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Abstract. In this paper, we introduce two new properties to the Q-function, called as the 0-property
and the small self-distance property, which is frequently used in studies of fixed point theory in
quasimetric spaces. Then, with the help of Q-functions having these properties, we present some
fixed point theorems for Prešić-type mappings in quasimetric spaces. Finally, we state a theorem
for the existence and uniqueness of the solution to a boundary value problem for (p, q)-difference
equations to demonstrate the applicability of our theoretical results, which we support with an
example.

Keywords: fixed point, quasimetric space, Prešić-type mapping, Q-function, (p, q)-difference
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1 Introduction and preliminaries

The theory of quantum calculus (q-calculus), which is known as the study of calculus
without limit, and its applications have an important role in mathematical sciences, me-
chanics, physics, and other fields of real-world problems. For some papers, we refer the
reader to [8, 9, 17, 21, 23].

Studies on q-difference equations arose at the beginning of the past century, par-
ticularly by Jackson [22], Carmichael [11], and Mason [28]. In this regard, studies on
q-difference equations for both classic and some generalized versions have attracted the
attention of several researchers, and their applications are discussed in the solutions of
boundary value problems for q-difference equations (see [2–4, 38, 39]).

The (p, q)-calculus, a generalization of the classic q-calculus, was first introduced by
Chakrabarti and Jagannathan [12] in quantum algebras, which contained two quantum
numbers p and q. For some recent results, see [10,20,37] and the references cited therein.
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The authors of the recent paper [24] initiated research on boundary value problems for the
(p, q)-difference equation. In this paper, they considered the first-order quantum (p, q)-
difference equation subject to a nonlocal condition of the form

Dp,qξ(t) = f
(
t, ξ(pt)

)
, t ∈

[
0,
T

p

]
,

ξ(0) = αξ(T ) +

m∑
i=1

βi

ηi∫
0

ξ(s) dpiqis,

where 0 < q < p 6 1, 0 < qi < pi 6 1, i = 1, 2, . . . ,m, are quantum numbers, Dp,q

is (p, q)-difference operator, f : [0, T/p]× R→ R is continuous, T > 0, α, βi are given
constants, and ηi ∈ [0, piT ]. Then, taking into account some fundamental fixed point
theorems such as the Banach contraction principle, the Boyd–Wong fixed point theorem,
and the Leray–Schauder nonlinear alternative, they provided the existence (uniqueness
within some cases) of solutions to this problem under some certain conditions on f and
constants. A variety of new results on (p, q)-difference equations via fixed point theory
can be found in [18, 19, 29–31, 34].

Now, let us review basic definitions and theorems about (p, q)-calculus, which are
found in [36]. The (p, q)-derivative and (p, q)-integral of a function g are defined by the
following formulas for constants 0 < q < p 6 1:

Dp,qg(t) =

{
g(pt)−g(qt)

(p−q)t , t 6= 0,

limt→0Dp,qg(t), t = 0,

and
t∫

0

g(s) dp,qs = (p− q)t
∞∑
n=0

qn

pn+1
g

(
qn

pn+1
t

)
,

provided that the right-hand side converges.
The (p, q)-integration by parts is given by

b∫
a

g(pt)Dp,qh(t) dp,qt = g(t)h(t)|ba −
b∫
a

h(qt)Dp,qg(t) dp,qt,

and the following formulas hold:

Dp,q

( t∫
0

g(s) dp,qs

)
= g(t),

t∫
a

Dp,qg(s) dp,qs = g(t)− g(a) for a ∈ [0, t).
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In the remainder of this section, we give fundamental notions of Prešić-type fixed
point results, quasimetric spaces, and Q-functions. In Section 2, we set up the 0-property
and small self-distance property ofQ-functions and obtain some new fixed point theorems
for Prešić-type mappings on quasimetric space via Q-functions. In the last section, using
our theoretical results, we deal with an existence and uniqueness theorem for a second-
order (p, q)-difference Langevin equation with boundary conditions of the form

Dp,q(Dp,q + γ)ξ(t) = f
(
t, ξ(t)

)
, t ∈ [0, 1],

ξ(0) = α, Dp,qξ(0) = β,

where f : [0, 1]× R→ R is continuous, 0 < q < p 6 1, and γ, α, β are given constants.
It is well known that the Banach contraction principle has been extended by many

researchers in several different ways over the last few decades. In 1965, Prešić [33]
generalized it as follows:

Theorem 1. Let (X , ρ) be a complete metric space, k be any positive integer, and let
F : X k → X be a mapping satisfying the following contraction condition: for all
ξ1, ξ2, . . . , ξk+1 ∈ X ,

ρ
(
F(ξ1, ξ2, . . . , ξk),F(ξ2, ξ3, . . . , ξk+1)

)
6

k∑
i=1

qiρ(ξi, ξi+1),

where q1, q2, . . . , qk are positive constants such that
∑k
i=1 qi < 1. Then there exists

a unique point ξ ∈ X such that ξ = F(ξ, ξ, . . . , ξ). Moreover, if ξ1, ξ2, . . . , ξk are
arbitrary points in X for n ∈ N,

ξn+k = F(ξn, ξn+1, . . . , ξn+k−1),

then the sequence {ξn} is convergent, and lim ξn = F(lim ξn, lim ξn, . . . , lim ξn).

Note that for k = 1, Theorem 1 reduces to the Banach contraction principle.
Later on, in 2007, Ćirić and Prešić [16] further generalized Prešić-type contraction for

complete metric space, which is stated as follows.

Theorem 2. Let (X , ρ) be a complete metric space, k be any positive integer, and let
F : X k → X be a mapping satisfying the following contraction condition: for all
ξ1, ξ2, . . . , ξk+1 ∈ X ,

ρ
(
F(ξ1, ξ2, . . . , ξk),F(ξ2, ξ3, . . . , ξk+1)

)
6 λmax

{
ρ(ξi, ξi+1), 1 6 i 6 k

}
,

where λ ∈ (0, 1). Then there exists a point ξ ∈ X such that ξ = F(ξ, ξ, . . . , ξ). Moreover,
if ξ1, ξ2, . . . , ξk are arbitrary points in X for n ∈ N,

ξn+k = F(ξn, ξn+1, . . . , ξn+k−1),

then the sequence {ξn} is convergent, and lim ξn = F(lim ξn, lim ξn, . . . , lim ξn). In
addition, if for all u, v ∈ X with u 6= v, the condition

ρ
(
F(u, u, . . . , u),F(v, v, . . . , v)

)
< ρ(u, v)

holds, then ξ is the unique point in X such that ξ = F(ξ, ξ, . . . , ξ).

Nonlinear Anal. Model. Control, 28(6):1089–1102, 2023
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Some important applications of the above-stated results such as studying asymptotic
stability of the equilibrium for the nonlinear difference equation and global attractivity of
matrix difference equations can be found in [1, 13].

Consider the following properties of a function ρ : X × X → [0,∞), where X is
a nonempty set:

(ρ1) ρ(ξ, ξ) = 0;
(ρ2) ρ(ξ, ζ) 6 ρ(ξ, ς) + ρ(ς, ζ) for all ξ, ζ, ς ∈ X ;
(ρ3) ρ(ξ, ζ) = ρ(ζ, ξ) = 0 ⇒ ξ = ζ,
(ρ4) ρ(ξ, ζ) = 0 ⇒ ξ = ζ.

• ρ is called a quasi-pseudo metric if (ρ1) and (ρ2) hold;
• ρ is called a quasimetric if (ρ1), (ρ2), and (ρ3) hold;
• ρ is called a T1-quasimetric if (ρ1), (ρ2), (ρ3), and (ρ4) hold.

In this case, the space (X , ρ) is referred to by the name given to ρ.
Assume that (X , ρ) is a quasimetric space and W : X → [0,∞) is a function satisfy-

ing ρ(ξ, ζ) +W (ξ) = ρ(ζ, ξ) +W (ζ) for all ξ, ζ ∈ X . Then (X , ρ) is called weightable,
and (X , ρ,W ) is called a weighted quasimetric space.

Assume that (X , ρ) is a quasipseudometric space, ξ0 ∈ X , and ε > 0. Then the set

Bρ(ξ0, ε) =
{
ζ ∈ X : ρ(ξ0, ζ) < ε

}
is called open sphere with center ξ0 and radius ε. The family of all open spheres generates
a topology τρ on X , which is T0 whenever r is quasimetric. If ρ is a T1-quasimetric, then
τρ is a T1-topology on X .

If ρ is a quasimetric on X , then ρ−1 and ρs are quasimetric and metric on X , respec-
tively, where

ρ−1(ξ, ζ) = ρ(ζ, ξ) and ρs(ξ, ζ) = max
{
ρ(ξ, ζ), ρ−1(ξ, ζ)

}
.

Example 1. The following are some examples of quasimetrics on R.

(i) Consider ρ(ξ, ζ) = max{ζ − ξ, 0} for all ξ, ζ ∈ R. Then ρ is a quasimetric
but not a T1-quasimetric. Observe that τρ is left-order topology and τρ−1 is right-
order topology on R.

(ii) Consider ρ(ξ, ζ) = 0 for ξ = ζ and ρ(ξ, ζ) = |ζ| for ξ 6= ζ. Then ρ is
a weightable quasimetric with weighting function W (ξ) = |ξ|.

(iii) Consider ρ(ξ, ζ) = ζ − ξ for ξ 6 ζ and ρ(ξ, ζ) = 1 for ξ > ζ. Then ρ is
a T1-quasimetric. Observe that τρ is lower limit topology and τρ−1 is upper limit
topology on R. Also, note that τρs is a discrete topology on R.

Let {ξn} be a sequence in a quasimetric space (X , ρ) and ξ ∈ X . In this case, if
ρ(ξ, ξn) → 0 as n → ∞, then {ξn} is said to be τρ convergent to ξ. If for every ε > 0,
there exists n0 ∈ N such that ρ(ξk, ξn) < ε (resp. ρ(ξn, ξk) < ε) whenever n > k > n0,
then {ξn} is said to left K-Cauchy (resp. right K-Cauchy) sequence. Finally, if for every
ε > 0, there exists n0 ∈ N such that ρ(ξn, ξk) < ε whenever n, k > n0, then {ξn} is said
to be ρs-Cauchy sequence.
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Although there are many approaches related to the completeness of quasimetric space
in the literature (see [6, 7, 14, 15, 25, 27, 35]), the completeness concepts we will con-
sider here are as follows. We call a quasimetric space (X , ρ) left K-complete (resp. left-
M -complete) if every left K-Cauchy sequence is τρ-convergent (resp. τρ−1 -convergent).

LetX be a nonempty set, ρ and σ be two quasimetrics onX , k ∈ N, andF : X k → X
be a mapping. ThenF is called k-sequentially ρ-σ-continuous at ξ ∈ X if for all sequence
{ξn} in X such that ρ(ξ, ξn)→ 0, implies

σ(F(ξ, ξ, . . . , ξ),F(ξn, ξn+1, . . . , ξn+k−1))→ 0.

IfF is k-sequentially ρ-σ-continuous at all points ofX , thenF is called k-sequentially
ρ-σ-continuous on X .

Now we recall the concept of Q-function, which is presented in [5] by Al-Hamidan
et al.

Definition 1. Let (X , ρ) be a quasimetric space, and let q : X×X → [0,∞) be a function
satisfying the following:

(Q1) q(ξ, ς) 6 q(ξ, ζ) + q(ζ, ς) for all ξ, ζ, ς ∈ X ;
(Q2) if ξ ∈ X , M > 0, and {ζn} is a sequence in X that ρ−1-converges to a point

ζ ∈ X and satisfies q(ξ, ζn) 6M for all n ∈ N, then q(ξ, ζ) 6M ;
(Q3) for each ε > 0, there exists δ > 0 such that q(ξ, ζ) 6 δ and q(ξ, ς) 6 δ imply

ρ(ζ, ς) 6 ε.

Then q is called a Q-function on (X , ρ).

Let condition (Q2) is replaced by

(Q2′) q(ξ, ·) : X → [0,∞) is lower semicontinuous on (X , τρ−1) for all ξ ∈ X .

Then q is called a w-distance on (X , ρ) [32]. Observe that if q(ξ, ζ) = 0 and q(ξ, ς) = 0,
then ζ = ς . Obviously, if (X , ρ) is a metric space, then ρ is a Q-function on (X , ρ).
Nevertheless, as it can be seen in [5], if ρ is a quasimetric, then ρmay not be aQ-function
on (X , ρ).

Example 2. (See [26].) The discrete metric q on every quasimetric space (X , ρ) is
a Q-function.

Example 3. (See [26].) Let (X , ρ) be a weightable quasimetric space, and let q : X×X →
[0,∞) be a function defined as q(ξ, ζ) = ρ(ξ, ζ) +W (ξ), where W is the corresponding
weighted function. Then q is a Q-function on (X , ρ).

Example 4. Let X = [0,∞) and ρ(ξ, ζ) = max{ζ − ξ, 0} for all ξ, ζ ∈ X . Then
q1(ξ, ζ) = max{ξ, ζ}, q2(ξ, ζ) = ζ, and q3(ξ, ζ) = (ξ+ ζ)/2 are Q-functions on (X , ρ).

The following lemmas play important roles in our main results.

Lemma 1. (See [26].) Assume that q is a q-function on a quasimetric space (X , ρ).
Then, for each ε > 0, there exists δ > 0 such that q(ξ, ζ) 6 δ, and q(ξ, ς) 6 δ imply
ρs(ζ, ς) 6 ε.

Nonlinear Anal. Model. Control, 28(6):1089–1102, 2023
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Lemma 2. (See [5].) Let (X , ρ) be a quasimetric space, {ξn}, {ζn} be sequences in X ,
and q : X × X → R+ be a Q-function. Assume that the sequences {αn}, {βn} ∈ R+

are such that αn → 0 and βn → 0 as n → ∞. Then the following ones hold for all
ξ, ζ, ς ∈ X :

(i) If q(ξn, ζ) 6 αn and q(ξn, ς) 6 βn for all n ∈ N, then ζ = ς .
(ii) If q(ξn, ζn) 6 αn and q(ξn, ζ) 6 βn for all n ∈ N, then ρs(ζn, ζ)→ 0.

(iii) If q(ξn, ξm) 6 αn for all n,m ∈ N with m > n, then {ξn} is a ρs-Cauchy
sequence.

2 Fixed point results

Definition 2. Assume that (X , ρ) is a quasimetric space and q is a Q-function on (X , ρ).
If the implication q(ξn, ζ)→ 0 ⇒ q(ζ, ζ) = 0 is true for every sequence {ξn} in X and
ζ ∈ X , then the Q-function q is said to have 0-property.

It is clear that all Q-functions given in Examples 2, 3, and 4 have 0-property.

Definition 3. Assume that (X , ρ) and q are defined as in the above definition. If for all
ξ, ζ ∈ X , the inequality q(ζ, ζ) 6 q(ξ, ζ) holds, then q is said to have small self-distance
property.

Remark 1. Note that if aQ-function on a quasimetric space (X , ρ) has small self-distance
property, then it has 0-property, but the converse may not be true. For example, the Q-
function q3 given in Example 4 has 0-property, but not small self-distance property.

Let X be a nonempty set, k be any positive integer, and F : X k → X be a mapping.
In this case, for simplicity, we will use the following notation:

Fk(F) =
{
ξ ∈ X : ξ = F(ξ, ξ, . . . , ξ)

}
.

If k = 1, then we will write F (F) instead of F1(F), which is the set of fixed points of F .
Now, we are ready to present our main result.

Theorem 3. Let (X , ρ) be a leftM -complete quasimetric space, q be aQ-function having
0-property, k be any positive integer, and F : X k → X be a mapping satisfying the
following contraction condition: for all ξ1, ξ2, . . . , ξk+1 ∈ X ,

q
(
F(ξ1, ξ2, . . . , ξk),F(ξ2, ξ3, . . . , ξk+1)

)
6 λmax

{
q(ξi, ξi+1), 1 6 i 6 k

}
, (1)

where λ ∈ (0, 1). Then there exists a point ς ∈ Fk(F) such that q(ς, ς) = 0. Moreover, if
ξ1, ξ2, . . . , ξk are arbitrary points in X , then the sequence {ξn} defined by

ξn+k = F(ξn, ξn+1, . . . , ξn+k−1) (2)

for n ∈ N is ρ−1-convergent to some point in Fk(F). In addition, if for all u, v ∈ X with
u 6= v, the condition

q
(
F(u, u, . . . , u),F(v, v, . . . , v)

)
< q(u, v) (3)

holds, then Fk(F) is singleton.

https://www.journals.vu.lt/nonlinear-analysis
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Proof. Let ξ1, ξ2, . . . , ξk be arbitrary points in X . Define a sequence {ξn} by using these
points as follows:

ξn+k = F(ξn, ξn+1, . . . , ξn+k−1)

for n ∈ N. For simplicity, define qn = q(ξn, ξn+1) for all n ∈ N. We will prove by
induction that

qn 6Mθn, (4)

where θ = λ1/k and

M = max

{
qi
θi
, i ∈ {1, 2, . . . , k}

}
.

First, note that (4) is true for n = 1, 2, . . . , k because of the definition of M . Now let the
k inequalities

qn+i 6Mθn+i

hold for i ∈ {1, 2, . . . , k − 1}. Then we have

qn+k = q(ξn+k, ξn+k+1)

= q
(
F(ξn, ξn+1, . . . , ξn+k−1),F(ξn+1, ξn+2, . . . , ξn+k)

)
6 λmax

{
q(ξn+i−1, ξn+i), i ∈ {1, 2, . . . , k}

}
= λmax

{
qn+i−1, i ∈ {1, 2, . . . , k}

}
6 λmax

{
Mθn+i−1, i ∈ {1, 2, . . . , k}

}
= λMθn =Mθn+k,

and so (4) is true for all n ∈ N. Using (4), we have for all m,n ∈ N with m > n,

q(ξn, ξm) 6 q(ξn, ξn+1) + q(ξn+1, ξn+2) + · · ·+ q(ξm−1, ξm)

6Mθn +Mθn+1 + · · ·+Mθm−1 6
Mθn

1− θ
.

Now, set ε > 0 and 0 < δ < ε that satisfy (Q3). Hence, there exists nδ ∈ N such that
q(ξnδ , ξn) < δ and q(ξnδ , ξm) < δ wheneverm,n > nδ . Thereafter, by Lemma 1, we get
ρs(ξn, ξm) < ε. Hence, {ξn} is ρs-Cauchy sequence in X , and thus it is left K-Cauchy
sequence in X . By using left M -completeness of (X , ρ), then we obtain that there exists
ς ∈ X such that {ξn} is ρ−1-convergent to ς , that is, ρ(ξn, ς) → 0 as n → ∞. On the
other hand, for m > n > nδ , we can deduce that q(ξn, ξm) < δ. Hence, by (Q2), we
get q(ξn, ς) < δ < ε, and so q(ξn, ς) → 0 as n → ∞. By the 0-property of q, we have
q(ς, ς) = 0. Now, using (Q1) and (1), we have

q
(
ξn+k,F(ς, ς, . . . , ς)

)
= q
(
F(ξn, ξn+1, . . . , ξn+k−1),F(ς, ς, . . . , ς)

)
6 q
(
F(ξn, ξn+1, . . . , ξn+k−1),F(ξn+1, ξn+2, . . . , ξn+k−1, ς)

)
+ q
(
F(ξn+1, ξn+2, . . . , ξn+k−1, ς),F(ξn+2, ξn+3, . . . , ς, ς)

)
Nonlinear Anal. Model. Control, 28(6):1089–1102, 2023
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+ q
(
F(ξn+2, ξn+3, . . . , ς, ς),F(ξn+3, ξn+4, . . . , ς, ς, ς)

)
+ · · ·+ q

(
F(ξn+k−1, ς, . . . , ς),F(ς, ς, . . . , ς)

)
6 λmax

{
q(ξn+i−1, ξn+i), q(ξn+k−1, ς), 1 6 i 6 k − 1

}
+ λmax

{
q(ξn+i−1, ξn+i), q(ξn+k−1, ς), 2 6 i 6 k − 1

}
+ · · ·+ λmax

{
q(ξn+k−2, ξn+k−1), q(ξn+k−1, ς)

}
+ λq(ξn+k−1, ς).

Taking limit n → ∞, we have q(ξn,F(ς, ς, . . . , ς)) → 0. Therefore, since q(ξn, ς) → 0
and q(ξn,F(ς, ς, . . . , ς))→ 0 as n→∞, by Lemma 2(i), we get ς = F(ς, ς, . . . , ς), and
so ς ∈ Fk(F).

Now suppose that (3) holds. To prove Fk(F) = {ς}, let w 6= ς and w ∈ Fk(F).
Then, by (3), we have

q(ς, w) = q
(
F(ς, ς, . . . , ς),F(w,w, . . . , w)

)
< q(ς, w).

This contradicts our assumption. So, Fk(F) = {ς}.

By Remark 1, we can present the following theorem, which its proof is clear.

Theorem 4. Assume that (X , ρ) is a left M -complete quasimetric space, q is a Q-func-
tion having small self-distance property, k is any positive integer, and F : X k → X is
a mapping satisfying the contraction condition (1). Then there exists a point ς ∈ Fk(F)
such that q(ς, ς) = 0.

Moreover, the sequence {ξn} given in (2) for arbitrary initial points ξ1, ξ2, . . . , ξk∈X
is ρ−1-convergent to some point in Fk(F). In addition, if (3) holds for all u, v ∈ X with
u 6= v, then Fk(F) is singleton.

If we take k = 1 in Theorem 3 (and also in Theorem 4), then it may be concluded
the following fixed point result. Note that neither small self-distance nor 0-property for
Q-function is required in this result.

Corollary 1. Let (X , ρ) be a left M -complete quasimetric space, q be a Q-function on
X , and F : X → X be a mapping. Assume that there exists λ ∈ (0, 1) satisfying

q(Fξ,Fζ) 6 λq(ξ, ζ)

for all ξ, ζ ∈ X . Then F has a unique fixed point ς ∈ X . Furthermore, q(ς, ς) = 0.

Now, an example is demonstrated to illustrate our main theorem.

Example 5. Set X = [0,∞) and ρ(ξ, ζ) = max{ζ − ξ, 0} for all ξ, ζ ∈ X . Because
ρ(ξ, 0) = 0 for all ξ ∈ X , it follows that every sequence ρ−1-converges to 0, and so
(X , ρ) is a left M -complete quasimetric space. Define q(ξ, ζ) = ζ, then q is a Q-function
on (X , ρ), which have both small self-distance and 0-property. Consider a mapping F :
X 2 → X defined by

F(ξ, ζ) =

{
0, max{ξ, ζ} < 1,
ln(1+ξ+ζ)

1+
√
ξ2+ζ2

, max{ξ, ζ} > 1.

https://www.journals.vu.lt/nonlinear-analysis
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Figure 1. Graphical representation of the LHS (green) and the RHS (red) of inequality (5)

Now let ξ, ζ, ς ∈ X be arbitrary points, then we have (except for the obvious case)

q
(
F(ξ, ζ),F(ζ, ς)

)
= F(ζ, ς) = ln(1 + ζ + ς)

1 +
√
ζ2 + ς2

6
2

3
max{ζ, ς}

=
2

3
max

{
q(ξ, ζ), q(ζ, ς)

}
. (5)

Therefore, all conditions of Theorem 3 hold with k = 2. Then there exists ς ∈ F2(F)
such that q(ς, ς) = 0. Figure 1 confirms inequality (5).

Now, considering the sequential continuity of F , we can state the following theorem.

Theorem 5. Assume that (X , ρ) is a leftM -complete quasimetric space, q is aQ-function
onX , andF : X k → X is a mapping satisfying contraction condition (1). Then Fk(F) 6=
∅, provided that one of the following conditions holds:

(C1) ρ is T1-quasimetric and F is sequentially ρ−1-ρ-continuous;
(C2) (X , τρ−1) is Hausdorff and F is sequentially ρ−1-ρ−1-continuous.

Proof. Let ξ1, ξ2, . . . , ξk be arbitrary points in X . Define a sequence {ξn} by using these
points as follows:

ξn+k = F(ξn, ξn+1, . . . , ξn+k−1)

for n ∈ N. As in the proof of Theorem 3, we may assert that {ξn} is ρs-Cauchy sequence,
and consequently, it is left K-Cauchy sequence in X . Since (X , ρ) is left M -complete, it
follows that there exists ς ∈ X such that {ξn} is ρ−1-convergent to ς , that is, ρ(ξn, ς)→ 0
as n→∞.

Now, if (C1) holds, then we obtain ρ(F(ς, ς, . . . , ς),F(ξn, ξn+1, . . . , ξn+k−1)) → 0
as n→∞. Therefore, we get

ρ
(
F(ς, ς, . . . , ς), ς

)
6 ρ
(
F(ς, ς, . . . , ς), ξn+k

)
+ ρ(ξn+k, ς)

= ρ
(
F(ς, ς, . . . ς),F(ξn, ξn+1, . . . , ξn+k−1)

)
+ ρ(ξn+k, ς)→ 0

as n→∞. Since ρ is T1-quasimetric, we get ς = F(ς, ς, . . . ς).
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If (C2) holds, then we have

ρ
(
F(ξn, ξn+1, . . . , ξn+k−1),F(ς, ς, . . . ς)

)
= ρ
(
ξn+k,F(ς, ς, . . . ς)

)
→ 0

as n→∞. Since (X , τρ−1) is Hausdorff, we have ς = F(ς, ς, . . . ς).

3 Existence and uniqueness result

This section is devoted to presenting a novel application with the aid of Theorem 3. In
this section, we will study the existence and uniqueness of the solution of second-order
(p, q)-difference Langevin equation with boundary conditions of the form

Dp,q(Dp,q + γ)ξ(t) = f
(
t, ξ(t)

)
, t ∈ [0, 1],

ξ(0) = α, Dp,qξ(0) = β,
(6)

where f : [0, 1]× R→ R is continuous, 0 < q < p 6 1, and γ, α, β are given constants.
Assuming that f(t, ξ(t)) = 0 for each t ∈ [p, 1], we can see that (6) is equivalent to

the integral equation defined by

ξ(t) = α+ (β + γα)t− γ
t∫

0

ξ(s) dp,qs+

t/p∫
0

(t− pqs)f
(
s, ξ(s)

)
dp,qs. (7)

Assume that C[0, 1] is the space of all real-valued continuous functions defined on [0, 1].
Define an operator F : C[0, 1]→ C[0, 1] by

Fu(t) = α+ (β + γα)t− γ
t∫

0

u(s) dp,qs+

t/p∫
0

(t− pqs)f
(
s, u(s)

)
dp,qs.

Hence, if u is a fixed point of F , then it is a solution of the integral equation (7), and so,
identically, we can say that it is a solution of (p, q)-difference Langevin equation (6).

To show the existence of fixed point of F by using Corollary 1, we will consider the
space X as the positive cone of C[0, 1], that is,

X =
{
u ∈ C[0, 1]: u(t) > 0 for t ∈ [0, 1]

}
.

Define a quasimetric on X as

ρ(u, v) = sup
t∈[0,1]

max
{
v(t)− u(t), 0

}
.

In this case, it is clear that the function

q(u, v) = sup
t∈[0,1]

v(t)

is a Q-function on X . Also, for all u ∈ X , we have ρ(u, 0) = 0, then every sequence
in X ρ−1-converges to zero function. Therefore, (X , ρ) is a left M -complete quasimetric
space.
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Now consider the following assumptions:

(A1) f : [0, 1]× [0,∞)→ [0,∞) is continuous, and f(t, ξ) = 0 for each t ∈ [p, 1];
(A2) α, β > 0 and α(1 + γ) + β = 0;
(A3) There exists L > 0 such that f(t, ξ) 6 Lξ for all ξ ∈ [0,∞).

Theorem 6. In addition to (A1)–(A3), suppose that

|γ|+ L
p+ q − qp2

p2(p+ q)
< 1.

Then the (p, q)-difference Langevin equation (6) has a unique positive solution.

Proof. Consider the quasimetric space (X , ρ), which is mentioned above. Then F is
a self-mapping of X because of (A1) and (A2). Also, from (A2) and (A3) we have,
for all u, v ∈ X ,

q(Fu,Fv) = sup
t∈[0,1]

Fv(t)

= sup
t∈[0,1]

{
α+ (β + γα)t− γ

t∫
0

v(s) dp,qs+

t/p∫
0

(t− pqs)f
(
s, v(s)

)
dp,qs

}

6 sup
t∈[0,1]

∣∣∣∣∣α+ (β + γα)t− γ
t∫

0

v(s) dp,qs+

t/p∫
0

(t− pqs)f
(
s, v(s)

)
dp,qs

∣∣∣∣∣
6 α+ (β + γα) + |γ| sup

t∈[0,1]
v(t) + sup

t∈[0,1]

t/p∫
0

(t− pqs)f
(
s, v(s)

)
dp,qs

6 |γ| sup
t∈[0,1]

v(t) + sup
t∈[0,1]

t/p∫
0

(t− pqs)Lv(s) dp,qs

6 |γ| sup
t∈[0,1]

v(t) + L sup
t∈[0,1]

v(t) sup
t∈[0,1]

t/p∫
0

(t− pqs) dp,qs

=

(
|γ|+ L

p+ q − qp2

p2(p+ q)

)
sup
t∈[0,1]

v(t)

6 λ sup
t∈[0,1]

v(t) = λq(u, v),

where

λ = |γ|+ L
p+ q − qp2

p2(p+ q)
< 1.

Therefore, by Corollary 1, F has a unique fixed point in X . That is, the (p, q)-difference
Langevin equation (6) has a unique positive solution.

Nonlinear Anal. Model. Control, 28(6):1089–1102, 2023

https://doi.org/10.15388/namc.2023.28.33436


1100 I. Altun et al.

4 Conclusions

In this paper, two new properties of Q-functions on quasimetric spaces named 0-property
and small self-distance property were introduced. Then, taking into account these prop-
erties, some fixed point results for Prešić-type mappings were presented. To support the
main theorem, an example was provided. Finally, an existence and uniqueness theorem
for (p, q)-difference equations having boundary conditions was presented. The properties
of the Q-function introduced in this study will be used to derive fixed point theorems for
Prešić-type mappings satisfying various contractive inequalities.

Acknowledgment. The authors would like to express their gratitude to the referees for
their insightful comments and suggestions that helped them improve the manuscript.
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