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aInstitute of Computer Science, Vilnius University,
Didlaukio 47, LT-08303 Vilnius, Lithuania
gintautas.bareikis@mif.vu.lt
bInstitute of Mathematics, Vilnius University,
Naugarduko 24, LT-03225 Vilnius, Lithuania
eugenijus.manstavicius@mif.vu.lt

Received: July 23, 2023 / Revised: Novenber 21, 2023 / Published online: January 3, 2024

Abstract. A subset of cycles comprising a permutation σ in the symmetric group Sn, n ∈ N, is
called a divisor of σ. Then the partial sums over divisors with sizes up to un, 0 6 u 6 1, of
values of a nonnegative multiplicative function on a random permutation define a stochastic process
with nondecreasing trajectories. When normalized the latter is just a random distribution function
supported by the unit interval. We establish that its expectations under various weighted probability
measures defined on the subsets of Sn are quasihypergeometric distribution functions. Their limits
as n → ∞ cover the class of two-parameter beta distributions. It is shown that, under appropriate
conditions, the convergence rate is of the negative power of n order. That opens a new possibility
to model the beta distributions using divisors of permutations.

Keywords: random permutation, multiplicative function, Ewens distribution, quasihypergeometric
distribution, arcsine law.

1 Introduction and result

We deal with random permutations and expose that the ubiquitous beta distribution law is
also present in their statistical theory. By the definition, the cumulative beta distribution
function is defined by

B(u; a, b) :=
Γ(a+ b)

Γ(a)Γ(b)

u∫
0

xa−1(1− x)b−1 dx, 0 6 u 6 1,

where Γ denotes Euler’s gamma function. The parameters a, b > 0 make the density
function B′u(u; a, b), 0 < u < 1, particularly flexible at modeling different curves within
the interval, including symmetrical, left- and right-skewed, concave and convex shapes,
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and straight lines. In particular, B(u; 1, 1) = u and

B

(
u;

1

2
,

1

2

)
=

2

π
arcsin

√
u,

where 0 6 u 6 1, are just the uniform and the arcsine distributions. Application of
the beta law is a versatile way to represent outcomes for proportions in vast fields of
statistics (see [14]). It was not a surprise when it had been disclosed in number theory
describing the proportion of the cardinality of divisors of a random natural number in
a given interval compared to the total number of them (see [8]). The pioneering DDT
theorem proved in this paper was extended in [6] and in the subsequent work [3], showing
that, apart from the arcsine, other beta laws appear. We refer to [4] and [5] for the
exhaustive historical account. In addition to the number theoretical value, these results
gave simple arithmetical constructions approximating the function B(u; a, b). As shown
in [2], such a phenomenon is also common for the polynomials over a finite field and in
a more general semigroup setting. This leads to a thought to examine permutations acting
on the set Nn =: {1, 2, . . . , n} and comprising the symmetric group Sn.

Recall that σ ∈ Sn is a one-to-one (bijective) mapping σ : Nn → Nn. It can be
represented by the table

σ =

(
1 2 · · · n
i1 i2 · · · in

)
,

where σ(r) = ir for 1 6 r 6 n, or by the digraph Gσ with vertex set V (σ) = Nn. Its
components are oriented cycles. A typical cycle has a vertex set V (κ) = {k1, . . . , kj} ⊂
Nn defined by

k1
σ−→ k2

σ−→ · · · σ−→ kj
σ−→ k1.

Here 1 6 j = #V (κ) 6 n is the cycle length. Such κ, denoted later by the ordered
j-tuple (k1, . . . , kj), can be considered the cyclic mapping acting on V (κ) as σ. Using
mapping multiplication, we obtain the unique (up to the order of factors) decomposition
of σ into cycles κi on pairwise disjoint subsets V (κi), namely,

σ = κ1 · · ·κw. (1)

Here w = w(σ) denotes the number of cycles, and Nn = V (κ1) ∪ · · · ∪ V (κw). Let us
also introduce the empty permutation ∅ and S0 = {∅}.

We call a subset δ ⊂ {κ1, . . . ,κw}, including the empty one, divisor of σ. Being
used to the product expression (1), we use the notation δ|σ rather than δ ⊂ σ. The cycles
from (1) not included into δ give another divisor, say, τ . Consequently, we obtain the
ordered decomposition σ = δτ with V (δ)∩V (τ) = ∅ and V (δ)∪V (τ) = Nn. Recall that
a set V ⊂ Nn is a fixed set of the mapping σ if the image σ(V ) := {σ(i), i ∈ V } = V .
Such are the sets V (δ) and V (τ). Conversely, the disjoint partition Nn = V ′ ∪ V ′′ with
the fixed sets V ′, V ′′ ⊂ Nn of σ ∈ Sn define the product σ = δτ of divisors such that
V ′ = V (δ) and V ′′ = V (τ). For the definitions, we refer to [11, Sect. 1.9].

In contrast to σ, a divisor δ can be weakly labelled, that is, the vertexes are not
necessarily numbered by numbers starting from 1 up to the size |δ| := #V (δ). To
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Construction of the beta distributions using the random permutation divisors 191

overcome this inconvenience, we will use the methodology proposed in the book [10,
Chap. II]. As suggested, to come to the well-labelled (or shortly, standard) δ, which uses
only the numbers from N|δ|, we do a reduction preserving the order relations among the
labels.

For example, the two-cycle divisor (1, 5)(3, 4, 7) of the permutation(
1 2 3 4 5 6 7

5 2 4 7 1 6 3

)
= (1 5)(2)(3 4 7)(6) ∈ S7

is reduced to (1, 4)(2, 3, 5) ∈ S5, as well as the divisor (1, 6)(2, 3, 7) of the permutation
(1, 6)(2, 3, 7)(4)(5) ∈ S7 is. We see that the same well-labelled divisor stems from several
permutations of higher order. Conversely, the labels of δ ∈ Sm from 1 to m, where
m 6 n, can be substituted by an m-subset of Nn so that the former order is preserved.
Any from

(
n
m

)
strictly increasing functions ψ : Nm → Nn can be applied in the process,

called expansion. In this way, we obtain such number of weakly labelled δ′.
An arbitrary pair of permutations δ ∈ Sm, 0 6 m 6 n, and τ ∈ Sn−m can be

expanded to some σ ∈ Sn, namely, we firstly expand δ labels into the set Nn. There
are

(
n
m

)
ways in doing this. Secondly, we relabel τ by the remaining numbers of Nn

preserving the initial order of labels. The second step is performed in a unique way. Thus,
we produce the ordered pair of sets of cycles (δ′, τ ′) with V (δ′) ∩ V (τ ′) = ∅ and the
decomposition into a product of two divisors σ = δ′τ ′ ∈ Sn. The two steps give

(
n
m

)
different standard permutations σ ∈ Sn. We denote their set by

δ ? τ =
{
σ = δ′τ ′: ∃ some expansion of (δ, τ) to (δ′, τ ′)

}
.

This is a subset of Sn of cardinality #δ ? τ =
(
n
m

)
.

Having the above toolkit, we may explore proportions of divisors with specific sizes
to their total number 2w(σ). Actually, this has been started in the recent preprint by
S.-K. Leung [15] with Theorem 1.3 concerning the sizes of fixed sets of a uniformly
sampled random σ ∈ Sn. His two-dimensional result reads as follows:

1

n!

∑
σ∈Sn

2−w(σ)
∑

Nn=A1∪A2

σ(Ai)=Ai, i=1,2

1{#A1 6 nu} =
2

π
arcsin

√
u+O

(
n−1/2

)
.

As we have mentioned, the inner sum equals the number of decompositions into product
of divisors σ = δτ with the size |δ| 6 un. The presented asymptotic formula corresponds
to the DDT theorem [8] mentioned at the beginning of the paper. By using the notion
of a divisor instead of the notion of a fixed set of permutations, we can draw closer
to the number theoretical investigations and leverage the ideas that have already been
implemented.

In the present paper, we demonstrate that other beta distribution functions can also ap-
pear as the limits for ratios of sums over divisors. Avoiding too cumbersome calculations,
we confine ourselves to specified classes of multiplicative functions whose definitions
trace back to the papers [16] and [20].
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Let S be the power set of cycles, that is, the set of all subsets of the cycle set on N. The
weakly labelled cycles are allowed. We call a function q : S → R structure dependent
if its values depend on the lengths of cycles appearing in the argument including their
multiplicities. Formally, if kj(δ) is the number of cycles κi of length j involved in δ, then
we require that q(δ) is a function depending on the cycle structure vector

k̄(δ) :=
(
k1(δ), . . . , k|δ|(δ)

)
, δ ∈ S.

Denote

Jδ :=
{
j: kj(δ) > 1

}
, 1 6 j 6 |δ|.

A nonzero structure-dependent function q defined on S will be called multiplicative if,
for every pair δ, τ ∈ S such that Jδ ∩ Jτ = ∅, the following relation holds:

q(δτ) = q(δ)q(τ). (2)

Equivalently, a function having the decomposition

q(δ) =
∏
j6|δ|

qj
(
kj(δ)

)
(3)

with some mappings qj : Z+ → R such that qj(0) = 1, j > 1, is multiplicative. In
the sequel, the multiplicative functions f , h, and q will have expressions as in (3) with
fj(·), hj(·), and qj(·), respectively. If (2) is satisfied for every pair δ and τ , then q will be
called completely multiplicative. Then in (3), we have qj(kj) = qj(1)kj . SetM andMc

for the classes of multiplicative and completely multiplicative functions. Observe that the
function

f(σ) :=
∑
δ|σ

g(δ) (4)

belongs to M and Mc if g ∈ M and g ∈ Mc, respectively. In the second case, if
ϑj := gj(1), σ ∈ Sn, then

f(σ) =
∏
j6n

fj
(
kj(σ)

)
, fj(k) =

k∑
l=0

(
k

l

)
ϑlj = (1 + ϑj)

k.

In particular, the number-of-divisors function 2w expressed by (4) with g = 1 belongs to
∈Mc.

Given a nonnegative g ∈M and f defined by (4), we introduce

X(u) := X(u; g) =
1

f(σ)

∑
δ|σ
|δ|6un

g(δ), σ ∈ Sn, 0 6 u 6 1.

If σ ∈ Sn is taken at random, then X(u) is a fairly mysterious random process with
paths being cumulative distribution functions. With the present note, we start its theory,
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discussing the asymptotic behaviour of the expectation. Avoiding technical complications,
but still getting the vast class of possible limits, we confine ourselves with nonnegative
functions g ∈ Mc. Apart from the uniform measure in Sn, the weighted ones also raise
an interest. One defines them in terms of nonnegative functions p ∈ Mc by setting the
point probabilities

µ(p)
n

(
{σ}

)
:=

p(σ)

Pn
:= p(σ)

( ∑
σ∈Sn

p(σ)

)−1
, σ ∈ Sn, n > 1.

Let us agree on µ(p)
0 ({∅}) = 1. If p = θw, where θ > 0 is fixed, and, as above, w = w(·)

stands for the number-of-cycles function, then µ̂(θ)
n := µ

(θw)
n is called the Ewens measure.

The applications of the latter can be hardly overestimated (see [1, Chaps. 4 and 5] or [7]).
Let Ê(θ)

n denote the expectation with respect to µ̂(θ)
n . If θ = 1, we return to the uniform

measure. For brevity, then we put En = Ê
(1)
n .

The goal of the paper is to examine the expectation of the process X(u) with respect
to µ(p)

n , that is, the sequence

E(p)
n X(u; g) :=

1

Pn

∑
σ∈Sn

p(σ)

f(σ)

∑
δ|σ
|δ|6un

g(δ). (5)

At the very beginning, we discover that the distribution functions

Bn(u; a, b) :=

(
a+ b+ n− 1

n

)−1 ∑
06m6un

(
a+m− 1

m

)(
b+ n−m− 1

n−m

)
,

where 0 6 u 6 1 and a, b > 0, called quasihypergeometric (see [13, formula (70)]) and
appearing in some urn models, play the crucial role in our task. Secondly, we observe that,
for large n, Bn(u; a, b) lie close to the beta distribution function defined at the beginning
of Section 1. Set a ∧ b := min{a, b} if a, b ∈ R.

Theorem 1. Let θ, ϑ > 0 be arbitrary fixed numbers, w be the number-of-cycles function,
and g = ϑw. Then

Ê(θ)
n X

(
u;ϑw

)
= Bn(u;α, β) = B(u;α, β) +O

(
n−γ

)
,

uniformly in 0 6 u 6 1 and n > 1. Here

α :=
ϑθ

ϑ+ 1
, β :=

θ

ϑ+ 1
, γ := α ∧ β ∧ 1. (6)

The established approximation opens a new possibility to model the beta distribution
B(u;α, β) with arbitrary α, β > 0. For this, by (6), it suffices to use the functions in
Theorem 1 with ϑ = α/β and θ = α + β. The analogous models proposed in number
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theory [3] reach only the logarithmic approximation order. If ϑ = θ = 1, we obtain
alternatively formulated Leung’s result:

EnX(u; 1) =
2

π
arcsin(

√
u ) +O

(
n−1/2).

The uniform distribution appears in the limit when ϑ = 1 and θ = 2. In this case the
direct calculations show that

Ê(2)
n X(u; 1) =

bunc+ 1

n+ 1
= u+O

(
n−1

)
. (7)

This witnesses that, apart from the constants, the remainder term estimate given in Theo-
rem 1 is optimal.

One can ask to describe the general class of possible multiplicative functions g, p
available to model the beta distribution in this way. The next theorems give partial an-
swers.

Theorem 2. Let n > 1, g, p ∈Mc be defined via gj(1) =: ϑj > 0 and pj(1) =: θj > 0.
Assume that for positive constants ϑ, θ, C1, C2, c1, c2, the inequalities∣∣ϑj − ϑ∣∣ 6 C1j

−c1 ,
∣∣θj − θ∣∣ 6 C2j

−c2 (8)

hold for every j > 1. Then

E(p)
n X(u; g) = B(u;α, β) +O

(
n−c log2(n+ 1) + n−γ

)
,

where α, β, γ have been defined in (6), and c = c1 ∧ c2. The constant in O(·) depends on
that listed in condition (8) only.

Dropping the interest to estimate the convergence rate, we can go even further.

Theorem 3. Let g, p ∈ Mc be defined via nonnegative bounded gj(1) =: ϑj and
pj(1) =: θj , where j > 1 such that the series∑

j>1

ϑj − ϑ
j

,
∑
j>1

θj − θ
j

converge for some positive constants ϑ and θ. Then, uniformly in 0 6 u 6 1,

E(p)
n X(u; g) = B(u;α, β) + o(1), n→∞,

where α, β have been defined in (6).

Mean value theorems for multiplicative functions defined on Sm, 1 6 m 6 n, play
the main role in our problem. We collect them in the next section. The proofs of theorems
will be given at the end of the paper.
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2 Lemmata

Let us recall a few needed formulas. Afterwards, [zn]Q(z) will denote the coefficient at
zn in the formal power series expansion of Q(z).

Lemma 1. Let q ∈M and n > 0, then

Enq =
[
zn
]∏
j>1

(
1 +

∑
r>1

qj(r)z
rj

jrr!

)
.

In particular, if q ∈Mc, then

Enq =
[
zn
]

exp

{∑
j>1

qj(1)zj

j

}
. (9)

Proof. If Sn(k̄) ⊂ Sn is the subset of permutations σ with the cycle structure vector
k̄ = (k1, . . . , kn), then according to the Cauchy theorem [11, Thm. 1.2],

#Sn(k̄) = n!
∏
j6n

1

jkjkj !
.

By (3), the function q is constant on Sn(k̄). Hence summing over possible k̄, we obtain

Enq =
∑

1k1+···+nkn=n
kj>0, j6n

∏
j6n

qj(kj)

jkjkj !
.

The quantity on the right hand side is just the nth coefficient in the power series expansion
of the product of functions as claimed in the lemma.

The second statement is a corollary of the previous one. The lemma is proved.

Lemma 2. If θ > 0 and n > 1, then

Enθ
w =

(
θ + n− 1

n

)
=
nθ−1

Γ(θ)

(
1 +O

(
n−1

))
.

The constant in O(·) depends on θ only.

Proof. The first equality follows from (9) when qj(1) = θ. The second estimate is a case
of Theorem VI.1 in [10, p. 381].

The next lemma concerns a more general case. For short, we will also use � as an
analog of the symbol O(·).

Lemma 3. Let a nonnegative completely multiplicative function q be defined via qj(1) =
aj satisfying the condition

aj − a� j−ε, j > 1, (10)

with some a, ε > 0 and

A(z) :=
∑
j>1

(aj − a)zj

j
. (11)
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Then

Enq =
na−1eA(1)

Γ(a)

(
1 +O

(
n−ε1 log(n+ 1)

))
, ε1 = 1 ∧ ε, n > 1.

Proof. By (9) in Lemma 1, we have the expression

Enq =
[
zn
]
(1− z)−aeA(z).

According to Lemma 4 in H.-K. Hwang’s paper [12], condition (10) implies [zn]eA(z) �
n−1−ε. Consequently, the desired asymptotic formula follows from Lemma 5 in [12].

The lemma is proved.

Assuming an analytic continuation of the series A(z) outside the unit disk, except,
maybe, a sector | arg(z−1)| 6 ε2 < π/2, we could apply the so-called transfer theorems
(see [9]) and get rid of the appearing logarithm in the remainder. Generalizing condi-
tion (8), we rather use the next lemma, which is based upon the information about the
generating series only in the unit disk. We loose the remainder term estimate in this more
general situation.

Lemma 4. Let a nonnegative completely multiplicative function q be defined via bounded
qj(1) = aj such that the series A(z) in (11) converges at the point z = 1. Then

Enq =
na−1eA(1)

Γ(a)

(
1 + o(1)

)
, n→∞.

Proof. See [18, Thm. 2].

Remark. For unbounded aj , the asymptotic behaviour of Enq raises more obstacles. The
discussion including a counterexample is presented in the second author’s paper [17].

Lemma 5. If v(x) := xa−1(1−x)b−1, where 0 < x < 1 and a, b > 0 are arbitrary fixed
numbers, then

n−1 max

{
v(x):

1

n
6 x 6 1− 1

n

}
� n−d, (12)

where d := a ∧ b ∧ 1.
If M , 1 < M 6 n− 1, is an integer, then

1

n

∑
1<m6M

v

(
m

n

)
=

M/n∫
1/n

v(x)dx+O
(
n−d

)
. (13)

Furthermore, for 0 6 u < 1, we have

Γ(a+ b)

Γ(a)Γ(b)n

∑
16m6un

v

(
m

n

)
= B(u; a, b) +O

(
n−d

)
. (14)
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Proof. The first assertion (12) is a calculus exercise. To obtain (13), we apply the Euler–
Maclaurin summation. Namely, if x =: bxc + 〈x〉 is the partition of x ∈ R into integer
and fractional parts, then

∑
1<m6M

v

(
m

n

)
=

M∫
1

v

(
t

n

)
d
(
btc
)

=

M∫
1

v

(
t

n

)
dt+

1

2

(
v

(
M

n

)
− v
(

1

n

))

+

M∫
1

(
〈t〉 − 1

2

)
dv

(
t

n

)
.

The second summand on the right-hand side is of the order O(n1−a + n1−b). The last
integral is majored by

(a− 1)

1/2∫
1/n

ta−2 dt+ (1− b)
1−1/n∫
1/2

(1− t)b−2 dt� n1−d.

Proving (14), we note that in virtue of (12), the first summand in the sum on the
left-hand side is negligible. Further, we apply (13) with M = bunc. The estimate

max

{
B(u; a, b)−B

(
M

n

)
:

1

n
6 u 6 1− 1

n

}
� n−d,

stemming form (12), allows to complement the integration region up to the interval [1/n, u],
where 1/n 6 u 6 1− 1/n. That already gives (14) for such u.

If u < 1/n, the sum is empty, thus, covered by the remainder term, and, if 1− 1/n 6
u < 1, the sum does not change. Extending the integration interval, we observe that the
remainderO(n−d) swallowsB(u; a, b) if u 6 1/n, as well as 1−B(u; a, b) if 1−1/n 6
u 6 1. Consequently, (14) remains valid for 0 6 u < 1.

The lemma is proved.

3 Proofs of theorems

The idea is seen from the next observation. The σ’s in the double sum (5) have the form
σ = δτ with |δ| 6 un, |τ | = n − |δ|. Stressing that the factors δ and τ can be weakly
labelled, we temporarily return to the notation used in Section 1. Namely, we set δ′ := δ
and τ ′ := τ , leaving the characters δ and τ to denote the well-labelled permutations from
the symmetric groups Sm and Sn−m so that δ′ and τ ′ are just the expansion outcomes
for the pair (δ, τ). In this way, we gain the possibility to split the double sum into partial
sums over the disjoint subsets δ ? τ of Sn as defined in Section 1. Hence

Nonlinear Anal. Model. Control, 29(2):189–204, 2024
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E(p)
n X(u; g) =

1

Pn

∑
06m6un

∑
δ∈Sm
τ∈Sn−m

∑
σ=δ′τ ′∈δ?τ

p(δ′τ ′)g(δ′)

f(δ′τ ′)

=
1

Pn

∑
06m6un

∑
δ∈Sm
τ∈Sn−m

p(δτ)g(δ)

f(δτ)

∑
σ=δ′τ ′∈δ?τ

1

=
1

Pn

∑
06m6un

(
n

m

) ∑
δ∈Sm

g(δ)
∑

τ∈Sn−m

p(δτ)

f(δτ)
. (15)

The last equality stems from the fact that the structure of permutations or their divisors is
reduction invariant.

Check that approximating E
(p)
n X(u; g) by B(u;α, β), we may confine ourselves to

the interval 0 6 u < 1, excluding the point u = 1 where these distribution functions
equal one.

Proof of Theorem 1. If g = ϑw, then f = (ϑ+ 1)w. By (15) and Lemma 2,

Ê(θ)
n X(u;ϑw) =

n!

Pn

∑
06m6un

Em

(
ϑθ

ϑ+ 1

)w
En−m

(
θ

ϑ+ 1

)w
=

n!

Pn

∑
06m6un

(
α+m− 1

m

)(
β + n−m− 1

n−m

)
, (16)

where as we have denoted in (6), α = ϑθ/(ϑ+ 1) and β = θ/(ϑ+ 1). Furthermore, the
equality Ê

(θ)
n X(1;ϑw) = 1 reveals that

Pn
n!

=
∑

06m6n

[
zm
]
(1− z)−α

[
zn−m

]
(1− z)−β

=
[
zn
]
(1− z)−θ =

(
θ + n− 1

n

)
=
nθ−1

Γ(θ)

(
1 +O

(
n−1

))
(17)

by Lemma 2. Together the latter two equalities yield the claimed formula with the se-
quence of discrete distribution functions Bn(u;α, β).

Analysing the asymptotical behaviour of Ê(θ)
n X(u;ϑw) as n→∞, we firstly reckon

the case α = β = 1. Evidently, formula (16) yields the desired expression (7) given in
Section 1.

Let α = 1, β 6= 1, and 0 6 u < 1. Then θ = 1 + β, Γ(1 + β) = βΓ(β), and, by
Lemma 2,

Ê(θ)
n X

(
u;ϑw

)
= βn−β

((
1 +O

(
n−1

)) ∑
16m6nu

(n−m)β−1

+O

(
n−β

∑
16m6n−1

(n−m)β−2
)

+O
(
n−γ

)
.
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Further, we apply relation (14) to approximate the main sum and the estimate∑
16k6n

kβ−2 � nβ−1 + 1, (18)

valid for β > 0 and β 6= 1, to bound the sums in the error terms. So we deduce that

Ê(θ)
n X

(
u;ϑw

)
= β

u∫
0

(1− x)β−1 dx+O
(
n−γ

)
= B(u; 1, β) +O

(
n−γ

)
.

The case α 6= 1 and β = 1 is treated similarly. Then

Ê(θ)
n X

(
u;ϑw

)
= α

u∫
0

xα−1 dx+O
(
n−γ

)
= B(u;α, 1) +O

(
n−γ

)
.

Let α 6= 1, β 6= 1, α+β = θ, and 0 6 u < 1. Using the definition of v(x) introduced
in Lemmas 5 and 2, from (16), (17), and (14), we deduce that

Ê(θ)
n X

(
u;ϑw

)
=

Γ(θ)

Γ(α)Γ(β)

(
1 +O

(
1

n

))
×
(

1

n

∑
16m6nu

v

(
m

n

)(
1 +O

(
1

m

))(
1 +O

(
1

n−m

))
+O

(
n−γ

))
= B(u;α, β) +O(R) +O

(
n−γ

)
,

where

R = n1−θ
( ∑

16m6n/2

+
∑

n/2<m6n−1

)(
mα−2(n−m)β−1 +mα−1(n−m)β−2

)
� n−α

∑
16m6n/2

mα−2 + n−β
∑

n/26m6n−1

(n−m)β−2

� n−α
(
nα−1 + 1

)
+ n−β

(
nβ−1 + 1

)
� n−γ ,

according to (18).
The theorem is proved.

Proof of Theorem 2. For brevity, let us introduce the completely multiplicative functions:

G(δ) =
g(δ)p(δ)

f(δ)
=
∏
j6m

(
ϑjθj

1 + ϑj

)kj(δ)
=:
∏
j6m

α
kj(δ)
j , δ ∈ Sm;

F (τ) =
p(τ)

f(τ)
=

∏
j6n−m

(
θj

1 + ϑj

)kj(τ)
=:

∏
j6n−m

β
kj(τ)
j , τ ∈ Sn−m.
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Formula (15) yields the expression

E(p)
n X(u; g) =

(
Enp

)−1 ∑
06m6un

EmGEn−mF. (19)

Under the conditions listed in Theorem 2, we have

αj − α� j−c, βj − β � j−c, c = c1 ∧ c2,

for j > 1 and α, β introduced in (6). As earlier, let αj + βj = θj and α+ β = θ. Hence,
by Lemma 3,

EnG =
nα−1eK1

Γ(α)
(1 + rn), EnF =

nβ−1eK2

Γ(β)
(1 + rn), (20)

where rn is a remainder term, not the same in different places but having the order
n−c log(n+ 1), and

K1 =
∑
j>1

αj − α
j

, K2 =
∑
j>1

βj − β
j

.

Furthermore, by (19) and Lemma 1,

Enp =
[
zn
](

1 +
∑
m>1

EmGz
m

)(
1 +

∑
k>1

EkFz
k

)

=
[
zn
]

exp

{∑
j>1

θjz
j

j

}
=
nθ−1eK

Γ(θ)
(1 + rn) (21)

with K = K1 + K2. It remains to insert the latter formulas into (19) and to complete
a standard asymptotic analysis. The arguments applied proving Theorem 1 suffice. Now
we have

E(p)
n X(u; g) =

Γ(θ)

Γ(α)Γ(β)
(1 + rn)

×
(

1

n

∑
16m6nu

v

(
m

n

)
(1 + rm)(1 + rn−m) +O

(
n−γ

))
= B(u;α, β) +O(R1) +O

(
n−γ

)
. (22)

Here

R1 � n−α
∑

16m6n/2

mα−c−1 log(m+ 1) + n−β
∑

16m6n/2

mβ−c−1 log(m+ 1)

� n−c log2(n+ 1) + n−γ .

This estimate is valid for every fixed c, α, β > 0.
The theorem is proved.
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Proof of Theorem 3. We may use the notation introduced in the proof of Theorem 2 and
formula (19). Our agreement µ(p)

0 ({∅}) = 1 and F (∅) = G(∅) = 1 yield E0G = 1.
According to Lemma 4, the asymptotic expressions (20) and (21) hold with the errors
rn = o(1) if n→∞.

Since EnF = O(nβ−1), having in mind (22), we have

E(p)
n X(u; g) = B(u;α, β) +O

(
R2(n)

)
+O

(
n−γ

)
, (23)

where

R2(n)� 1

n

∑
16m6n−1

v

(
m

n

)(
|rm|+ |rn−m|

)
.

Here rn = o(1) as n → ∞; therefore, for an arbitrary η > 0, there exists N := N(η)
such that |rn| 6 η if n > N > 1. Hence using Lemma 5,

R2(n)� 1

n

∑
16m6N

((
m

n

)α−1
+

(
m

n

)β−1)
+
η

n

∑
16m6n−1

v

(
m

n

)
.

Bearing in mind (13),

R2(n)�
(
N

n

)α
+

(
N

n

)β
+ η.

Hence limn→∞R2(n) 6 η giving R2(n) = o(1) as n → ∞. Inserting the last estimate
into (23), we complete the proof of Theorem 3.

4 Concluding remarks

(i) The graphs below were made using k samples of trajectoriesX(u; 1), where g(δ) ≡ 1
and permutation σ is generated uniformly at random from Sn, and cycles in the permuta-
tion were found using Python package SymPy [19]. The graphs on the left and right were
generated using parameter sets n = 100, k = 50 and n = 1000, k = 500, respectively.

The bold curves in the center of Figs. 3 and 4 depict the arcsine distribution function
and the empirical mean values of the curves shown in Figs. 1 and 2. In Figs. 3 and 4, we
also see a band around the mean curve depicting the change in standard error, which
reduces to zero at the value of 0.5. It can be seen that as the number of samples is
increased, the expectation of the combinatorial process distribution approaches the arcsine
distribution function. Further numerical analysis witnesses regular asymptotic behaviour
as n → ∞ of higher power moments of X(u; 1) and of the variance. A future search of
the theoretical results would be reasonable.

(ii) We began this paper studying problems formulated in terms of the associative and
commutative convolution f := g � h defined by the equality

f(σ) =
∑
δτ=σ

g(δ)h(τ), σ ∈ S.
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Figure 1. k = 50. Figure 2. k = 500.

Figure 3. k = 50. Figure 4. k = 500.

The resulting algebra of functions has many parallels with the algebra of number-theoretic
functions on N. Furthermore, restricted to the class M, the identities for the summed
functions ∑

σ∈Sn

f(σ) =
∑
δ∈Sm

(
n

m

) ∑
δ∈Sm

g(δ)
∑

τ∈Sn−m

h(τ), n > 0,

lead to the product formula for the corresponding exponential generating functions. Namely,
we have∑

n>0

1

n!

∑
σ∈Sn

f(σ)zn =

(∑
m>0

1

m!

∑
δ∈Sm

g(δ)zm
) (∑

k>0

1

k!

∑
τ∈Sk

h(τ)zk
)
.

This recalls the relation between the Dirichlet convolution and the product formula for the
corresponding generating series of number-theoretic functions. Consequently, taking into

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Construction of the beta distributions using the random permutation divisors 203

account the experience when proving Theorems 1–3, one can go much further exploiting
the parallelism with number theory.

(iii) Permutations are just a particular case of the so-called labelled combinatorial
structures (see [10, Chap. II]). The notion of a divisor can be easily extended to other
structures, together with our results.

Acknowledgment. The authors express sincere thanks to Tadas Bareikis, who has pro-
vided the programme codes for the included pictures, and also to the referee for the
insightful critical remarks.
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4. G. Bareikis, A. Mačiulis, Modeling the Dirichlet distribution using multiplicative functions,
Nonlinear Anal. Model. Control, 25(2):282–300, 2020, https://doi.org/10.1007/
s10986-017-9351-6.
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6. G. Bareikis, E. Manstavičius, On the DDT theorem, Acta Arith., 126:155–168, 2007, https:
//doi.org/10.4064/aa126-2-5.

7. H. Crane, The ubiquitous Ewens sampling formula, Stat. Sci., 31:1–19, 2016, https:
//doi.org/10.1214/15-STS529.

8. J.-M. Deshouillers, F. Dress, G. Tenenbaum, Lois de répartition des diviseurs 1, Acta Arith., 34:
273–285, 1979, https://doi.org/10.4064/aa-34-4-273-285.

9. Ph. Flajolet, A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math.,
3:216–240, 1990, https://doi.org/10.1137/0403019.

10. Ph. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2008,
https://doi.org/10.1017/CBO9780511801655.

11. K. Ford, Cycle type of random permutations: A toolkit, Discrete Anal., 9:36, 2022, https:
//doi.org/10.48550/arXiv.2104.12019.

12. H.-K. Hwang, Asymptotic of Poisson approximation to random discrete distributions, Adv.
Appl. Probab., 31:448–491, 1999, https://doi.org/10.1239/aap/1029955143.

13. N.L. Johnson, S. Kotz, Developments in discrete distributions, 1969–1980, Int. Stat. Rev., 50:
71–101, 1982, https://doi.org/10.2307/1402460.

14. N.L. Johnson, S. Kotz, N. Balakrishnan, Beta distributions, in Continuous Univariate Distri-
butions, Vol. 2, Wiley, New York, 1995, pp. 210–275.

Nonlinear Anal. Model. Control, 29(2):189–204, 2024

https://doi.org/10.15388/namc.2020.25.16518
https://doi.org/10.15388/namc.2020.25.16518
https://doi.org/10.1007/s10986-017-9351-6
https://doi.org/10.1007/s10986-017-9351-6
https://doi.org/10.1007/s40879-021-00492-7
https://doi.org/10.4064/aa126-2-5
https://doi.org/10.4064/aa126-2-5
https://doi.org/10.1214/15-STS529
https://doi.org/10.1214/15-STS529
https://doi.org/10.4064/aa-34-4-273-285
https://doi.org/10.1137/0403019
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.48550/arXiv.2104.12019
https://doi.org/10.48550/arXiv.2104.12019
https://doi.org/10.1239/aap/1029955143
https://doi.org/10.2307/1402460
https://doi.org/10.15388/namc.2024.29.34009


204 G. Bareikis, E. Manstavičius
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