29(2):244-264, 2024
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+ T |P21||M5 (}“k’h + ’Uk+1| |2_T /’22“M6' (‘U’f‘h+}vk+1’ )

+72|V2\|C4||521|\M7 (M’h + ’Uk+1|h) + 72|72 |ea||622] | M| (\%\hﬂ%ﬂﬁ)-

By the Holder inequality we get

|“Z+1|i |“h|i+|“2+1 h‘i

and

LB B

B

51

Trmlfulially + 5 w2 + sl

4

< 1 N1HUZ+1||;L + Mcﬂfk‘go

1,
Q12T + =T P12

L1
2

2
Ll
2

|M2\(|v,’;+1]i + ’“ZH’i)

M| ([vf_y |) + |uf i [})

1
|u2+1{i + 5

2
Q12T — 57 P12

1
T — *72P11 -2 \M4|(’uz,1|i + |u2+1‘i)

L,
an T+ -T7p11 5

* 2

1 1
+ 572|P12HMr (|”k|h + ’uk:Jrl’ ) 5‘2 - T2p11||M6|(’”Z i"' |“Z+1|i)

+ 2 yallealldn Mol (|l |5 + |ufss|2)
+ 72 leallr2] | M| ([R5 + |uf i |2) (22)

oty — \vk\ﬁ |Uk+1 okl

Pa Ba

5

ﬁ22

’ e s

pa2 o |* +

4
MlekJrIHh + ﬂTmcﬂgkﬁo

1 1 ~

+ 5|0 =+ 572P21 |M2‘(|U2+1|;2, + |vl}cl+1|z)
1 1 —~ 1

+ 3 Q1T — 57'2021 |M3\(|UZ_1|?L + |UZ+1|i) + |22 + 57'2[)22 |Uﬁ+1’2
1 1 —~

+ 2|22 — 572[)22 - 2’M4|(’UZ1’i + ”U]}CLJrl‘i)

1 —~ 1 —
+ 57 lpan M ([ + [ofal,) + 512 = 7ol Mol (Jok [, + o [1)
+ 72 o eal |8 [ M| (Ul |2 + o1 |2)
+ 72 o [ed]| 8ol | M7 | ([0 |5 + [of s [1)- (23)
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Collecting the like terms of Egs. (22), (23), respectively, we obtain
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1 1 1 1
Ky = 7% M| + 5|27 + 572/)12 | Ma| + 5T = 57’2911 - 2‘|M4|
1 1 1 1
+ 3 Q1oT — 572/)12 |Ms| + |a17 + §T2P11 + 572|P12||M5|

K

K3

K,

Kg

N~ N~ N~ N

1
+ 512 = 700 1Mol + 72l leal 1M + 7l Mz,

1
T — 572/)11 - 2‘M4|7

2 — 72p11 || Ms| + 72|71 ||e1||611 || M7 ],

1
Q12T — =T p1a|| M|

1,
Q12T + =T7P12 5

2

1
|M2|,K5=§

72|p12||Ms| + 73|71 |[e1 ]| 012 || M|

at Eq. (24) and

~ —~ 1 1 —~ 1 1 —~
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at Eq. (25), we get
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and

[oiealy = [kl + loker = o2
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5 sl
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Taking the sum of (26) and (27) and using the inequalities obtained so far, we get
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Adding these inequalities from k = 1,..., N — 1, we get
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Using estimate (20), we obtain

h |2 h |2 iy h h|2 iy h h|2
|uN+h+vabz+>§:|uk+1_4”4h+>§:|vhH'_ka
k=1 k=1

N-1 ) N-1 ) N-1 )
+di Z HUZ-HHh + d Z H“ZHh +ds3 Z Hu}kL—IHh
k=1 k=1 k=1

N-1 ) N—1 ) N-1 )
+da Y lora|l” +ds Y [Jorl]* +ds Y [k
k=1 k=1 k=1

N-1 N-1
2
< Jugly + |, + 72dx Z | fl2 + T2ds Z |9k |2 -
k=1 k=1
Here
di = %T2M1—C5(K1+I?4), dy = Bi7%ps — c6(K3 + K),
dS:%T2M—C7(K2+I?5), d4:%7’2/1,1—07(K4+I?1),
ds = Bar? s — cs(Ko + K3), dg = %TQM—CQ(KS-FR'Q),
4 4
dy = ——c2, dg = 2
! 51#1 ! ® 52M1 2
We refer to [24] for the useful inequality
N—1 T ,
23 fl < / 1£(s)]” ds. (30)
k=1 0

The initial u? is the orthogonal projection of ug onto V" in L2(£2). By this definition we
have (see [24])
|ug| < Juol  Vh. 31)

Making use of estimates (30) and (31), it follows that the right-hand side of (7) is bounded
by
T T
h2 h2 2 2
C’z}u0|h+|v0’h+d7 |f(s)]"ds+ds [ |g(s)|” ds.
0 0

This proves (12), (13), and (14). Next, adding inequalities (28) for k = 1,...r — 1 and
dropping some positive terms, we get

r—1 r—1
i+ o < Jubly + [+ 72 D2 + s 3l < €
k=1 k=1
and this proves (11). Hence, Theorem 1 is proved. O
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The next theorem states that the set of mesh functions {u}} and {v}} are compact in
Loy (£2) topology.

Theorem 2. Under the hypotheses of Theorem 1, there exist subsequences

{uﬁm} C {ug} and {vﬁm} C {UZ},

which converge in Vj, to bounded measurable functions u" and v", respectively. Moreover;
the limit functions u" and v" are unique weak solutions satisfying (7).

Proof. Estimates (11)—(14) and discrete Gronwall lemma (see [8,26,27]) imply that
{u}!} and {v}'} are bounded in L>(0,T; V).

Then by the Rellich theorem (see [7]) there exists a subsequence wy,, = [ug,,, vk, | T of
wy = [ug, vi]T and W €L>(0,T;V) such that

W, € L>®(0,T;V) C L*(0,T;V)
and
Wy, — Wi weak- in L>°(0,T; V) and weakly in L*(0, T; V).

By the Aubin theorem (see [5]) the above convergence results imply

Wy, — Wy, strongly in L?(0,T;H), (32)

and by (32)

sin dwy,, — sindwy,  strongly in L*(0, T; H),
which proves the existence of Wy, a.e. in H and wy = wq. Uniqueness follows from the
results of Theorem 1 and convergence of difference scheme (7). Hence, Theorem 2 is
proved. O

4 Numerical analysis

In this section, the theoretical statements are verified by numerical implementations.
A unified numerical method based on the fixed point iterations and finite-difference
schemes are presented. We aid the nonlinear part by the fixed point iterations. We intro-
duce a composite numerical method to obtain accurate results for the solution of a system
of PDEs with initial and boundary conditions for one-dimensional coupled sine-Gordon
equations. We generate an exact solution at random

w(t,z) = {u(t,z),v(t,z)},
where

u(t, ) = sin 7z cos |4t v(t, ) = sinwx cos |9¢t],
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and we formulate a boundary value problem that leads to this solution. Let us consider
the following boundary value problem for the system of sine-Gordon equations:
Ut + Ut — Ugg + U
=sin(u —v) + ((7® — 15) cos [4t| — 4sin |4¢|) sin 7wz
— sin(cos |4t sinwx — cos |9¢|sinmz), 0<t<1, 0<z<l1,
Vit + V¢ — Ugg + 0
= —sin(u —v) + ((7* — 80) cos |9t| — 9sin |9¢]) sin Tz

(33)
+ sin(cos [4¢|sinz — cos [9¢|sinmz), 0<t<1,0<z <1,

<

(0,z) =sinmz, u(0,2)= O, 0<
v(0,z) =sinmz, v(0,2) =0, 0<
u(t,0) =wu(t,1) =0,

L,
v(t,0) =v(t, 1) =0, 1

0<t<
0<t<

9

and the corresponding difference problem

k: 1 _ k k—1 k+1 k—1
72 2T

k k k k+1 k+1 k—+1
_ mun+1 - 2mun + mUy_q + ’LLk munJrl 2mun+ + mUy_1

1
2h2 gmin 4h2
uh-1 k— k—1
n+1 - 2mun ! + mUy_1 + 1 k+1 + 1 k—1
4h? gmtn T ymtin

= ((7® — 15) cos |4t),| — 4 sin [4tx|) sin(7z,)

— sin(cos |4ty,| sin ., — cos |9ty|sin Tz, ) + sin(nul — ,0k),

meL+1 - 2qu]§ + mU§71 + mvaJrl - mvﬁil . mva—i—l - 2mvf;, + mvﬁ_l

T2 27 2h?

T LRI QT e L=
" 4h2 4h? (34)

= ((7* — 80) cos |9tk| — 9sin |9¢4]) sin(7y,)
— sin(cos |3ty| sin 7z, — cos |2ty|sin Tz, ) + sin(mul — ,0k),
tr=kr, 1<k<N-1, Nrt=1,
rp=nh, 1<n<M-1 Mh=1,
mly
(27) 7 (=3mud (zn) + dmup (Tn) — mul(z,)) =0,
(27) "M (=3mvn(zn) + 4mvp(Tn) — mva(zn)) =0,

iy = muk; =0, ob =05 =0, 0<E<N.

= sin(rz,), M0) =sin(rz,), 0<n< M,
)
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System (33) is proposed as the model of wave propagation on an infinite chain of
elastically bound atoms lying over a fixed lower chain of similar atoms. The higher-
order derivatives describe the elastic interaction energy between neighboring atoms and
their kinetic energy, respectively. The nonlinear terms containing the sine trigonometric
function stand for the potential energy due to the fixed lower chain. The rest of the terms
are damping terms and source functions.

Difference scheme (34) corresponds to the approximate solution of problem (33). The
modified Gauss elimination method is applied in solving system (34). The set of a family
of grid points

_Qh = [0, 1]7— X [0, 1]h

= {(ty,xn): ty =kr, 0< k<N, N7 =1,
T, =nh, 0 <n < M, Mhzl}

is considered. We present the numerical results of errors, the number of iterations, and
the related CPU times in the following tables at different N and M values. The Matlab
implementations are carried out by MATLAB R2023a software package, by a PC System
of 64-bit, Core i5 CPU, 1.80 GHz, 8 GB of RAM. We use the following formula:
max  |w(ty, z,) — wfl’

1<k<N—1

1<n<M—1
to compute errors. The algorithm is performed for m = 1,2, ..., p, where p depends on
a given error tolerance ¢ such that

lptn — p—1un| <e and |pv, —p_1vn| <e.

Here m index represents the number of fixed point iterations. The exact solution is
denoted by w(ty,z,) = [u(ty, ), v(ts,,)]T, and the numerical solution is denoted
by w® = [uF, v*]T for the approximate solution of problem (33) at (¢, z,,).

The numerical results are presented in the tables below. Table 1 gives the errors for the
solution of (34) with a terminating criteria ¢ = 10~!° and initials in the matrix form (35).
Table 2 presents the errors for the solution of (34) with a terminating criteria ¢ = 1072°
and initials (36). Table 3 gives the errors for the solution of (34) with ¢ = 1072°. In the
iteration, the initials are taken as the identity matrices of the form (37).

ouf =rand(N +1, 1), 00 =0(N +1, 1), (35)

ouf =rand(N +1, 1), 0vF =0(N +1, 1), (36)

ouf =I(N+1, M+1), o =I(N+1, M+1). (37)

n n

Table 1. Numerical results of problem (34)
with e = 10~ 15 and initials (35).

N =M  Error of w m CPU times

20 0.0508 9 0.268
40 0.0116 10 0.633
80 0.0056 10 2.711
160 0.0028 10 16.636

Nonlinear Anal. Model. Control, 29(2):244-264, 2024


https://doi.org/10.15388/namc.2024.29.34196

262 0. Yildirim

Table 2. Numerical results of problem (34)
with & = 10720 and initials (36).

N =M  Error of w m CPU times

20 0.0508 10 0.292
40 0.0116 11 0.713
80 0.0056 12 3.260
160 0.0028 12 19.916

Table 3. Numerical results of problem (34)
with & = 10720 and initials (37).

N = M  Error of w m CPU times

20 0.0508 10 0.292
40 0.0116 11 0.923
80 0.0056 12 3.191
160 0.0028 12 20.150

Difference scheme (7) is used together with fixed point iteration to obtain numerical
solutions. By the numerical results it is observed that the difference scheme (34) converges
to a solution for different N = M values, initial vectors ouﬁ, val, termination criteria € at
different iteration numbers m. When reaching the maximum difference value at specific
grid points of two successive results gets less than ¢, the iterative process stops. We
noticed that for several different € and initial values Ouﬁ/, vaL presented at (35)—(37), the
errors decrease. On the other hand, the number of iterations and the CPU times increase
for certain N = M values. The results of numerical experiments support the theoretical

results and verify the efficiency of the numerical method.

5 Conclusion

This study presents the unique solvability of the system of finite-difference schemes
for coupled sine-Gordon equations. The existence and uniqueness of the solutions are
proved by the variational formulation. A useful unified numerical method that combines
the second-order accuracy unconditionally stable difference scheme with the fixed point
iteration is presented. Numerical implementations verify the theoretical results, which
supports the efficiency of the unified method. In future studies, unconditionally stable
difference schemes corresponding to multidimensional nonlinear systems of PDEs, which
are derived from biological and phase-field models, will be obtained. The weak and global
solutions of these systems of difference schemes will be studied. Perturbation problems
corresponding to these problems will also be studied.
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