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Abstract. In this paper, the examination of soliton solutions of the biofilm model with the help of
a new extended direct algebraic method is expressed. Besides the exact solutions, the existence of
these solutions is also discussed with the help of the Schauder fixed point theorem. The nonlinear
dynamical biofilm model which we consider in this paper is basically the bistable Allen–Cahn
equation with quartic potential. For more physical understanding, the 3D plots of the solutions are
presented. The different types of hyperbolic, trigonometric, and rational soliton solutions are gained.
In the biofilm model, different parameters belong to certain spaces and give the exact solutions by
applying the technique of new extended direct algebraic method. Exact solutions of the biofilm
model are highlighted along with their restriction.
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1 Introduction

In the 18th century, Euler, d’Alembert, Lagrange, and Laplace discussed partial differ-
ential equations (PDEs) in the field of continuum mechanics and analysis of models in
physical science. The prime contribution of the PDEs in the natural world includes the
vibration of solids, the phenomenon of electromagnetic radiation, structural properties
of molecules including the interaction between photons and electrons, fluid dynamics,
propagation of sound, heat flow and diffusion, etc. In short, the key defining properties
of PDEs are in geometry and analysis. Infinite-dimensional group representation, ho-
mogenous spaces, mathematical physics, and quantum field theory are the areas of coeval
research in mathematics in which PDEs plays a crucial role. PDEs act as a bridge between
applied mathematics and physical science. Also, PDEs are the basis of the advancement
of mathematical ideas in pure mathematics; see [23]. Abridge of pivotal functioning of
PDEs in other areas of mathematics include differential geometry, calculus of variation,
Riemannian surfaces, algebric geometry, general relativity, quantum mechanics, electro-
statics, electrodynamics, etc.

Physical sciences act as a skeleton for many dominant ideas in mathematics. For
example, the foundation of calculus lies in the motion of bodies. Mathematical equa-
tions describe the theory behind the physical phenomenon. In short, they act as a fabric
for physical phenomena, i.e., the electrodynamical phenomena have been explained by
Maxwell’s equations. The description of the mechanical system has been provided by
Newton’s equation, Schrödinger’s equations have their application in the field of quantum
mechanics, and so on. The primary role of PDEs is also found in the field of mathemat-
ical modelings like financial modeling, biological modeling, and so on. Mathematical
modeling summarizes the physical observations of the physical system. For example,
Newton’s equations are the model for mechanical systems. In short, the simplified version
of physical systems in mathematical terms is expressed by mathematical modeling; see
[17].

PDEs are further divided into linear and nonlinear branches. Our work is basically on
nonlinear PDEs. The traits of nonlinear PDEs are connected with the nonlinear laws of
nature. They are used in stochastic game theory, gravitational behavior, Fluid dynamics,
Poincaré and Calabi conjectures, non-Newtonian fluid, and so on. The roots of the nonlin-
ear PDEs such as Monge–Ampère, minimal surfaces, Yamabe equations originate from
differential geometry. There are different techniques for finding solutions to nonlinear
PDEs. We apply the technique of new extended direct algebraic method (NEDAM) to
study the behavior of microbes forming biofilm on the surfaces; see [14, 18]. Jornet con-
sider biofilm formation via the stochastic bistable Allen–Cahn partial differential equation
[14], Tijani construct an unconditionally positive nonstandard finite difference scheme
for a mathematical model of biofilm formation using the Allen–Cahn equation [29], and
Tijani apply the finite difference scheme to model biofilm growth [30], but Iqbal et al.
construct the different types of soliton solutions of stochastic Allen–Chan equation by
extended fan-sub technique [13]. In this modern era of research, finding soliton solutions
is an important field to describe the physical behavior of the nonlinear PDEs. There are
many different techniques to find the soliton solutions such as G′/G expansion method
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[4, 31], first integral method [5], Kudryashov method [3, 8], generalized logistic equation
method [22, 34], Riccati mapping method [2, 33], φ6-model expansion method [27, 35],
He’s variational method [20], generalized exponential rational function method [12],
Hirota bilinear method [11], modified exponential rational functional method [1], a new
auxiliary equation [28], Riccati–Bernoulli sub-ODE method [7, 16, 19], etc. But in this
study, we apply the new modified extended direct algebraic method and the existence of
the solutions on the bistable Allen–Cahn equation with quartic potential.

This manuscript basically deals with the nonlinear PDE in the form of biofilm model.
We used the technique of new extended direct algebraic method to find the more general
and exact soliton solutions of biofilm model. The dynamical nature of the new extended
direct algebraic method illuminates the soliton solutions as well as the hyperbolic and
trigonometric function solutions; see [10, 25, 32]. The plague layer that is usually formed
on teeth is one simple examples of a biofilm. In short, the collection of one or different
types of microorganisms that adhere on different surfaces form a biofilm. These microbes
consist of bacteria, fungi, algae, etc.; see [14–24]. So, these results are new and affected
in the living reproducing microbes that penchant to live in colonies form a biofilm.

The paper is organized in the following manner. The next section expresses the state-
ment of the problem, then Section 3 present the existence theory, summary and application
of the method are highlighted in Sections 4 and 5. Restriction of solutions in certain cases
is encoded in Section 6, and Sections 6 and 7 describe the graphical interpretation and
conclusion.

2 Statement of the problem

The nonlinear dynamical biofilm model that we consider in this paper is basically the
bistable Allen–Cahn equation (with quartic potential); [21]

ct = D∆c+ rc(1− c)(c− θ), t > 0, (1)

where c(t, x, y) is the density of microbes on the rectangular surface [e, g] × [n,m] (i.e.,
(x, y) ∈ [e, g] × [n,m], and times t > 0). D > 0 is the diffusion coefficient, r > 0
is the growth rate, the parameter θ ∈ [0, 1] encodes the survival rate of microbes [14].
The goal of the article is subdivided into two main parts. The one is to show the classical
behavior of the solutions of the above differential equation, and the second is to formulate
the interval in which solutions exist by existence theory.

3 Classical existence of at least one solution of biofilm model

In this section, we discussed the existence of solution of Eq. (1) and their set of continuity,
and especially, it is an important consequence if we can give some information on the
bound of the set of existence of solution without knowing the solution itself. The integral
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representation of Eq. (1) is

c = c0(x, y) +

t∫
0

[
D∆c(x, y, τ) + r

(
c2(x, y, τ)− θc(x, y, τ)

− c3(x, y, τ) + θc2(x, y, τ)
)]

dτ. (2)

The formation of Eq. (2) leads us to rewrite it in the form of fixed operator

C = C
(
c(x, y, t)

)
= c0(x, y) +

t∫
0

[
D∆c(x, y, τ) +

(
c2(x, y, τ)− θc(x, y, τ)

− c3(x, y, τ) + θc2(x, y, τ)
)]

dτ. (3)

The operator equation is a fixed point representation of the problem for c(x, y, t). Hence,
any fixed function c∗(x, y, t) of C(x, y, t) will turn out to be a solution of not only Eq. (3)
but also of Eqs. (1), (2). Before we proceed for the construction of fixed points of Eq. (3),
we must look for the topological spaces. Here we choose the space of continuous func-
tions C equipped with supremum norm, i.e., m∗ ∈ C[0, ρ] ⇒ ‖m∗‖C = max[0,ρ] |m∗|.
Assume that functions c, D, r, θ are continuous and, consequently, locally bounded.
Hence,

s, p, R > 0.

For the existence of solution, we shall apply the Schauder fixed point theorem, which is
a generalization of Brouwer fixed point theorem for infinite dimensional space; see [9,15].
There are two important steps by Schauder fixed point theorem, which are the implication
of the statement of theorem.

Theorem. Suppose B is a closed convex and bounded subset of Banach space C, a func-
tion C continuous and maps the set B to itself, and C(B) is relatively compact. Then C
has at least one fixed point in B.

In view of the above result, the following two conditions must be verified:

• C(x, y, t) : B → B,
• C(B) is relatively compact.

The set B is closed, convex, and bounded subset of C[0, ρ], and it is defined by

BR(Θ) =
{
c, c ∈ C[0, ρ]

}
,

where capital theta Θ symbol is for zero element of function space C, and also, R is the
radius of the ball and define the complete length of continuity of the solution.

To verify the first condition C : B → B, we shall use B = BR(Θ). For this purpose,
we apply the norm of Eq. (3) on both sides, and further simplification leads to

‖C‖ 6 s+ ρ
[
Dp + r

(
R2 + θR+R3 + θR2

)]
,
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where ρ = (t − 0), length of continuity. For mapping the ball into itself, we have the
following condition:

ρ =
R− s

Dp + r(R2 + θR+R3 + θR2)
.

This will hold true if R > S. The minimum value of [Dp + r(R2 + θR + R3 + θR2)]
will leads to the largest length of continuity of solution, for that we get the condition

θ2 > θ − 1.

Now this step is essential for the accomplishment of the existence of solution by
Schauder’s well-known result for the existence in infinite dimensional setting. For this,
we again consider Eq. (3)

C = c0(x, y) +

t∫
0

[
D∆c(x, y, τ) + r

(
c2(x, y, τ)− θc(x, y, τ)

− c3(x, y, τ) + θc2(x, y, τ)
)]

dτ.

The equicontinuity of the solution is checked at two points t and t∗. Therefore, we have
the following equation:

Ci(x, y, t)− Ci(x, y, t∗)

= c0(x, y) +

t∫
0

[
D∆ci(x, y, τ) + r

(
c2i (x, y, τ)− θci(x, y, τ)

− c3i (x, y, τ) + θc2i (x, y, τ)
)]

dτ

− c0(x, y)−
t∗∫
0

[
D∆ci(x, y, τ) + r

(
c2i (x, y, τ)− θci(x, y, τ)

− c3i (x, y, τ) + θc2i (x, y, τ)
)]

dτ.

After applying the norm and further simplification, we get∥∥Ci(x, y, t)− Ci(x, y, t∗)∥∥ 6
[
Dp|t− t∗|+ r

(
R2|t− t∗|+ θR|t− t∗|

+R3|t− t∗|+ θR2|t− t∗|
)]∥∥Ci(x, y, t)− Ci(x, y, t∗)∥∥ 6

[(
Dp + r

(
R2 + θR+R3 + θR2

))
|t− t∗|

]
.

Remark 1. The condition of continuity holds.

Clearly, ‖Ci(x, y, t) − Ci(x, y, t∗)‖ → 0 as t → t∗, and even for a special pair
(x∗, y∗, t∗), ‖Ci(x, y, t)− Ci(x∗, y∗, t∗)‖ → 0 as (x, y, t) → (x∗, y∗, t∗). So, the family
Ci(x, y, t) is turn out to be equicontinuous, and Arzelà–Ascoli theorem is applicable.
By Arzelà–Ascoli theorem there exist a subsequence Cij (x, y, t) of Ci such that Cij is
uniformly convergent, so, the operator C(x, y, t) turns out to be a relatively compact
operator, and Schauder theorem is applicable; see [9, 15].
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4 Summary of new extended direct algebraic method

Consider the following PDEs:

T (β, βx, βy, βt, βxx, βxy, . . . ) = 0, (4)

where β = β(x, y, t), also, the subscript denotes the partial derivative w.r.t. x, y, t using
the transformation

β(x, y, t) = η(ξ), ξ = x+ y − ωt.

After applying the transformation, Eq. (4) is converted into ordinary differential equation
(ODE)

G = (η, η′, η′′, . . . ) = 0, (5)

where prime denote derivative w.r.t. ξ. The solution of Eq. (5) has the form [6, 25]

η(ξ) =

j∑
u=0

auQ
u(ξ), au 6= 0, (6)

where au (0 6 u 6 j) are the constant to be determined, j is the positive integer, and its
value is determined by using the balancing principle in Eq. (5). Q(ξ) satisfies the ODE
in the form

Q′(ξ) = lnA
(
α+ δQ(ξ) + γQ2(ξ)

)
, A 6= 0, 1. (7)

Here α, δ, γ are constants, and the general solutions of Eq. (7) are given as follows.

Case 1. When µ = δ2 − 4αγ < 0 and γ 6= 0,

Q1(ξ) = − δ

2γ
+

√
−µ
2γ

tanA

(√
−µ
2

ξ

)
, (8)

Q2(ξ) = − δ

2γ
−
√
−µ
2γ

cotA

(√
−µ
2

ξ

)
, (9)

Q3(ξ) = − δ

2γ
+

√
−µ
2γ

(
tanA

(√
−µξ

)
±√pq secA(

√
−µξ)

)
, (10)

Q4(ξ) = − δ

2γ
+

√
−µ
2γ

(
− cotA

(√
−µξ

)
±√pq cscA(

√
−µξ)

)
, (11)

Q5(ξ) = − δ

2γ
+

√
−µ
4γ

(
tanA

(√
−µ
4

ξ

)
− cotA

(√
−µ
4

ξ

))
. (12)
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Case 2. When µ = δ2 − 4αγ > 0 and γ 6= 0,

Q6(ξ) = − δ

2γ
−
√
µ

2γ
tanhA

(√
µ

2
ξ

)
, (13)

Q7(ξ) = − δ

2γ
−
√
µ

2γ
cothA

(√
µ

2
ξ

)
, (14)

Q8(ξ) = − δ

2γ
+

√
µ

2γ

(
− tanhA(

√
µξ)± ι√pq sechA(

√
µξ)
)
, (15)

Q9(ξ) = − δ

2γ
+

√
µ

2γ

(
− cothA(

√
µξ)±√pq cschA(

√
µξ)
)
, (16)

Q10(ξ) = − δ

2γ
−
√
µ

4γ

(
tanhA

(√
µ

4
ξ
)

+ cothA

(√
µ

4
ξ

))
. (17)

Case 3. When αγ > 0 and δ = 0,

Q11(ξ) =

√
α

γ
tanA(

√
αγξ), (18)

Q12(ξ) = −
√
α

γ
cotA(

√
αγξ), (19)

Q13(ξ) =

√
α

γ

(
tanA(2

√
αγξ)±√pq secA(2

√
αγξ)

)
, (20)

Q14(ξ) =

√
α

γ

(
− cotA(2

√
αγξ)±√pq cscA(2

√
αγξ)

)
, (21)

Q15(ξ) =
1

2

√
α

γ

(
tanA

(√
αγ

2
ξ
)
− cotA

(√
αγ

2
ξ

))
. (22)

Case 4. When αγ < 0, δ = 0, and γ = α,

Q16(ξ) = −
√
−α
γ

tanhA(
√
−αγξ), (23)

Q17(ξ) = −
√
−α
γ

cothA(
√
−αγξ), (24)

Q18(ξ) =

√
−α
γ

(
− tanhA(2

√
−αγξ)± ι√pq sechA(2

√
−αγξ)

)
, (25)

Q19(ξ) =

√
−α
γ

(
− cothA(2

√
−αγξ)±√pq cschA(2

√
−αγξ)

)
, (26)

Q20(ξ) = −1

2

√
−α
γ

(
tanhA

(√
−αγ
2

ξ

)
+ cothA

(√
−αγ
2

ξ

))
. (27)

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Analysis and soliton solutions of biofilm model 545

Case 5. When δ = 0 and γ = α,

Q21(ξ) = tanA(αξ), (28)

Q22(ξ) = − cotA(αξ), (29)

Q23(ξ) = tanA(2αξ)±√pq secA(2αξ), (30)

Q24(ξ) = − cotA(2αξ)±√pq cscA(2αξ), (31)

Q25(ξ) =
1

2

(
tanA

(
α

2
ξ

)
− cotA

(
α

2
ξ

))
. (32)

Case 6. When δ = 0 and γ = −α,

Q26(ξ) = − tanhA(αξ), (33)

Q27(ξ) = − cothA(αξ), (34)

Q28(ξ) = − tanhA(2αξ)± ι√pq sechA(2αξ), (35)

Q29(ξ) = − cothA(2αξ)±√pq cschA(2αξ), (36)

Q30(ξ) = −1

2

(
tanhA

(
α

2
ξ

)
+ cothA

(
α

2
ξ

))
. (37)

Case 7. When δ2 = 4αγ,

Q31(ξ) =
−2α(ln(A)δξ + 2)

ln(A)δ2ξ
. (38)

Case 8. When δ2 = ν, α = hν (h 6= 0), and γ = 0,

Q32(ξ) = Aνξ − h. (39)

Case 9. When δ = γ = 0,

Q33(ξ) = ln(A)αξ. (40)

Case 10. When δ = α = 0,

Q34(ξ) = − 1

ln(A)γξ
. (41)

Case 11. When α = 0, δ 6= 0,

Q35(ξ) = − pδ

γ(coshA(δξ)− sinhA(δξ) + p)
, (42)

Q36(ξ) = − δ(sinhA(δξ) + coshA(δξ))

γ(sinhA(δξ) + coshA(δξ) + q)
. (43)

Case 12. When δ = ν, γ = hν (h 6= 0), and α = 0,

Q37(ξ) =
pAνξ

p− hqAνξ
. (44)
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Remark 2.

sinhA(ξ) =
pAξ − qA−ξ

2
, coshA(ξ) =

pAξ + qA−ξ

2
,

tanhA(ξ) =
pAξ − qA−ξ

pAξ + qA−ξ
, cothA(ξ) =

pAξ + qA−ξ

pAξ − qA−ξ
,

tanA(ξ) = −ιpA
ιξ − qA−ιξ

pAιξ + qA−ιξ
, cotA(ξ) = ι

pAιξ + qA−ιξ

pAιξ − qA−ιξ
,

where p, q > 0 are arbitrary constants.

Now more than one exact solution of Eq. (4) can be obtained by combining Eq. (6)
with Eqs. (8)–(44).

Remark 3. Due to the generic nature of the new extended direct algebraic method, many
important method like G′/G-expansion method, the Kudryashov method, the modified
Kurdryashov method, the tanh-function method, the extended tanh-function method, the
direct algebraic method, and so on can be used [26].

5 Application of new extended direct algebraic method to biofilm
model and physical solutions

Consider Eq. (1). Using the transformation

C(ξ) = c(t, x, y), ξ = x+ y − ωt,
Eq. (1) becomes

−ωC ′ = 2DC ′′ + rC2 − rCθ − rC3 + rθC2. (45)

Balancing the highest-order derivative term to the highest-order nonlinear term in Eq. (45),
we find N = 1. So, the solution of Eq. (45) has the form

C = b0 + b1Q(ξ). (46)

Now by using Eqs. (45), (46) we get the following set of algebraic equations:

−b31r = 0,

b21r − 3b0b
2
1r + b21θr = 0,

2b0b1r − b1θr − 3b20b1r + 2b0b1θr = 0,

ωb1 + rb20 − rb0θ − rb30 + rb20θ = 0,

−2Db1 = 0,

b0 =
−2(1 + θ)±

√
4(1 + θ)2 − 4(3)(θ)

2(−3)
, b1 =

r(4θ3 + 3θ2 + 3θ − 2)

27ω
. (47)
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Using Eq. (47), the abundant families of solutions for Eq. (1) are obtain as follows. If
d = b2 − 12θ > 0, b = 2(1 + θ), and θ 6= 0, then

c1(x, y, t) = ln

[
−2b2 + 6θ

d
− 3b√

d
tanhA

(√
d

2
(x+ y − ωt

))
+

6

d

(
−b
2
−
√
d

2
tanhA

(√
d

2
(x+ y − ωt)

))2 ]
,

c2(x, y, t) = ln

[
−2b2 + 6θ

d
− 3b√

d
cothA

(√
d

2
(x+ y − ωt)

)
+

6

d

(
−b
2
−
√
d

2
cothA

(√
d

2
(x+ y − ωt)

))2 ]
,

c3(x, y, t) = ln

[
−2b2 + 6θ

d
− 3b√

d
tanhA

(√
d(x+ y − ωt)

)
±

3bι
√
pq

√
d

sechA
(√
d(x+ y − ωt)

)
+

6

d

[
− b

2
−
√
d

2
tanhA

(√
d(x+ y − ωt)

)
± ι
√
pqd

2
sechA

(√
d(x+ y − ωt)

)]2 ]
,

c4(x, y, t) = ln

[
−2b2 + 6θ

d
− 3b√

d
cotA

(√
d(x+ y − ωt)

)
±

3b
√
pq

√
d

cschA
(√
d(x+ y − ωt)

)
+

6

d

[
− b

2
−
√
d

2
cothA

(√
d(x+ y − ωt)

)
±
√
pqd

2
cschA

(√
d(x+ y − ωt)

)]2 ]
,

where p, q > 0 are the constants,

c5(x, y, t) = ln

[
−2b2 + 6θ

d
− 3b

2
√
d

tanhA

(√
d

4
(x+ y − ωt)

)
− 3b

2
√
d

cothA

(√
d

4
(x+ y − ωt)

)
+

6

d

[
− b

2
−
√
d

4
tanhA

(√
d

4
(x+ y − ωt)

)
−
√
d

4
cothA

(√
d

4
(x+ y − ωt)

)]2 ]
.
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6 Physical restrictions of the biofilm model and behavior of the exact
solutions

If θ ∈ (−∞,+∞), then most of the above described cases of the solutions will surely
exist, and solution can easily be plotted. For biofilm model, θ ∈ [0, 1], so, in other than the
following cases, the exact solutions are not of physical importance here. In the following
surface plots the exact continuity regime can be seen for the biofilm model (1) for growth
dynamics of microbes.

Graphs and their interpretation

In this section, we show some physical behaviors of soliton solutions that are extracted
by the help of new modified extended direct algebraic method. Theses solution are newly
and effected in the collection of one or different type of microorganism that adhere on
different surfaces and form biofilm. These microbes consist of bacteria, fungi, algae.
These plots show clearly singular, dark, and bright solitons. In these solitons surface
plots the exact continuity regime can be seen for the biofilm model.

All the graphs are plotted taking different value of ω, p, q, θ. The wave-like formation
of all the graphs basically encodes information about the structural behavior of microbes
forming biofilm on the surface of rectangle possess variation in density. The peak point
in all the figures highlights that at these places the biofilm thickness is more than in any
other region of the surface, i.e., the maximum accumulation of microbes at these points
make the wave-like formation in the biofilm. Graphically, the travelling wave solutions
represent soliton solutions of our biofilm model. The formation of waves in Figs. 1, 2
clearly demonstrates that at some specific point the cluster of microbes on the rectangular
surface changes the thickness of surface. Similarly, Figs. 3–7 physically demonstrated
that at some region of rectangular surface the biofilm shows less thickness compared to
other region.

Figure 1. Surface plot of c1 with θ = 0.5, ω = 2 and c2 with θ = 0.02, ω = 7.
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Figure 2. Surface plot of c1 with θ = 1, ω = 15 and c2 with θ = 0.7, ω = 3.

Figure 3. Surface plot of c3 with θ = 0.02, p = 3, q = 5, ω = 5.

Figure 4. Surface plot of c3 with θ = 0.6, p = 3, q = 5, ω = 10.
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Figure 5. Surface plot of c4 with θ = 0.02, p = 1, q = 2, ω = 7.

Figure 6. Surface plot of c4 with θ = 0, p = 3, q = 1, ω = 4.

Figure 7. Surface plot of c5 with θ = 0.02, p = 1, q = 0.5, ω = 7, θ = 0.9, p = 5, q = 9, ω = 20.
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Remark 4. The first surface plot of solution c3 expresses the graph having the plus sign
in both Fig. 3 and 4. Second graphical representation of solution c3 having negative sign
assuming different value of parameters. Similar is the case for c4 solution in Figs. 5 and 6.

7 Conclusion

In this study, we investigate the soliton solutions of biofilm model, basically, the bistable
Allen–Cahn equation with quartic potential. The solution c(x, y, t) physically expressed
the density of microbes forming the biofilm on the rectangular region. Along with the
exact solution, we also apply the existence theory to represent the interval in which
the solution exists with the help of Schauder fixed point theorem. The different type of
hyperbolic, trigonometric, and rational soliton solutions are gained. In the biofilm model,
different parameters belong to certain spaces and give the exact solutions by applying the
technique of new extended direct algebraic method, exact solutions of biofilm model are
highlighted along with their restriction. For more physical understanding, the 3D plots of
the solutions are presented. These plots show the singular dark bright solitons.
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