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Abstract. Traditional direct estimation methods are inefficient for domains of a survey population
with small sample sizes. To estimate the domain proportions, we combine the direct estimators and
the regression-synthetic estimators based on domain-level auxiliary information. For the case of
small true proportions, we propose the design-based linear combination that is a robust alternative
to the empirical best linear unbiased predictor (EBLUP) based on the Fay–Herriot model.

We imitate the Lithuanian Labor Force Survey, where we estimate the proportions of
the unemployed and employed in municipalities. We show where the proposed design-based
composition and estimator of its mean square error are competitive for EBLUP and its accuracy
estimation.

Keywords: small area estimation, area-level model, composite estimator, sample-size-dependent
estimator, Labor Force Survey.

1 Introduction

In the classical survey statistics by Särndal et al. [26], design-based and model-assisted
direct estimators of parameters rely only on the sample of the estimation domain (area).
Therefore, after the sample is selected, their application for some unplanned domains
leads to high variances of the estimators because of too small sample sizes. In the small
area estimation theory by Rao and Molina [23], indirect estimators borrow sample infor-
mation from neighbor domains through auxiliary information and linking models. These
model-based estimators usually have lower variances than direct estimators, but their
biases may be relatively large.

To estimate proportions in the domains, one can consider explicit linking models
based on auxiliary data aggregated to the domain level. A popular model is the Fay–
Herriot (FH) model, which is a separate case of linear mixed models, and Fay and Herriot
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[9] derived from it the empirical best linear unbiased predictors (EBLUPs) of the domain
means. This small area predictor is expressed as the linear combination of a regression-
synthetic estimator and the direct estimator. While the former part accounts for a variation
reflected in the auxiliary data, the direct component exploits the unbiasedness property.
Compositions of the synthetic and the direct estimators constitute an important class of
indirect estimators. Before the mixed models, traditional design-based composite estima-
tors were often used [23, Chap. 3]. However, now it is accepted that the models including
random area-specific effects are more useful. One of the reasons is that they are more
convenient for handling complex data structures than the traditional estimators with only
randomness induced by the sampling design. Some examples of complex models applied
to the estimation of proportions are in [2,8,11,18,19], see also the book of Sugasawa and
Kubokawa [27]. Another notable drawback of traditional estimators is the difficulty in
estimating their precision. The problem is with bias estimation, while it is well developed
for the estimators like EBLUP.

Small area estimation problems differ from classical survey statistics in that they
require more advanced statistical techniques to produce precise estimates for small do-
mains. It involves using more auxiliary data and complex models and evaluating potential
biases in the estimates. For model-based estimators like EBLUP, the model is typically
used to make inferences about the population. We focus on the design-based small area
estimation approach, where the estimation task for inferences is similar to that in the
classical theory: only the sample design is taken into account to produce estimates of
parameters and evaluate their uncertainty. These estimators should be the first ones tested
in any survey before applying more complex model-based estimation methods, as argued
by Tzavidis et al. [28]. Moreover, the relatively simple design-based estimators may be
the final choice in the survey if their accuracy meets the set requirements.

We use a conditional analysis to construct the design-based composite estimator,
which is similar to EBLUP of [9] in some sense. According to the construction, it is a ro-
bust estimator suitable for small or large domain proportions. We compare the proposed
estimator with the model-based EBLUP and the design-based sample-size-dependent
(SSD) composition introduced by Drew et al. [7] and optimized with respect to its free
parameter by Čiginas [3]. The MSEs of both the design-based compositions are estimated
as suggested by Čiginas [4].

We compare the estimators and their MSE estimators in the simulation study using
the Lithuanian Labor Force Survey (LFS) data, where fractions of the unemployed and
employed are the proportions of interest estimated in municipalities. The applications of
EBLUPs to LFS unemployment data are found, for example, in [1,12,13,16,17,21]. SSD
compositions, with subjectively chosen values of the parameter, are used in [7, 29]. An
adaptive selection of values of this parameter is applied to estimate the proportions of
unemployed in [3].

We introduce the standard direct estimation and recall the famous EBLUP based on
the domain-level model in Sections 2 and 3, respectively. We discuss the problems of
design-based composite estimators in Section 4 and construct the new composition in
Subection 4.2. We present the simulation study in Section 5 and conclude in Section 6.
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2 Basic assumptions and direct estimation

The set U = {1, . . . , N} consists of the labels of elements of the survey population. Let
y be a binary study variable with the fixed values y1, . . . , yN assigned to the correspond-
ing elements. To estimate the proportions in the population and its subsets, the sample
s ⊂ U of size n < N is drawn by the sampling design p(·), and πk = Pp{k ∈ s} > 0,
k ∈ U , are inclusion into the sample probabilities. Here the symbol Pp, and hereafter
Ep, Varp, and MSEp denote probability, expectation, variance, and MSE according to
p(·), respectively. The characteristic Varp(·) is called the sampling variance or design
variance.

Let U = U1 ∪ · · · ∪ UM be the partition of the population into the nonoverlapping
domains, where the domain Ui containsNi elements. Then the domain sample si=s∩Ui
is of size ni 6 Ni. We aim to estimate the proportions

θi =
1

Ni

∑
k∈Ui

yk, i = 1, . . . ,M, (1)

where the numbers Ni are assumed to be known. If the design p(·) does not ensure the
fixed sizes ni, then they can be too small to get sufficiently accurate direct estimates θ̂di
of (1). The accuracy measure we use for any design-based estimator θ̂i of θi is

MSEp(θ̂i) =
(
Ep(θ̂i)− θi

)2
+ Varp(θ̂i),

where the first term means the squared bias. While this term is typically negligible for
direct estimators, it can be substantial for other small area estimators.

Assume that, for each domain Ui, the auxiliary information is available as the vector
of known characteristics zi = (zi1, zi2, . . . , ziP )′. This assumption narrows a choice of
direct estimators θ̂di to the classical design unbiased Horvitz–Thompson estimators θ̂HT

i =
N−1i

∑
k∈si yk/πk of θi or the weighted sample proportions

θ̂Hi =
1

N̂i

∑
k∈si

yk
πk
, where N̂i =

∑
k∈si

1

πk
, i = 1, . . . ,M, (2)

which are approximately unbiased. The latter estimators are also known as Hájek estima-
tors. The approximate sampling variances of (2) and their estimators have the expressions
[26, p. 185]

Varp
(
θ̂Hi
)
≈ ψH

i =
1

N2
i

∑
k∈Ui

∑
l∈Ui

(πkl − πkπl)
(yk − θi)(yl − θi)

πkπl
(3)

and

ψ̂H
i =

1

N̂2
i

∑
k∈si

∑
l∈si

(
1− πkπl

πkl

)
(yk − θ̂Hi )(yl − θ̂Hi )

πkπl
, i = 1, . . . ,M, (4)

respectively, where πkl = Pp{k, l ∈ s} > 0 is the probability that both elements k and l
will be included in the sample.
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3 EBLUP under the Fay–Herriot model

The direct estimators θ̂di of the domain proportions can be improved using the FH model
[9]. The data for this domain-level model are the estimates θ̂di , their corresponding esti-
mates ψ̂i of the sampling variances ψi = Varp(θ̂di ), and the covariates zi, i = 1, . . . ,M .
The basic FH model consists of two parts, see [23, Sect. 4.2], that are combined into the
linear mixed model

θ̂di = z′iβ + vi + εi, i = 1, . . . ,M, (5)

where β = (β1, . . . , βP )′ is the vector of fixed effects, the sampling errors εi are assumed
independent with Ep(εi) = 0 and Varp(εi) = ψi, and random domain effects vi are
assumed independent of these errors. The latter effects are supposed to be independent
and identically distributed with E(vi) = 0 and Var(vi) = σ2

v > 0 with respect to
a distribution, different from that generated by the design p(·).

Treating the estimates ψ̂i as given numbers, the method of EBLUP leads to the pre-
dictors of proportions (1) that are expressed as the linear combinations [9]

θ̂FHi = θ̂FHi (ψ̂i) = γ̂iθ̂
d
i + (1− γ̂i)z′iβ̂ with γ̂i =

σ̂2
v

ψ̂i + σ̂2
v

, i = 1, . . . ,M, (6)

and

β̂ =

(
M∑
i=1

ziz
′
i

ψ̂i + σ̂2
v

)−1 M∑
i=1

ziθ̂
d
i

ψ̂i + σ̂2
v

,

where σ̂2
v is an estimator of the variance σ2

v . One of the ways to estimate σ2
v is the estimator

σ̂2
v based on the method of moments proposed by Fay and Herriot [9]. For this estimator,

approximately unbiased estimators of MSE(θ̂FHi ) = E(θ̂FHi −θi)2 were derived by Datta
et al. [5]:

mse
(
θ̂FHi

)
= γ̂iψ̂i + (1− γ̂i)2

[
z′i

(
M∑
j=1

zjz
′
j

ψ̂j + σ̂2
v

)−1
zi

+
4M

ψ̂i + σ̂2
v

(
M∑
j=1

1

ψ̂j + σ̂2
v

)−2

−2σ̂2
v

(
M∑
j=1

γ̂j

)−3{
M

M∑
j=1

γ̂2j −

(
M∑
j=1

γ̂j

)2}]
, i = 1, . . . ,M. (7)

Predictors (6) and their MSE estimators (7) also depend on the estimators ψ̂i of the
sampling variances ψi of θ̂di . However, direct estimators ψ̂d

i of ψi, as, for example, ap-
proximately design unbiased estimators (4) of (3) for θ̂Hi , have large variances themselves
for small sample sizes. Therefore, the direct estimates ψ̂d

i are smoothed, and new more
stable estimates ψ̂s

i are used in (6) and (7). According to Wolter [30], it is called the
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generalized variance function (GVF) approach. The specific example of the GVF method,
similar to that used for estimation of census undercounts by Dick [6], is to assume that
ψi ≈ KNγ

i and estimate the parameters K > 0 and γ ∈ R using the regression model

log
(
ψ̂d
i

)
= log(K) + γ log(Ni) + ηi, i = 1, . . . ,M,

where errors ηi are independent and identically distributed. That is, the smoothed esti-
mates

ψ̂sD
i = K̂N γ̂

i , i = 1, . . . ,M, (8)

of ψi are based on the ordinary least squares estimates of the regression parameters.
A similar smoothing is considered in [31]. Other smoothing examples are pooled vari-
ance estimator [1] and a nonparametric smoothing like in [12]. Despite the smoothing,
estimators (7) tend to underestimate MSEs of (6) because the estimation of the sampling
variances ψi is ignored in the derivation of (7).

4 Design-based composite estimation

4.1 Evaluation of optimal compositions and their accuracy estimation

Let us exclude the random effects vi from FH model (5). Then this model, formulated for
the Horvitz–Thompson estimators θ̂di = θ̂HT

i or the weighted sample proportions θ̂di = θ̂Hi
specified by (2), becomes

θ̂di = z′iβ + εi, i = 1, . . . ,M, (9)

and, using the estimates ψ̂i of the variances ψi, we arrive to the regression-synthetic
estimators [23, Sect. 4.2]

θ̂Si = θ̂Si (ψ̂i) = z′iβ̂, i = 1, . . . ,M, (10)

of the domain proportions θi, where

β̂ =

(
M∑
i=1

ziz
′
i

ψ̂i

)−1 M∑
i=1

ziθ̂
d
i

ψ̂i
(11)

is the generalized least squares estimate of β. Here, as for EBLUPs, the use of smoothed
estimates ψ̂i = ψ̂s

i instead of ψ̂d
i stabilizes synthetic estimators (10).

Estimators (10) rely on a synthetic assumption that the parameter β is the same across
all domains. Therefore, having a good regression model, their design variances may be
low compared to that of chosen direct estimators θ̂di or even the EBLUPs θ̂FHi . However,
the design biases of (10) can be relatively large if the synthetic assumption is not realistic.
To find a trade-off between larger variances of θ̂di and biases of the synthetic estimators
θ̂Si , we consider their linear combinations

θ̃Ci = θ̃Ci (λi) = λiθ̂
d
i + (1− λi)θ̂Si , i = 1, . . . ,M, (12)

https://www.journals.vu.lt/nonlinear-analysis
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with weights 0 6 λi 6 1. Minimizing the function MSEp(θ̃Ci (λi)) with respect to λi, the
optimal weight for the domain Ui is the population parameter [23, Sect. 3.3]

λ∗i =
MSEp(θ̂Si )− Ci

MSEp(θ̂di ) + MSEp(θ̂Si )− 2Ci
with Ci = Ep

(
θ̂di − θi

)(
θ̂Si − θi

)
, (13)

and then the theoretically optimal design-based linear combination is

θ̂opti = θ̃Ci (λ∗i ). (14)

Assuming that |Ci| � MSEp(θ̂Si ), the approximation

λ∗i ≈
MSEp(θ̂Si )

MSEp(θ̂di ) + MSEp(θ̂Si )

is applied, but the further difficulty is to evaluate the quantities MSEp(θ̂Si ). A common
approach to this is to use the representation [23, Sect. 3.2.5]

MSEp

(
θ̂Si
)

= Ep

(
θ̂Si − θ̂di

)2 −Varp
(
θ̂Si − θ̂di

)
+ Varp

(
θ̂Si
)
, (15)

where θ̂di is assumed to be unbiased, and then to build an approximately design unbiased
estimator

mseu
(
θ̂Si
)

=
(
θ̂Si − θ̂di

)2 − σ̂2
(
θ̂Si − θ̂di

)
+ σ̂2

(
θ̂Si
)

(16)

of (15), where σ̂2(·) is an estimator of the design variance Varp(·). Unfortunately, esti-
mator (16) is typically unstable and can take negative values for individual small domains.
Therefore, the straightforward estimation of optimal weights (13) is avoided.

To evaluate the optimal coefficients for compositions (12), one can set a common
weight for all domains and then minimize a total MSE with respect to that weight by
Purcell and Kish [22]. A similar approach is to apply James–Stein method [23, Sect. 3.4].
One more idea is SSD estimation by Drew et al. [7], where estimators of the weights
in (12) are taken to be of the form

λ̂i = λ̂i(δ) =

{
1 if N̂i/Ni > δ,
N̂i/(δNi) otherwise.

(17)

These weights depend on the single subjectively chosen parameter δ for all domains.
According to [23], a general-purpose choice of δ in (17) is δ = 1. Särndal and Hidiroglou
[25] derived similar SSD estimators by applying a conditional analysis.

Estimation of MSEs of the design-based composite estimators like these is treated as
a difficult problem in the literature [23, Chap. 3]. One general solution is to consider the
composition θ̂Ci = θ̃Ci (λ̂i) as a synthetic estimator and use the estimator

mseu
(
θ̂Ci
)

=
(
θ̂Ci − θ̂di

)2 − σ̂2
(
θ̂Ci − θ̂di

)
+ σ̂2

(
θ̂Ci
)

(18)
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of MSEp(θ̂Ci ), see [23, Ex. 3.3.1] and [3]. However, this estimator has the same draw-
backs as (16). Another general method is to assume that the estimator θ̂Ci defined by (12)
approximates the optimal combination θ̂opti quite well and derive the approximation [4]:

MSEp

(
θ̂Ci
)
≈ λi

(
1− λi

)
ψi + Varp

(
θ̂Ci
)

with the empirical version

mseb
(
θ̂Ci
)

= λ̂i
(
1− λ̂i

)
ψ̂i + σ̂2

(
θ̂Ci
)
, (19)

where we would set ψ̂i = ψ̂s
i to have MSE estimators, which are less sensitive to the

outliers (due to small sample sizes) than those using the direct estimators ψ̂i = ψ̂d
i .

Estimator (19) takes only nonnegative values.

4.2 New composite estimation

The sampling variance ψi is approximately proportional to the product θi(1 − θi). That
is, one can use the approximation

ψi ≈
Diθi(1− θi)

ni
, (20)

where Di is the design effect reflecting the sample efficiency of the complex sampling
design, according to Kish [14]. Then, inserting θ̂di and an appropriate estimator D̂i of Di

into (20), we would approximate the direct estimator ψ̂d
i of ψi.

Let us first suppose that the domain proportions θi are small, say θi < 0.1. In this
case, it is even more complicated to get reliable direct estimates and estimates of their
accuracy [10, 15]. Because the smaller the true proportions, the larger the samples are
needed to maintain the same accuracy of estimators. For example, the direct estimator of
the proportion of the unemployed can take zero value even for a sample of moderate size
in the municipality.

Consider two candidate estimators ψ̂d
i and ψ̂s

i of ψi used in regression-synthetic esti-
mator (10). Assume that we got too small estimate θ̂di of θi for the specific sample s. The
direct estimate ψ̂d

i then underestimates the sampling varianceψi. Therefore, the inequality
ψ̂s
i > ψ̂d

i should often hold, that is, the smoothed variance ψ̂s
i could be a better choice

than ψ̂d
i . Now suppose that θ̂di overestimated the parameter θi. Then ψ̂d

i overestimates ψi
as well, and the inequality ψ̂s

i < ψ̂d
i should hold if θ̂di is an outlier. This larger estimate

ψ̂d
i can be employed to down-weight the outlying observation θ̂di used in (11) and thus

synthetic estimators (10) are less sensitive to the outliers. From these considerations, we
derive the combined estimators

ψ̂c
i = max

{
ψ̂s
i , ψ̂

d
i

}
, i = 1, . . . ,M,

of the sampling variances ψi that should improve the regression-synthetic estimators.
Next, in line with the same ideas, we define the design-based composite estimators

θ̂Ci = λ̂iθ̂
d
i + (1− λ̂i)θ̂Si

(
ψ̂c
i

)
with λ̂i =

min{ψ̂s
i , ψ̂

d
i }

ψ̂c
i

, i = 1, . . . ,M, (21)
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of domain proportions (1). If the estimate θ̂di is an outlier by its too small or too large
value, then relatively more weight is attached to the synthetic part of composition (21).
The composition is a shrinkage estimator because it shrinks the direct estimator toward
the synthetic one.

We apply the same arguments to create (21) if the parameters θi are not small, but
then the inequalities max{θi, θ̂di } < 1/2 or min{θi, θ̂di } > 1/2 must be satisfied. If these
inequalities are not valid, the composite estimator is still applicable, but it can be less
efficient. The worst scenario here would be a large difference θi − θ̂di and the relation
θi ≈ 1− θ̂di but such events are rare.

To estimate the MSE of composition (21), we suggest applying general estimator (19).
We study the accuracy of both these estimators in Section 5.

4.3 Sample-size-dependent estimation

A choice of the parameter δ in (17) varies from survey to survey. That is, the values 2/3
and 1 are good for LFS in [7], the authors of [29] try the larger points 1.5 and 2 for their
data, and optimal values of δ are even higher in [3]. Therefore, to select the value of
the parameter for the composition θ̃Ci (δ) = θ̃Ci (λ̂i(δ)) defined by (12), the sample-based
function

r(δ) =
1

M

M∑
i=1

mseu
(
θ̃Ci (δ)

)
(22)

is minimized numerically with respect to δ in [3]. The minimization is implemented by
applying any univariate optimization algorithm. Function (22) is the average of individual
MSE estimators (18) over domains and, therefore, it is stable, unlike the individual ones.
Then the adaptive design-based composite estimators of the domain proportions are [3]

θ̂SSDi = θ̃Ci (δ̂∗) with δ̂∗ = arg min
δ>0

r(δ), i = 1, . . . ,M. (23)

We apply estimators (19) to evaluate the MSEs of these compositions.

5 Simulations using the Labor Force Survey data

The main LFS variable is the categorical one that indicates an individual’s participation
in the labor market. This variable is decomposed into three binary variables: the person
is unemployed, employed, and not in the labor force. We estimate the proportions of
the former two variables in the municipalities of Lithuania. To imitate the real survey,
we construct the artificial population from the sample data of the fourth quarter of 2018
as follows: we remove municipalities with too small fractions of observed unemployed
persons and then replicate the data of each individual the number of times equal to the
rounded survey weight. The size of that population U is N = 1 396 763, and it contains
M = 30 municipalities. In LFS, the sample of households is drawn without replacement
with probabilities proportional to the number of their members, and then the selected
households are surveyed entirely. We use the same sampling design to draw R = 103

Nonlinear Anal. Model. Control, 28(4):720–734, 2023
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independent samples of households of size n′ = 3 700. It yields the samples of persons
of sizes close to n = 7 667. Then, for the kth individual that belongs to the lth household
of size hl, we apply the approximation πk ≈ hln′/N , k ∈ U .

We compare the following estimators of the domain proportion θi:

• the direct estimator θ̂di = θ̂Hi from (2);
• the regression-synthetic estimator θ̂Si given by (10);
• EBLUP θ̂FHi in (6) calculated using the package sae for R by [20];
• the new design-based composition θ̂Ci given by (21);
• SSD composite estimator θ̂SSDi from (23);
• the optimal combination θ̂opti by (14).

Moreover, we compare the accuracy of these MSE estimators:

• the estimator mse(θ̂FHi ) of the parameter MSE(θ̂FHi ) from (7);
• the estimator mseu(θ̂Ci ) of MSEp(θ̂Ci ) by (18) applied to composition (21);
• the estimator mseb(θ̂Ci ) of MSEp(θ̂Ci ) by (19) for estimator (21);
• the estimator mseu(θ̂SSDi ) of MSEp(θ̂SSDi ) applying formula (18);
• the estimator mseb(θ̂SSDi ) of the parameter MSEp(θ̂SSDi ) using formula (19);
• the estimator mseb(θ̂opti ) of MSEp(θ̂opti ) calculated by (19).

To model the direct estimates of the proportions of interest by (5) and (9), we use the
municipality characteristics zi = (1, zi2, zi3, zi4, zi5, zi6)′, where zi2 is the proportion
of registered unemployed individuals derived from the administrative Lithuanian Labor
Exchange data, zi3 is the proportion of persons who, according to the register of the State
Social Insurance Fund Board, paid the social contribution one month before they partici-
pated in the survey, zi4 is the proportion of males, and zi5 and zi6 are the proportions of
individuals from age intervals 26–40 and 41–55, respectively.

Since the sampling fractions are small in the municipalities, we take πkl ≈ πkπl,
k 6= l, and so approximate direct estimators (4) of sampling variances (3) by

ψ̂H
i ≈ ψ̂d

i =
1

N̂2
i

∑
k∈si

wk(wk − 1)
(
yk − θ̂di

)2
, i = 1, . . . ,M,

where we write wk = 1/πk. Then we smooth these ψ̂d
i to obtain ψ̂i = ψ̂sD

i according
to (8) and use the smoothed estimates for (6), (7), (10), (14), (19), and in the synthetic
parts of (23).

We apply the bootstrap method by Rao et al. [24] to evaluate the estimators of the
design variances used in (18), (19), and (22). Let us estimate the variance for any estima-
tor θ̂i. The bootstrap procedure works as follows: (i) Draw a simple random sample of
m = n′ − 1 households with replacement from the sample of n′ households. Let m∗l be
the number of times the lth household is selected, and then

∑n′

l=1m
∗
l = m. Define the

bootstrap weights w∗l = n′m∗lwl/m, l = 1, . . . , n′. Calculate the bootstrap estimate θ̂∗i
using the weights w∗l in the formula for θ̂i. (ii) Repeat step (i) B times independently to

https://www.journals.vu.lt/nonlinear-analysis
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obtain the estimates θ̂∗(b)i , b = 1, . . . , B. Then

σ̂2(θ̂i) =
1

B

B∑
b=1

(
θ̂
∗(b)
i − θ̄∗i

)2
, where θ̄∗i =

1

B

B∑
b=1

θ̂
∗(b)
i ,

is the bootstrap estimator of the design variance Varp(θ̂i). We take B = 200.
We evaluate all estimators for each of the R samples and calculate approximations to

their root mean squared errors (RMSEs) and absolute biases (ABs). It means we use the
accuracy measures

RMSE(µ̂i) =

(
1

R

R∑
r=1

(
µ̂
(r)
i − µi

)2)1/2

and AB(µ̂i) =

∣∣∣∣∣ 1

R

R∑
r=1

µ̂
(r)
i − µi

∣∣∣∣∣, (24)

where µ̂(r)
i is a realization of the specific estimator µ̂i of the parameter µi, based on the

rth sample. We classify the municipalities by the expected domain sample size into three
classes of equal size and calculate the averages of RMSEs and ABs over the domains
of each class. We also present the averages of (24) over all municipalities as common
accuracy indicators.

The results for the proportions of the unemployed and employed are presented in
Tables 1 and 2, respectively. Let us use the superscripts of estimators to discuss the output.
In both the tables, any indirect estimator of the proportions improves the direct one in the
sense of RMSE, and theoretical composition opt is the best estimator. Among the indirect
estimators, regression-synthetic estimator S has much larger design biases than composi-
tions FH, C, and SSD. In Table 1, the averages of RMSEs over all domains for design-
based composite estimators C and SSD are smaller than that for EBLUP FH. It is not valid
for estimator C in Table 2 because the proportions of the employed are distributed near

Table 1. Average RMSEs and ABs of estimators for the unemployed proportions in domain size classes as n ≈
7 667. The domain is small if its expected sample size n̄i = Ep(ni) < 116, is medium for 116 6 n̄i < 159,
and is large as n̄i > 159.

Estimator Average RMSE (×102) Average AB (×102)
Domain size class by n̄i Domain size class by n̄i

any small medium large any small medium large

θ̂di 2.4793 3.8540 2.4578 1.1259 0.0636 0.1200 0.0485 0.0223

θ̂Si 1.8174 2.8950 1.5632 0.9940 1.3461 2.3656 1.0677 0.6050

θ̂FH
i 1.7857 2.6707 1.7156 0.9707 0.7349 1.4738 0.5496 0.1811

θ̂Ci 1.7511 2.6798 1.6838 0.8897 0.7951 1.4777 0.6130 0.2946

θ̂SSDi 1.7529 2.7228 1.6162 0.9196 0.8649 1.4974 0.6928 0.4045

θ̂opti 1.4712 2.3804 1.2486 0.7846 0.7301 1.3978 0.5206 0.2720

mse(θ̂FH
i ) 0.0223 0.0445 0.0173 0.0051 0.0180 0.0373 0.0128 0.0039

mseu(θ̂Ci ) 0.0708 0.1540 0.0491 0.0094 0.0263 0.0532 0.0215 0.0041

mseb(θ̂Ci ) 0.0173 0.0371 0.0119 0.0030 0.0135 0.0296 0.0087 0.0021

mseu(θ̂SSDi ) 0.0593 0.1164 0.0494 0.0120 0.0115 0.0290 0.0051 0.0005

mseb(θ̂SSDi ) 0.0257 0.0497 0.0210 0.0063 0.0172 0.0314 0.0153 0.0050

mseb(θ̂opti ) 0.0098 0.0206 0.0064 0.0023 0.0050 0.0110 0.0027 0.0012
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Table 2. Average RMSEs and ABs of estimators for the employed proportions in domain size classes as n ≈
7 667. The domain is small if its expected sample size n̄i = Ep(ni) < 116, is medium for 116 6 n̄i < 159,
and is large as n̄i > 159.

Estimator Average RMSE (×102) Average AB (×102)
Domain size class by n̄i Domain size class by n̄i

any small medium large any small medium large

θ̂di 4.7718 6.9201 4.7104 2.6848 0.1516 0.2577 0.1395 0.0575

θ̂Si 3.4061 4.9905 3.2215 2.0061 2.6481 4.1247 2.5006 1.3188

θ̂FH
i 3.3054 4.6679 3.1768 2.0716 1.7276 2.8992 1.6535 0.6302

θ̂Ci 4.2265 6.0532 4.1539 2.4724 0.4024 0.6893 0.4213 0.0967

θ̂SSDi 3.2747 4.7502 3.1425 1.9314 1.6996 2.6130 1.6237 0.8622

θ̂opti 2.8602 4.1800 2.6261 1.7746 1.6026 2.5092 1.4717 0.8269

mse(θ̂FH
i ) 0.0724 0.1281 0.0670 0.0221 0.0561 0.1070 0.0469 0.0143

mseu(θ̂Ci ) 0.0666 0.1371 0.0481 0.0144 0.0297 0.0590 0.0216 0.0086

mseb(θ̂Ci ) 0.0535 0.1093 0.0406 0.0107 0.0102 0.0170 0.0120 0.0016

mseu(θ̂SSDi ) 0.1992 0.3628 0.1784 0.0563 0.0297 0.0674 0.0201 0.0014

mseb(θ̂SSDi ) 0.0655 0.1091 0.0697 0.0178 0.0442 0.0715 0.0491 0.0119

mseb(θ̂opti ) 0.0181 0.0374 0.0110 0.0059 0.0082 0.0155 0.0049 0.0043

the point 1/2 if we look at the five-number summary (0.379, 0.585, 0.634, 0.668, 0.766)
for the true proportions.

MSE estimators (19) for design-based compositions C and SSD evidently improve
estimators (18) and yield similar or even better results than MSE estimator (7) for FH. The
best MSE estimation using (19) is obtained for optimal composition opt. Since composite
estimators C and SSD only approximate the optimal one, their MSE estimators have larger
errors. On the other hand, these errors are acceptable if compared with the results for FH.

Detailed information about RMSEs of estimators d, FH, C, SSD, and some selected
MSE estimators presented in Figs. 1–2 supports conclusions derived from the tables.

(a) (b)

Figure 1. RMSEs of the estimators θ̂di , θ̂FH
i , θ̂Ci , and θ̂SSDi for the proportions of unemployed (a) and

employed (b).
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(a) (b)

Figure 2. RMSEs of the MSE estimators mse(θ̂FH
i ), mseb(θ̂Ci ), and mseb(θ̂SSDi ) for the proportions of

unemployed (a) and employed (b).

The same experiment but with the twice smaller sample size n′ = 1 850 leads to
similar conclusions. In this case, the proposed design-based composition C improves
EBLUP FH more for small proportions.

6 Conclusions

The construction of new composite estimator (21) is based on the monotonicity of the
variance of the direct estimator as the function of the proportion. Approximation (20) is
the monotone function in two separate parts of the interval [0, 1]. Therefore, the compo-
sition loses its efficiency for the proportions close to the turning point 1/2, where the
monotonicity changes.

In general, the sampling variance of any direct estimator of the domain mean is not the
monotone function of the target parameter. On the other hand, some GVF models from
[30, p. 274] suggest that this function might be treated as an approximately monotonic
one. Therefore, if we can find the GVF model that fits the data well and is the monotonic
function, then estimator (21) could be applied to the domain means with this fitted model
used instead of smoothed sampling variances (8).

The simulation study shows that the design-based compositions might be a good
alternative to the classical EBLUP estimating proportions in small domains. Adaptive
SSD composite estimator (23) works well for both unemployment and employment cases,
while simpler new composition (21) is efficient for the unemployment fractions that are
small proportions.

Design-based estimators and estimators of MSE under the design-based approach are
desirable in practice [21]. That design MSE estimator (19) works well in our simulations,
and its formula is simple compared to that of model MSE estimator (7) for EBLUP.
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