
Nonlinear Analysis: Modelling and Control, Vol. 29, No. 2, 224–243
https://doi.org/10.15388/namc.2024.29.34072

Press

Positive solutions for Hadamard-type fractional
differential equations with nonlocal conditions
on an infinite interval*

Chengbo Zhai1 , Rui Liu

School of Mathematical Sciences, Shanxi University,
Taiyuan 030006, Shanxi, China
Key Laboratory of Complex Systems and Data Science
of Ministry of Education, Shanxi University,
Taiyuan 030006, Shanxi, China
cbzhai@sxu.edu.cn

Received: April 20, 2023 / Revised: October 25, 2023 / Published online: January 9, 2024

Abstract. The purpose of this paper is to analyse the local existence and uniqueness of positive
solutions for a Hadamard-type fractional differential equation with nonlocal boundary conditions
on an infinite interval. The technique used to arrive our results depends on two fixed point theorems
of a sum operator in partial ordering Banach spaces. The local existence and uniqueness of positive
solution is given, and we can make iterative sequences to approximate the unique positive solution.
For the illustration of the main results, we list two concrete examples in the last section.
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1 Introduction

In present article, we consider the following form of Hadamard-type fractional boundary
value problem on an infinite interval:

HDα
1+x(t) + a(t)f

(
t, x(t)

)
+ b(t)g

(
t, x(t)

)
= 0, t ∈ (1,+∞),

x(1) = x′(1) = 0, HDα−1
1+ x(+∞) =

m∑
i=1

αHi I
βi

1+x(η) + c

n∑
j=1

σjx(ξj),
(1)

where HDα
1+ is the Hadamard-type fractional derivative of order α, 2 < α < 3; HIβi

1+

is the Hadamard-type fractional integral of order βi > 0 (i = 1, 2, . . . ,m); 1 < η <
ξ1 < ξ2 < · · · < ξn < +∞; c, αi, σj > 0 (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) are given
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constants with

Γ(α)−
m∑
i=1

αi
Γ(α)

Γ(α+ βi)
(ln η)α+βi−1 − c

n∑
j=1

σj(ln ξj)
α−1 := ∆ > 0,

a, b ∈ C(J,R+), f, g ∈ C(J × R+,R+), J = [1,+∞), R+ = [0,+∞). We will inves-
tigate the local existence and uniqueness of positive solutions for (1) by using different
methods comparing with ones in literature.

Recently, fractional differential equations have aroused an incredible attention among
researchers due to their applications for modeling real world problems in areas of math-
ematical and natural sciences. There has been a rapid growth in the number of fractional
differential equations from both theoretical and applied perspectives; see [3–5,9,13,14,16,
17, 19–22] and references therein. Among the class of fractional derivatives, Hadamard-
type fractional derivative is an important concept, which was first introduced in 1892 [11].
The integral’s kernel in its definition contains a logarithmic function of arbitrary exponent.
Hadamard-type fractional differential equations can be used to design and optimized
controls for creating more accurate control models, as well as to describe the nonlinear
behavior of materials, transport characteristics of media, etc. In the process, many math-
ematical models that simplify out of practical problems involve solving them on infinite
intervals. As it is known well, there have been some papers reported on boundary value
problems of Hadamard fractional differential equations; see previous works [1, 6–8, 18,
29]. For example, in [2], by applying fixed point theorems for multivalued mapping, the
authors obtained the sufficient conditions for the existence results to a boundary value
problem of Hadamard fractional differential inclusions

HDαx(t) ∈ F
(
t, x(t)

)
, t ∈ (1, e), α ∈ (1, 2],

x(1) = 0, x(e) = HIβx(η),

where F : [1, e] × R → %(R) is a multivalued mapping, %(R) denotes a family of non-
empty subsets of R.

In [15], the authors considered a Hadamard fractional nonlocal boundary value prob-
lem

HD%y(τ) = g
(
τ, y(τ)

)
, τ ∈ [1, T ],

y(1) = 0, y′(0) = 0, HDςy(T ) = ωHJ γy(ϕ), 1 < ϕ < T,

where 2 < % 6 3, 1 < ς < 2, g : [1, T ] × R → R is a given continuous function, and
ω is a positive real constant. They established the existence and the uniqueness results,
and the methods used in their proofs contain the Leray–Schauder nonlinear alternative,
Leray–Schauder degree theorem, Krasnoselskii’s fixed point theorem, Schaefer’s fixed
point theorem, Banach fixed point theorem, and nonlinear contractions.

In [21], the authors investigated the following p-Laplacian Hadamard fractional-order
three-point boundary value problem:

−Dα
(
ϕp
(
Dβy(t)

))
= f

(
t, y(t)

)
, t ∈ (1, e),

y(1) = y(e) = δy(1) = δy(e) = 0, Dβy(1) = 0, Dβy(e) = bDβy(η),
(2)
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where α ∈ (1, 2], β ∈ (3, 4] are real numbers, ϕp is p-Laplacian. The sufficient conditions
for the existence of positive solutions for (2) are based upon the Avery–Henderson fixed
point theorem and the monotone iterative technique.

In a recent paper [28], the authors studied the following fractional differential equation
with nonlocal boundary conditions:

HDα
1+x(t) + a(t)f

(
t, x(t)

)
= 0, t ∈ (1,+∞),

x(1) = x′(1) = 0, HDα−1
1+ x(+∞) =

m∑
i=1

αHi I
βi

1+x(η) + b

n∑
j=1

σjx(ξj),
(3)

where HDα
1+ is the Hadamard-type fractional derivative of order α with 2 < α < 3;

HIβi

1+ is the Hadamard-type fractional integral of order βi > 0 (i = 1, 2, . . . ,m); 1 <
η < ξ1 < ξ2 < · · · < ξn < +∞. Some famous methods have been used, which include
Schauder’s fixed point theorem, Banach’s contraction mapping principle, the monotone
iterative method, and the Avery–Peterson fixed point theorem, and they got the existence,
uniqueness, and multiplicity results for positive solutions to (3).

It is worth noticing that there seems to be a scarcity of literature about the investigation
of Hadamard-type fractional differential equation boundary value problems on infinite
intervals, and very few have derived the uniqueness results apart from using Banach’
theorem. That is because the definition and properties of Hadamard fractional derivatives
may be more complicated on infinite intervals. The special case of infinite intervals and
the nonlocal boundary value condition need to be taken into account when using the
related theorem to solve this type of problem. Therefore, we need to choose a suitable
fixed point theorem to solve it.

Different from the above works, we will consider the local unique of positive solutions
for (1) by the more recent methods. Motivated by the papers [23, 26, 27], based upon two
fixed point theorems of a sum operator, we aim to obtain the sufficient conditions ensuring
the local existence and uniqueness of positive solutions for (1). We prepare the following
sections of this paper. Section 2 includes some preliminaries, which play a significant
role in the study of the given problem. We also summarize some properties of the corre-
sponding Green’s function. The main theorems are indicated and proved in Section 3, and
we construct two iterative sequences that converge to the local unique positive solutions
for (1). In Section 4, two concrete examples are given as applications of our main results.

2 Preliminaries and previous results

For the convenience, we recall some definitions, lemmas, and fixed point theorems that
will be used in our discussions.

Definition 1. (See [12].) For a function f : [1,+∞)→ R, the Hadamard-type fractional
derivative of order α is

HDα
1+f(t) =

1

Γ(n− α)

(
t

d

dt

)n t∫
1

(
log

t

s

)n−α−1
f(s)

ds

s
, n− 1 < α < n,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Hadamard-type fractional differential equations with nonlocal conditions 227

where n = [α] + 1, [α] denotes the integer part of the real number α, and log(·) =
loge(·).

Definition 2. (See [12].) For a function f : [1,+∞)→ R, the Hadamard-type fractional
integral of order α is

HIα1+f(t) =
1

Γ(α)

t∫
1

(
log

t

s

)α−1
f(s)

ds

s
, α > 0,

provided the integral exists.

Lemma 1. (See [28].) Let y(t) : J → R+ with
∫ +∞
1

y(s) ds/s < +∞, then the fol-
lowing Hadamard-type fractional differential equation

HDα
1+x(t) + y(t) = 0, 2 < α < 3, t ∈ (1,+∞),

x(1) = x′(1) = 0, HDα−1
1+ x(+∞) =

m∑
i=1

αHi I
βi

1+x(η) + c

n∑
j=1

σjx(ξj)

has a solution

x(t) =

+∞∫
1

G(t, s)y(s)
ds

s
, t ∈ J,

where

G(t, s) = G1(t, s) +G2(t, s), (4)

G1(t, s) = g0(t, s, α) =
1

Γ(α)

{
(ln t)α−1 − (ln t

s )α−1, 1 6 s 6 t < +∞,
(ln t)α−1, 1 6 t 6 s < +∞,

(5)

G2(t, s) =
(ln t)α−1

∆

m∑
i=1

αig0(η, s, α+ βi) +
(ln t)α−1

∆

n∑
j=1

cσjg0(ξj , s, α). (6)

Lemma 2. (See [28].) The Green’s functions G(t, s), G1(t, s) defined by (4) and (5)
satisfy the following conditions:

(i) G(t, s), G1(t, s) are nonnegative and continuous for (t, s) ∈ J × J ;
(ii) G1(t, s) is increasing with respect to t;

(iii) for all (t, s) ∈ J × J ,

G(t, s)

1 + (ln t)α−1
6

1

∆
,

G1(t, s)

1 + (ln t)α−1
6

1

Γ(α)
.

In the following, we will specifically give two fixed point theorems for a sum operator
and some details, which are necessary for our study.
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Let (E, ‖·‖) be a real Banach space, and let θ be the zero element of E. E is partially
ordered by a cone P ⊂ E, i.e., x 6 y if and only if y − x ∈ P . A cone P is called
normal if there exists a constant N > 0 such that, for all x, y ∈ E, θ 6 x 6 y implies
‖x‖ 6 N‖y‖. In this case, N is called the normality constant of P .

For x, y ∈ E, the notation x ∼ y denotes that there exist λ > 0 and µ > 0 such that
λx 6 y 6 µx. Further, ∼ is an equivalence relation. For h > θ (i.e., h > θ and h 6= θ),
define Ph = {x ∈ E: x ∼ h}. Clearly, Ph ⊂ P .

Definition 3. (See [10].) An operator A : E → E is increasing (decreasing) if x 6 y
implies Ax 6 Ay(Ax > Ay).

Definition 4. (See [10].) Let 0 < γ < 1. An operator A : P → P is said to be γ-
concave if A(tx) > tγAx for t ∈ (0, 1), x ∈ P . An operator A : P → P is called to be
subhomogeneous if A(tx) > tAx for t > 0, x ∈ P .

In [24, 25], the authors investigated a sum operator equation

Ax+Bx = x, (7)

where A and B are monotone operators. They gave the existence and uniqueness of
positive solutions for (7) and obtained some useful theorems.

Lemma 3. (See [25].) Let E be a real Banach space. P is a normal cone in E, A,B :
P → P are increasing operators, A is γ-concave, and B is subhomogeneous. Suppose
that

(i) there is h > θ such that Ah ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ0 > 0 such that Ax > δ0Bx for all x ∈ P .

Then the operator equation (7) has a unique solution x∗ ∈ Ph. Further, making the
sequence

xn = Axn−1 +Bxn−1, n = 1, 2 . . . ,

for any initial value x0 ∈ Ph, one has xn → x∗ as n→∞.

Lemma 4. (See [24].) Let E be a real Banach space. P is a normal cone in E, A :
P → P is an increasing operator, and B : P → P is a decreasing operator. In addition,

(i) for x ∈ P and t ∈ (0, 1), there exist ϕi(t) ∈ (t, 1), i = 1, 2, such that

A(tx) > ϕ1(t)Ax, B(tx) 6
1

ϕ2(t)
Bx; (8)

(ii) there is h0 ∈ Ph such that Ah0 +Bh0 ∈ Ph.

Then the operator equation (7) has a unique solution x∗ ∈ Ph. Further, for any initial
values x0, y0 ∈ Ph, making the sequences

xn = Axn−1 +Byn−1, yn = Ayn−1 +Bxn−1, n = 1, 2 . . . ,

one has xn → x∗, yn → x∗ as n→∞.

Remark 1. If B is a null operator, the conclusions in Lemmas 3 and 4 are still true.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Hadamard-type fractional differential equations with nonlocal conditions 229

3 Main results

In this section, we will apply Lemmas 3 and 4 to obtain the local existence and uniqueness
of positive solution for (1).

Let E = {x ∈ C(J,R): supt∈J |x(t)|/(1 + (ln t)α−1) < +∞} equipped with the
norm ‖x‖E = supt∈J |x(t)|/(1 + (ln t)α−1), then (E, ‖·‖E) is a Banach space. Define
a cone P = {x ∈ E: x(t) > 0 on J}. This space is equipped with a partial order

x 6 y ⇐⇒ x(t) 6 y(t), t ∈ J.

If 0 6 x(t) 6 y(t), then

sup
t∈J

|x(t)|
1 + (ln t)α−1

6 sup
t∈J

|y(t)|
1 + (ln t)α−1

=⇒ ‖x‖ 6 ‖y‖,

therefore, P is a normal cone in E.
To prove the main results, we need the following assumptions:

(H1) a, b : J → R+ are continuous, and 0 <
∫ +∞
1

a(s) ds/s
∫ +∞
1

b(s) ds/s <
+∞;

(H2) f, g : J × R+ → R+ are increasing with respect to the second argument,
f(t, 0), g(t, 0) 6≡ 0, t ∈ J ;

(H3) when x is bounded, f(t, (1+(ln t)α−1)x) and g(t, (1+(ln t)α−1)x) are bounded
with respect to t for t ∈ J ;

(H4) g(t, τx) > τg(t, x) for τ ∈ (0, 1), t ∈ J , x ∈ R+, and there exists a constant
γ ∈ (0, 1) such that f(t, τx) > τγf(t, x) for all t ∈ J , τ ∈ (0, 1), x ∈ R+;

(H5) there exists a constant δ > 0 such that a(t)f(t, x) > δb(t)g(t, x), t ∈ J ,
x ∈ R+;

(H6) f : J × R+ → R+ is increasing in x, g : J × R+ → R+ is decreasing in x,
f(t, 0), g(t, 0) 6≡ 0, t ∈ J ;

(H7) for τ ∈ (0, 1), there exist ϕi(τ) ∈ (τ, 1) (i = 1, 2) such that for t ∈ J , x ∈ R+,
f(t, τx) > f(t, x)ϕ1(τ), g(t, τx) 6 g(t, x)/ϕ2(τ).

Let h(t) = (ln t)α−1, t ∈ J . As supt∈J |h(t)|/(1 + (ln t)α−1) = 1 < +∞, we have
h ∈ P . In the following, we will consider a set Ph = {x ∈ E: x ∼ h}. From Lemma 1
we know that problem (1) has an integral formulation given by

x(t) =

+∞∫
1

G(t, s)a(s)f
(
s, x(s)

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, x(s)

) ds

s
,

where G(t, s) is given as in (4). Define two operators A : P → E and B : P → E by

Ax(t) =

+∞∫
1

G(t, s)a(s)f
(
s, x(s)

) ds

s
, Bx(t) =

+∞∫
1

G(t, s)b(s)g
(
s, x(s)

) ds

s
.

Then we can see that x is the solution of problem (1) if and only if x = Ax+Bx.
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Lemma 5. Assume that (H1)–(H3) hold, then A : P → P , B : P → P .

Proof. If x ∈ P , then x(t)/(1 + (ln t)α−1) < +∞ for all t ∈ J . From (H3) there exists
Mx > 0 such that f(s, (1 + (ln s)α−1) · x(s)/(1 + (ln s)α−1)) 6 Mx. Moreover, from
(H1), (H2), and Lemma 2 we have

Ax(t)

1 + (ln t)α−1
=

+∞∫
1

G(t, s)

1 + (ln t)α−1
a(s)f

(
s, x(s)

) ds

s

6

+∞∫
1

1

∆
a(s)f

(
s, (1 + (ln s)α−1

)
· x(s)

1 + (ln s)α−1

)
ds

s

6
Mx

∆

+∞∫
1

a(s)
ds

s
< +∞,

and by Lemma 2, we know that Ax ∈ E and Ax(t) > 0 on J , so, A : P → P . Similarly,
B : P → P . The proof is complete.

Lemma 6. Assume that f , g satisfy (H1), (H2), and (H4). Then A : P → P is an in-
creasing γ-concave operator, andB : P → P is an increasing subhomogeneous operator.

Proof. Firstly, we prove that A and B are two increasing operators. For x, y ∈ P with
x > y, we have x(t) > y(t), t ∈ J , and by (H1), (H2), and Lemma 2,

Ax(t) =

+∞∫
1

G(t, s)a(s)f
(
s, x(s)

) ds

s
>

+∞∫
1

G(t, s)a(s)f
(
s, y(s)

) ds

s
= Ay(t).

So, Ax > Ay. Also, we can get Bx > By.
Secondly, we show that A is a γ-concave operator. For any τ ∈ (0, 1) and x ∈ P ,

from (H1), (H2), (H4), and Lemma 2 we obtain

A(τx)(t) =

+∞∫
1

G(t, s)a(s)f
(
s, τx(s)

) ds

s
> τγ

+∞∫
1

G(t, s)a(s)f
(
s, x(s)

) ds

s

= τγAx(t).

Hence, A(τx) > τγAx for τ ∈ (0, 1), x ∈ P .
Finally, we prove thatB is a subhomogeneous operator. For any τ ∈ (0, 1) and x ∈ P ,

by (H1), (H2), (H4), and Lemma 2, we obtain

B(τx)(t) =

+∞∫
1

G(t, s)b(s)g
(
s, τx(s)

) ds

s
> τ

+∞∫
1

G(t, s)b(s)g
(
s, x(s)

) ds

s

= τBx(t).

That is, B(τx) > τBx for τ ∈ (0, 1), x ∈ P . The proof is complete.
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Lemma 7. Assume that (H1)–(H3) are satisfied. Then Ah ∈ Ph and Bh ∈ Ph.

Proof. As h ∈ P , then h(t)/(1 + (ln t)α−1) < +∞ for all t ∈ J , from (H3) there exists
Mh > 0 such that f(s, (1 + (ln t)α−1)h(s)/(1 + (ln t)α−1)) 6Mh. Let

l1 =

∑n
j=1 cσj

∆
·
ξm∫
1

G1(ξj , s)a(s)f(s, 0)
ds

s
,

l2 =
Mh

Γ(α)

+∞∫
1

a(s)
ds

s
+
Mh

∆

m∑
i=1

αi

+∞∫
1

g0(η, s, α+ βi)a(s)
ds

s

+
Mh

∆

n∑
j=1

cσj

+∞∫
1

G1(ξj , s)a(s)
ds

s
.

From (H1), (H2), and Lemmas 1, 2

Ah(t) =

+∞∫
1

G(t, s)a(s)f
(
s, (ln s)α−1

) ds

s

>

+∞∫
1

G(t, s)a(s)f(s, 0)
ds

s
>

+∞∫
1

G2(t, s)a(s)f(s, 0)
ds

s

=
(ln t)α−1

∆

+∞∫
1

[
m∑
i=1

αig0(η, s, α+ βi) +

n∑
j=1

cσjG1(ξj , s)

]
a(s)f(s, 0)

ds

s

>
(ln t)α−1

∆

+∞∫
1

n∑
j=1

cσjG1(ξj , s)a(s)f(s, 0)
ds

s

=
(ln t)α−1

∆

n∑
j=1

cσj

+∞∫
1

G1(ξj , s)a(s)f(s, 0)
ds

s

>

{∑n
j=1 cσj

∆

ξm∫
1

G1(ξj , s)a(s)f(s, 0)
ds

s

}
· (ln t)α−1 = l1 · (ln t)α−1 = l1 · h(t).

Also, from (H3)

Ah(t) =

+∞∫
1

G(t, s)a(s)f
(
s, h(s)

) ds

s

=

+∞∫
1

G(t, s)a(s)f

(
s,
(
1 + (ln t)α−1

) h(s)

1 + (ln t)α−1

)
ds

s
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6

+∞∫
1

G(t, s)a(s)Mh
ds

s

6

+∞∫
1

Mh · (ln t)α−1

Γ(α)
a(s)

ds

s
+

+∞∫
1

Mh · (ln t)α−1

∆

m∑
i=1

αig0(η, s, α+βi)a(s)
ds

s

+

+∞∫
1

Mh · (ln t)α−1

∆

n∑
j=1

cσjG1(ξj , s)a(s)
ds

s

=

{
Mh

Γ(α)

+∞∫
1

a(s)
ds

s
+
Mh

∆

m∑
i=1

αi

+∞∫
1

g0(η, s, α+ βi)a(s)
ds

s

+
Mh

∆

n∑
j=1

cσj

+∞∫
1

G1(ξj , s)a(s)
ds

s

}
· (ln t)α−1 = l2 · (ln t)α−1 = l2 · h(t).

Note that f(s, 0) 6≡ 0, G1(ξj , s) > 0,
∫ +∞
1

a(s) ds/s > 0. So, we know G1(ξj , s)a(s)×
f(s, 0) 6≡ 0 for s ∈ J , therefore

ξm∫
1

G1(ξj , s)a(s)f(s, 0)
ds

s
> 0.

From (H2), (H3) we have that f(s, 0) 6 f(s, h(s)) 6 Mh for t ∈ J , then combining
with

∫ +∞
1

a(s) ds/s > 0,

∑n
j=1 cσj

∆

ξm∫
1

G1(ξj , s)a(s)f(s, 0)
ds

s
6
Mh

∆

n∑
j=1

cσj

+∞∫
1

G1(ξj , s)a(s)
ds

s
,

Mh

Γ(α)

+∞∫
1

a(s)
ds

s
+
Mh

∆

m∑
i=1

αi

+∞∫
1

g0(η, s, α+ βi)a(s)
ds

s
> 0.

We can conclude 0 < l1 6 l2 and thus l1h(t) 6 Ah(t) 6 l2h(t), t ∈ J . So, we have
Ah ∈ Ph. Also,

Bh(t) =

+∞∫
1

G(t, s)b(s)g
(
s, h(s)

) ds

s

>

{∑n
j=1 cσj

∆

ξn∫
1

G1(ξj , s)b(s)g(s, 0)
ds

s

}
· h(t),
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Bh(t) =

+∞∫
1

G(t, s)b(s)g
(
s, h(s)

) ds

s

6

{
Mh

Γ(α)

+∞∫
1

b(s)
ds

s
+
Mh

∆

m∑
i=1

αi

+∞∫
1

g0(η, s, α+ βi)b(s)
ds

s

+
Mh

∆

n∑
j=1

cσj

+∞∫
1

G1(ξj , s)b(s)
ds

s

}
· h(t).

On the basis of g(s, 0) 6≡ 0,
∫ +∞
1

b(s) ds/s > 0, g(s, 0) 6 g(s, h(s)) 6 Mh for t ∈ J ,
we can easily prove Bh ∈ Ph. The proof is complete.

Combining Lemmas 5–7, we are in a position to establish the local existence and
uniqueness of positive solution for (1).

Theorem 1. Suppose assumptions (H1)–(H5) are satisfied. Then problem (1) has a unique
positive solution x∗ in Ph. For any initial value x0 ∈ Ph, defining a sequence by

xn+1(t) =

+∞∫
1

G(t, s)a(s)f
(
s, xn(s)

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, xn(s)

) ds

s
,

n = 0, 1, 2 . . . , we have xn(t)→ x∗(t) as n→∞, where G(t, s) is given as in (4).

Proof. From Lemmas 5–7, we just need to prove that condition (ii) of Lemma 3 is also
satisfied. For x ∈ P , by (H1), (H2), (H5), and Lemma 2,

Ax(t) =

+∞∫
1

G(t, s)a(s)f
(
s, x(s)

) ds

s
> δ

+∞∫
1

G(t, s)b(s)g
(
s, x(s)

) ds

s
= δBx(t).

So, we obtain Ax > δBx, x ∈ P . Therefore, by using Lemma 3, operator equation
Ax+Bx = x has a unique solution x∗ ∈ Ph. Thus, we get that

x∗(t) =

+∞∫
1

G(t, s)

[
a(s)f

(
s, x∗(s)

) ds

s
+ b(s)g

(
s, x∗(s)

)] ds

s
,

and it is the unique positive solution of problem (1) in Ph. Moreover, for any initial value
x0 ∈ Ph, the sequence xn = Axn−1 + Bxn−1, n = 1, 2, . . ., satisfies xn(t) → x∗(t) as
n→∞. That is,

xn+1(t) =

+∞∫
1

G(t, s)a(s)f
(
s, xn(s)

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, xn(s)

) ds

s
,

n = 0, 1, 2 . . . . For any initial value x0 ∈ Ph, we have xn(t) → x∗(t) as n → ∞. The
proof is complete.
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Corollary 1. Let α, c, αi, σj (i = 1, 2 . . .m, j = 1, 2 . . . n) be given in (1), and let

(H1′) 0 <
∫ +∞
1

a(s) ds/s < +∞;
(H2′) f : J × R+ → R+ is increasing in x, f(t, 0) 6≡ 0, t ∈ J ;
(H3′) when x is bounded, f(t, 1+(ln t)α−1x) is bounded with respect to t for t ∈ J ;
(H4′) there exists a constant γ ∈ (0, 1) such that f(t, τx) > τγf(t, x) for all t ∈ J ,

τ ∈ (0, 1), x ∈ R+.

Then the following problem

HDα
1+x(t) + a(t)f

(
t, x(t)

)
= 0, t ∈ (1,+∞),

x(1) = x′(1) = 0, HDα−1
1+ x(+∞) =

m∑
i=1

αHi I
βi

1+x(η) + c

n∑
j=1

σjx(ξj)
(9)

has a unique positive solution x∗ in Ph, where h(t) = (ln t)α−1, t ∈ J . Further, defining
a sequence by

xn+1(t) =

+∞∫
1

G(t, s)a(s)f
(
s, xn(s)

) ds

s
, n = 0, 1, 2 . . . ,

for any initial value x0 ∈ Ph, we have xn(t)→ x∗(t) as n→∞, where G(t, s) is given
as in (4).

Proof. From Remark 1 and Theorem 1 the conclusions hold.

Lemma 8. Assume that f , g satisfy (H1), (H3), and (H6), then Ah+Bh ∈ Ph.

Proof. Let

Nh = max
{

max
t∈J

{
f
(
t, h(t)

)}
, max
t∈J

{
g
(
t, h(t)

)}}
,

l3 =

∑n
j=1 cσj

∆

ξm∫
1

G1(ξj , s)a(s)f(s, 0)
ds

s

+

∑n
j=1 cσj

∆

ξm∫
1

G1(ξj , s)b(s)g
(
s, h(s)

) ds

s
,

l4 =
2Nh
Γ(α)

+∞∫
1

ρ(s)
ds

s
+

2Nh
∆

m∑
i=1

αi

+∞∫
1

g0(η, s, α+ βi)ρ(s)
ds

s

+
2Nh
∆

n∑
j=1

cσj

+∞∫
1

G1(ξj , s)ρ(s)
ds

s
,

where ρ(s) = maxs∈J{a(s), b(s)}.
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From (H1), (H6), and Lemmas 1, 2

Ah(t) +Bh(t)

=

+∞∫
1

G(t, s)a(s)f
(
s, (ln s)α−1

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, (ln s)α−1

) ds

s

>

+∞∫
1

G(t, s)a(s)f(s, 0)
ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, (ln s)α−1

) ds

s

>

+∞∫
1

(ln t)α−1

∆

n∑
j=1

cσjG1(ξj , s)a(s)f(s, 0)
ds

s

+

+∞∫
1

(ln t)α−1

∆

n∑
j=1

cσjG1(ξj , s)b(s)g
(
s, (ln s)α−1

) ds

s

>

{∑n
j=1 cσj

∆

ξm∫
1

G1(ξj , s)a(s)f(s, 0)
ds

s

+

∑n
j=1 cσj

∆

ξm∫
1

G1(ξj , s)b(s)g
(
s, (ln s)α−1

) ds

s

}
· (ln t)α−1

= l3 · (ln t)α−1 = l3 · h(t).

Also, from (H3)

Ah(t) +Bh(t)

=

+∞∫
1

G(t, s)a(s)f
(
s, (ln s)α−1

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, (ln s)α−1

) ds

s

=

+∞∫
1

G(t, s)a(s)f

(
s, (1 + (ln s)α−1)

h(s)

1 + (ln s)α−1

)
ds

s

+

+∞∫
1

G(t, s)b(s)g

(
s, (1 + (ln s)α−1)

h(s)

1 + (ln s)α−1

)
ds

s

6

+∞∫
1

G(t, s)a(s)Nh
ds

s
+

+∞∫
1

G(t, s)b(s)Nh
ds

s

6

+∞∫
1

Nh · (ln t)α−1

Γ(α)
a(s)

ds

s
+

+∞∫
1

Nh · (ln t)α−1

∆

m∑
i=1

αig0(η, s, α+ βi)a(s)
ds

s
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+

+∞∫
1

Nh · (ln t)α−1

∆

n∑
j=1

cσjG1(ξj , s)a(s)
ds

s

+

+∞∫
1

Nh · (ln t)α−1

Γ(α)
b(s)

ds

s
+

+∞∫
1

Nh · (ln t)α−1

∆

m∑
i=1

αig0(η, s, α+ βi)b(s)
ds

s

+

+∞∫
1

Nh · (ln t)α−1

∆

n∑
j=1

cσjG1(ξj , s)b(s)
ds

s

6

+∞∫
1

2Nh · (ln t)α−1

Γ(α)
ρ(s)

ds

s
+

+∞∫
1

2Nh · (ln t)α−1

∆

m∑
i=1

αig0(η, s, α+ βi)ρ(s)
ds

s

+

+∞∫
1

2Nh · (ln t)α−1

∆

n∑
j=1

cσjG1(ξj , s)ρ(s)
ds

s

=

{
2Nh
Γ(α)

+∞∫
1

ρ(s)
ds

s
+

2Nh
∆

m∑
i=1

αi

+∞∫
1

g0(η, s, α+ βi)ρ(s)
ds

s

+
2Nh
∆

n∑
j=1

cσj

+∞∫
1

G1(ξj , s)ρ(s)
ds

s

}
· (ln t)α−1

= l4 · (ln t)α−1 = l4 · h(t).

Note that f(s, 0) 6≡ 0, G1(ξj , s) > 0,
∫ +∞
1

a(s) ds/s > 0. According to the properties
of the functions G1, b, g, we can conclude l3 > 0. From (H3), (H6) we have f(s, 0) 6
f(s, h(s)) 6 Nh, g(s, h(s)) 6 Nh for t ∈ J . Combining

0 <

ξm∫
1

a(s)
ds

s
6

+∞∫
1

ρ(s)
ds

s
, 0 <

ξm∫
1

b(s)
ds

s
6

+∞∫
1

ρ(s)
ds

s
,

we have∑n
j=1 cσj

∆
·
ξm∫
1

G1(ξj , s)a(s)f(s, 0)
ds

s
+

∑n
j=1 cσj

∆
·
ξm∫
1

G1(ξj , s)b(s)g
(
s, h(s)

) ds

s

6
2Nh
∆

n∑
j=1

cσj

+∞∫
1

G1(ξj , s)ρ(s)
ds

s
,

2Nh
Γ(α)

+∞∫
1

ρ(s)
ds

s
+

2Nh
∆

m∑
i=1

αi

+∞∫
1

g0(η, s, α+ βi)ρ(s)
ds

s
> 0.
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Therefore, 0 < l3 6 l4 and thus l3h(t) 6 Ah(t) + Bh(t) 6 l4h(t), t ∈ J . Therefore,
Ah+Bh ∈ Ph. The proof is complete.

Theorem 2. Suppose that conditions (H1), (H3), and (H6)–(H7) are fulfilled. Then prob-
lem (1) has a unique positive solution x∗ in Ph. For given initial values x0, y0 ∈ Ph,
constructing the following sequences

xn+1(t) =

+∞∫
1

G(t, s)a(s)f
(
s, xn(s)

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, yn(s)

) ds

s
,

yn+1(t) =

+∞∫
1

G(t, s)a(s)f
(
s, yn(s)

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, xn(s)

) ds

s
,

n = 0, 1, 2 . . . , we have xn(t) → x∗(t), yn(t) → x∗(t) as n → ∞, where G(t, s) is
given as in (4).

Proof. From (H1), (H6), and Lemma 2 we know that A : P → P is increasing and B :
P → P is decreasing. Further, by (H7), we have

A(τx)(t) =

+∞∫
1

G(t, s)a(s)f
(
s, τx(s)

) ds

s
> ϕ1(τ)

+∞∫
1

G(t, s)a(s)f
(
s, x(s)

) ds

s

= ϕ1(τ)Ax(t),

B(τx)(t) =

+∞∫
1

G(t, s)b(s)g
(
s, τx(s)

) ds

s
6

1

ϕ2(τ)

+∞∫
1

G(t, s)b(s)g
(
s, x(s)

) ds

s

=
1

ϕ2(τ)
Bx(t).

We can infer that A and B satisfy (8). By Lemma 8, we know that condition (ii) of
Lemma 4 holds. Consequently, by Lemma 4, operator equationAx+Bx = x has a unique
solution x∗ in Ph. For given initial values x0, y0 ∈ Ph, putting the sequences

xn = Axn−1 +Byn−1, yn = Ayn−1 +Bxn−1 n = 1, 2, . . . ,

we have xn(t) → x∗(t), yn(t) → x∗(t) as n → ∞. Evidently, x∗ is the unique positive
solution for problem (1) in Ph. For given initial values x0, y0 ∈ Ph, making the following
sequences

xn+1(t) =

+∞∫
1

G(t, s)a(s)f
(
s, xn(s)

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, yn(s)

) ds

s
,

yn+1(t) =

+∞∫
1

G(t, s)a(s)f
(
s, yn(s)

) ds

s
+

+∞∫
1

G(t, s)b(s)g
(
s, xn(s)

) ds

s
,
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n = 0, 1, 2 . . . , we have xn(t) → x∗(t), yn(t) → x∗(t) as n → ∞. The proof is
complete.

Corollary 2. Let α, c, αi, σj (i = 1, 2 . . . ,m, j = 1, 2 . . . , n) be given in (1). Assume
that f satisfies (H1′)–(H3′) and

(H5′) for τ ∈ (0, 1), there exist ϕ(τ) ∈ (τ, 1) such that f(t, τx) > ϕ(τ)f(t, x) for
t ∈ J , x ∈ R+.

Then there is a unique positive solution x∗ in Ph for (9), where h(t) = (ln t)α−1, t ∈ J ,
and for any initial value x0 ∈ Ph, constructing the sequence

xn+1(t) =

+∞∫
1

G(t, s)a(s)f
(
s, xn(s)

) ds

s
, n = 0, 1, 2 . . . ,

we have xn(t)→ x∗(t) as n→∞, where G(t, s) is given as in (4).

Proof. From Remark 1 and Theorem 2 the conclusions hold.

Remark 2. In literature, the unique of solutions for fractional equations was obtained
always by Banach contractive theorem, and the solution is global. Here we consider frac-
tional problems by using different methods-two interesting fixed point theorems of a sum
operator in partial ordering Banach spaces, and further we can get the local existence
and uniqueness of positive solutions, which can be seen seldom. For example, letting
b(t)g(t, x(t)) = 0, (1) is reduced to be problem considered in [21]. Unlike the results
obtained in this article, we not only get the uniqueness of positive solutions, but also
establish the local uniqueness, which has even more applications in practical problems.

4 Examples

In this section, we present two examples to illustrate our main results.

Example 1. Consider the following Hadamard-type fractional differential equations on
an infinite interval:

HD
5/2
1+ x(t) + te−t

2 + [x(t)]1/2

1 + (ln t)3/2
+ te−2t

1 + [x(t)]1/3

1 + (ln t)3/2
= 0, t ∈ (1,+∞),

x(1) = x′(1) = 0, HD
3/2
1+ x(+∞) =

2∑
i=1

αHi I
βi

1+x(e1/2) +
Γ( 5

2 )

6

3∑
j=1

σjx(ξj).

(10)

Notice that (10) is a particular case of (1) with

α =
5

2
, m = 2, n = 3, α1 = 1, α2 = 6, η = e1/2, β1 =

1

2
, β2 =

3

2
,

c =
Γ( 5

2 )

6
, σ1 =

1

4
, σ2 =

3

8
√

2
, σ3 =

2

3
√

3
, ξ1 = e, ξ2 = e2, ξ3 = e3.
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Take

a(t) = te−t, b(t) = te−2t, f(t, x) =
2 + x1/2

1 + (ln t)3/2
, g(t, x) =

1 + x1/3

1 + (ln t)3/2
.

By calculating, we have

∆ = Γ(α)−
m∑
i=1

αi
Γ(α)

Γ(α+ βi)
(ln η)α+βi−1 − c

n∑
j=1

σj(ln ξj)
α−1 =

3
√
π

16
> 0.

Clearly, a(t), b(t) are continuous with t, and

+∞∫
1

a(s)
ds

s
=

+∞∫
1

se−s
ds

s
= e−1 < +∞,

+∞∫
1

b(s)
ds

s
=

+∞∫
1

se−2s
ds

s
=

1

2
e−2 < +∞.

Obviously, f, g : J ×R+ → R+ are continuous and increasing with respect to the second
argument, f(t, 0) > 0, g(t, 0) > 0. So, conditions (H1), (H2) are satisfied.

When 0 6 x 6M ,

f
(
t,
(
1 + (ln t)α−1

)
x
)

=
2

1 + (ln t)3/2
+
(
1 + (ln t)3/2

)1/2−1
x1/2 6 2 +

√
M,

g
(
t,
(
1 + (ln t)α−1

)
x
)

=
1

1 + (ln t)3/2
+
(
1 + (ln t)3/2

)1/3−1
x1/3 6 1 +

3
√
M

for t ∈ J . Hence, condition (H3) is satisfied.
In addition, take γ = 1/2. For t ∈ J , τ ∈ (0, 1), x ∈ R+, we have

f(t, τx) =
2 + τ1/2x1/2

1 + (ln t)3/2
> τ1/2

2 + x1/2

1 + (ln t)3/2
= τ1/2f(t, x),

g(t, τx) =
1 + τ1/3x1/3

1 + (ln t)3/2
> τ

1 + x1/3

1 + (ln t)3/2
= τg(t, x).

So, condition (H4) is satisfied.
Moreover, if we take δ ∈ (0, 1], for t ∈ J , x ∈ R+, we obtain

a(t)f(t, x) =
te−t(2 + x1/2)

1 + (ln t)3/2
>
te−2t(1 + x1/3)

1 + (ln t)3/2
> δb(t)g(t, x).

So, all the conditions of Theorem 1 are satisfied. Therefore, problem (10) has a unique
positive solution x∗ inPh, where h(t) = (ln t)3/2, t ∈ J . Taking any initial value x0 ∈ Ph
and making the sequence

xn+1(t) =

+∞∫
1

G(t, s)

[
se−s

2+[xn(s)]1/2

1+(ln s)3/2
+se−2s

1+[xn(s)]1/3

1+(ln s)3/2

]
ds

s
, n = 0, 1, 2 . . . ,
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we have xn(t)→ x∗(t) as n→∞, where

G(t, s) = G1(t, s) +G2(t, s), (11)

G1(t, s) = g0

(
t, s,

5

2

)
=

4

3
√
π

{
(ln t)3/2 − (ln t

s )3/2, 1 6 s 6 t < +∞,
(ln t)3/2, 1 6 t 6 s < +∞,

(12)

G2(t, s) =
(ln t)3/2

3
√
π

16

{
g0(e1/2, s, 3) + 6g0(e1/2, s, 4)

}
+ (ln t)3/2

{
1

6
g0

(
e, s,

5

2

)
+

1

4
√

2
g0

(
e2, s,

5

2

)
+

4

9
√

3
g0

(
e3, s,

5

2

)}
. (13)

Example 2. Consider the following Hadamard-type fractional differential equations on
an infinite interval:

HD
5/2
1+ x(t) + te−t · 1 + [x(t)]γ1

1 + (ln t)3/2
+ te−2t · 1 + [1 + x(t)]−γ2

1 + (ln t)3/2
= 0, t ∈ (1,+∞),

x(1) = x′(1) = 0, HD
3/2
1+ x(+∞) =

2∑
i=1

αHi I
βi

1+x(e1/2) +
Γ( 5

2 )

6

3∑
j=1

σjx(ξj),

(14)

where γ1, γ2 ∈ (0, 1), and

α =
5

2
, m = 2, n = 3, α1 = 1, α2 = 6, η = e1/2, β1 =

1

2
, β2 =

3

2
,

c =
Γ( 5

2 )

6
, σ1 =

1

4
, σ2 =

3

8
√

2
, σ3 =

2

3
√

3
, ξ1 = e, ξ2 = e2, ξ3 = e3.

Take

a(t) = te−t, b(t) = te−2t, f(t, x) =
1 + xγ1

1 + (ln t)3/2
, g(t, x)

1 + (1 + x)−γ2

1 + (ln t)3/2
.

By calculating, we have

∆ = Γ(α)−
m∑
i=1

αi
Γ(α)

Γ(α+ βi)
(ln η)α+βi−1 − c

n∑
j=1

σj(ln ξj)
α−1 =

3
√
π

16
> 0.

Clearly, a(t) and b(t) are continuous with t, and

+∞∫
1

a(s)
ds

s
=

+∞∫
1

se−s
ds

s
= e−1 < +∞,

+∞∫
1

b(s)
ds

s
=

∫ +∞

1

se−2s
ds

s
=

1

2
e−2 < +∞.
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Obviously, f : J × R+ → R+ is increasing in x, g : J × R+ → R+ is decreasing in x,
f(t, 0) > 0, g(t, 0) > 0. So, conditions (H1) and (H6) are satisfied.

When 0 6 x 6M ,

f
(
t,
(
1 + (ln t)α−1

)
x
)

=
1

1 + (ln t)3/2
+
(
1 + (ln t)3/2

)γ1−1
xγ1 6 1 +Mγ1 ,

g
(
t,
(
1 + (ln t)α−1

)
x
)

=
1 + (1 + (1 + (ln t)3/2)x)−γ2

1 + (ln t)3/2
6 2

for t ∈ J . Hence, condition (H3) is satisfied.
Take ϕ1(τ) = τγ1 , ϕ2(τ) = τγ2 , then ϕ1(τ), ϕ2(τ) ∈ (τ, 1) for τ ∈ (0, 1). Thus,

f(t, τx) =
1 + τγ1xγ1

1 + (ln t)3/2
> τγ1

1 + xγ1

1 + (ln t)3/2
= ϕ1(τ)f(t, x),

g(t, τx) =
1 + (1 + τx)−γ2

1 + (ln t)3/2
6

1

τγ2
1 + (1 + x)−γ2

1 + (ln t)3/2
=

1

ϕ2(τ)
g(t, x).

So, Theorem 2 implies that problem (14) has a unique positive solution x∗ in Ph, where
h(t) = (ln t)3/2, t ∈ J . For given initial values x0, y0 ∈ Ph, putting the sequences

xn+1(t) =

+∞∫
1

G(t, s)se−s
1 + [xn(s)]γ1

1 + (ln s)3/2
ds

s
+

+∞∫
1

G(t, s)se−2s
1 + (1 + yn(s))−γ2

1 + (ln t)3/2
ds

s
,

yn+1(t) =

+∞∫
1

G(t, s)se−s
1 + [yn(s)]γ1

1 + (ln s)3/2
ds

s
+

+∞∫
1

G(t, s)se−2s
1 + (1 + xn(s))−γ2

1 + (ln t)3/2
ds

s
,

n = 0, 1, 2 . . . , we have xn(t) → x∗(t), yn(t) → x∗(t) as n → ∞, where G(t, s) is
given as in (11)–(14).

5 Conclusions

In this article, we obtained the sufficient conditions for the existence and uniqueness
of positive solutions for (1) by using two fixed point theorems of a sum operator, and
we can construct iterative sequences to approximate the unique solutions. In the last
section, we give two illustrative examples that effectively show the applicability of the
obtained theoretical results. According to the literature, the unique solution for fractional
equations was obtained always by Banach contractive theorem, and the solution is global.
Here we get the uniqueness of positive solution and it is local. In addition, through
Corollaries 1 and 2, we show that our results are superior to those previously presented
in the literature. For future work, we intend to explore other different types of fractional
differential equations. In the meanwhile, we try to study other fixed point theorems for
better use in solving differential equations.
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