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Abstract. The current research deals with the exact solutions of the nonlinear partial differential
equations having two important difficulties, that is, the coefficient singularities and the stochastic
function (white noise). There are four major contributions to contemporary research. One is the
mathematical analysis where the explicit a priori estimates for the existence of solutions are
constructed by Schauder’s fixed point theorem. Secondly, the control of the solution behavior
subject to the singular parameter ε when ε → 0. Thirdly, the impact of noise that is present in
the differential equation has been successfully handled in exact solutions. The final contribution is
to simulate the exact solutions and explain the plots.

Keywords: singular partial differential equations, noise function, exact solutions, Schauder’s fixed
point theorem, a priori estimates.

1Corresponding author.

© 2023 The Author(s). Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

https://orcid.org/0000-0002-9717-6090
https://orcid.org/0000-0001-6929-8093
https://orcid.org/0000-0003-4996-8373
https://orcid.org/0000-0001-5396-7598
mailto:drchadury@yahoo.com
mailto:rishinaeem@mcs.edu.pk
mailto:sajid606@gmail.com
mailto:m_sajid_iqbal@mcs.edu.pk
mailto:farkhanda@mcs.edu.pk
mailto:akhtartarar2000@yahoo.com
mailto:minc@firat.edu.tr
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/


Existence theories and exact solutions of nonlinear PDEs 195

1 Introduction

There are mainly two types of partial differential equations, one can be said as the classi-
cal, and the other is known as the stochastic partial differential equation. The fundamental
difference is that the classical partial differential equation always possesses the smooth so-
lutions, and hence they govern the physical environment where the solutions statics must
be regular enough. Such problems are important but less applicable. On the other hand,
the stochastic partial differential equations carrying the noise (white) have mathematical
difficulties but they are the representation of actual physical states. As a result, the con-
sideration of physical problems governed by the stochastic partial differential equations
demands high level of mathematical understanding and their handling in comparatively
different environment such as Sobolev spaces instead of classical topological spaces.
These differential equations are one of the main research areas and play a very significant
role in practical applications, provided that we use it as an appropriate mathematical
model [2,26,27,29]. Most of complex systems, natural or artificial, can be modeled using
these equations. Generally, the nonlinear partial differential equations are the classical
ones and cannot easily be solved. On the other hand, the solutions of nonclassical partial
differential equations i.e., stochastic partial differential equations, may have complexities
when they break smoothness, and in this case, it is not easy to find the bound of the
solutions as compare to classical ones. So we need different analytical techniques to find
the solutions. There are many available techniques to find the solutions (see [1, 4–8, 10–
13, 15–25, 28, 30, 32, 34, 35]), and we use Ricatti–Bernoulli sub-ODE method [31], and
the details can be seen in the coming sections. This article is based on a second-order
partial differential equation [14], where the desired solutions u depend on x and t. The
coefficients of u are 1/ε2 and Ẇ . 1/ε2 represents the singular linearity perturbation of
the superconductivity in the multiscale circumstances. The coefficient Ẇ is the noise
function, and it is generated by a Q-Wiener process with small noise intensity. The
presence of the parameter ε and the multiplicative noise Ẇ result in a state, which is
comparatively difficult for analysis. The main aim of this article is to find the solutions
to the said partial differential equation and simulation of obtained results. In the next
section, statement of the problem is given, and the existence of the solutions is examined.
Section 3 deals with the methodology and stochasticity. The mathematical formulas of
the solution of required problem are given in Section 4. The surface and contour plots of
obtained results are given in Section 5.

2 Statement of problem

The main goal of the complete article is to solve the following stochastic partial differen-
tial equation exactly:

∂u

∂t
=

1

ε2
∂2u

∂x2
+

1

ε2
u+ κu2 + εuẆ . (1)

There are two complexities to the problem. One is the singularity of the coefficient, and
the second complexity is the presence of multiplicative noise. Since the multiplicative
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noise is present in the said problem, the smoothness has been compromised of the solu-
tions of partial differential equation. The idea is to find the solutions profile in the form
of simulation so that the spikes/nonsmoothness should be controlled, and the solutions
must describe the physical phenomena. For this purpose, we use the Ricatti–Bernoulli
sub-ODE method, and then we simulate our results.

2.1 Existence results

We consider the partial differential equation (1) with the initial condition

u(x, 0) = u0x. (2)

The solution u(x, t) of PDE (1) can be written by using the first integration with respect
to t as follows:

u = u0(x) +

t∫
0

(
1

ε2
uxx +

1

ε2
u+ κu2 + εuẆ

)
(x, τ) dτ. (3)

Then the following operator

U = u0(x) +

t∫
0

(
1

ε2
uxx +

1

ε2
u+ κu2 + εuẆ

)
(x, τ) dτ (4)

is the fixed point operator reduction of (1) and (2).
The fundamental goal of the current studies is to show the existence of the solution of

the underlying problem with the presence of noise in the physical problem by applying
Schauder’s fixed point theorem [3, 9] stated as follows.

Theorem 1 [Schauder’s fixed point theorem]. Suppose thatU : B → B is a continuous
self-map, whereB is a closed, convex and bounded subset of a Banach space. If the image
of U under B is precompact, then U has at least one fixed point in B.

Naturally, we cannot work in the classical environment of analysis. Here we consider
the Lebesgue space as the Banach space. So we shall consider the Banach space L2[0, ρ]
equipped with L2 norm. Also, we construct the following closed, convex and bounded
subset in the function space L2[0, ρ]:

Br(Θ) =
{
u, u ∈ L2[0, ρ]: ‖u‖L2[0,ρ] 6 r

}
, (5)

where Θ is the zero element of the function space, that is, ‖Θ − u‖ = ‖u − Θ‖ = ‖u‖,
and r is the radius of open ball to be optimized.

We shall apply the Schauder fixed point theorem to show the existence in the L2[0, ρ]
space. Consequently, we have to test two conditions:

(i) Self-mapping, that is, U in (4) maps (5) into itself U : Br(Θ)→ Br(Θ).
(ii) U(Br(Θ)) is relatively compact.
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For first condition, we take the L2 norm of equation (4), and we get

‖U‖ 6
∥∥u0(x)∥∥+

∥∥∥∥∥
t∫

0

(
1

ε2
uxx +

1

ε2
u+ κu2 + εuẆ

)
(x, τ) dτ

∥∥∥∥∥.
The initial conditions are always bounded, so ‖u0(x)‖ 6 α,

‖U‖ 6 α+

∥∥∥∥∥
t∫

0

(
1

ε2
uxx +

1

ε2
u+ κu2

)
(x, τ) dτ

∥∥∥∥∥+
∥∥∥∥∥ε

t∫
0

u
dW

dτ
dτ

∥∥∥∥∥,
= α+ ‖I1‖+ ‖I2‖.

I1 can be estimated by integrating continuous functions and using the triangle inequality:

‖I1‖ 6
t∫

0

(
1

ε2
‖uxx‖+

1

ε2
‖u‖+ κ‖u‖2

)
dτ,

where ‖uxx‖ 6 β, ‖u‖ 6 r and ‖u2‖ = ‖u‖2 6 r2,

‖I1‖ 6
t∫

0

1

ε2
(
β + r + εκr2

)
dτ =

ρ

ε2
(
β + r + εκr2

)
,

where ρ = t− 0;

‖I2‖ = ε

∥∥∥∥∥
t∫

0

u
dW

dτ
dτ

∥∥∥∥∥ 6 ε

∥∥∥∥∥
t∫

0

udW

∥∥∥∥∥ 6 εr

t∫
0

dW.

Since W is a random function of time, so the integral
∫ t
0
dW remains bounded but not

equal to ρ necessarily. But since the integral is bounded up to measurable scale, so it can
be treated as skewed estimation of ρ, that is,

∫ t
0
dW = γρ. So, finally,

‖U‖ 6 α+
ρ

ε2
(
β + r + εκr2

)
+ ερrγ = α+

1

ε2
(
β + r + εκr2 + ε3rγ

)
ρ.

For self-mapping r > α,

ρ 6
ε2(r − α)

β + εκr2 + (ε3γ + 1)r
. (6)

For weak compactness, we consider the family of images Ui corresponding to the preim-
ages ui, i = 1, 2, . . . , in the fixed point operator equation (4),

Ui = u0(x) +

t∫
0

(
1

ε2
uixx +

1

ε2
ui + κu2i + εuiẆ

)
(x, τ) dτ.
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Figure 1. Difference of integrals.

For relatively compactness, the following difference is to be considered:

Ui(x, t)− Ui(x, t∗) =
t∫

0

(
1

ε2
uixx +

1

ε2
ui + κu2i + εuiẆ

)
(x, τ) dτ

−
t∗∫
0

(
1

ε2
uixx +

1

ε2
ui + κu2i + εuiẆ

)
(x, τ) dτ,

Ui(t)− Ui(t∗) =
t∫

t∗

(
1

ε2
uixx +

1

ε2
ui + κu2i + εuiẆ

)
(x, τ) dτ,

∥∥Ui(t)− Ui(t∗)∥∥ 6

t∫
t∗

∥∥∥∥ 1

ε2
uixx +

1

ε2
ui + κu2i + εuiẆ

∥∥∥∥dτ,
6

1

ε2
(
β + r + ε2κr2

)
|t− t∗|.

Clearly, Ui(t) → Ui(t
∗) as t → t∗ irrespective of the domain of convergence. So Ui(t),

as family of functions, converges to Ui(t∗). That is, Ui(t) is equicontinuous.
So by Arzelà–Ascoli theorem, this equicontinuous family Ui must possesses a sub-

sequence Uij , which is uniformly convergent, and if we are able to search such a sub-
sequence, then the operator U is relatively compact or, more precisely, U(Br(Θ)) is
relatively compact. Hence by the Schauder’s fixed point theorem, there must exists at least
one (solution) fixed point of U , which turns out to be the solution of the given problem.
To sum up, we have proved the following theorem.

Theorem 2. Suppose u and all its derivatives are L2 functions in time variable, then the
nonlinear problem (3) for stochastic partial differential equations is solvable for Schauder
fixed point theorem, and the solvability condition is given by inequality (6) subject to
additional constraint r > α.
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Corollary 1. The corresponding optimal value for the radius of the ball is

1 +

√
α2 +

1

ε2κ

(
β + α(εγ + 1)

)
.

Remark 1 [Singularity control]. To verify the control with respect to the singularity ε,
we have checked that the limit ε → 0 leads ε2(r − α)/(β + εκr2 + (ε3γ + 1)r) → 0.
Hence the small value of ε are acceptable for the continuity of the solution.

3 Methodology

Suppose a nonlinear partial differential equation is written as

p(u, ut, ux, uxx, uxt, . . .) = 0, (7)

where p is in general a polynomial function of its arguments, the subscripts represent the
partial derivatives. There are three steps of the Ricatti–Bernoulli sub-ODE method.

Step 1. The variable ξ has been assigned to x and t, i.e.,

ξ = kx+ νt (8)
with

u(x, t) = U(ξ). (9)

With the help of equations (8) and (9), equation (7) is written as

p
(
U,U ′, U ′′, U ′′′, . . .

)
= 0, (10)

where U ′ = ∂U/∂ξ.
Step 2. Now assume that the solutions of equation (10) is the solutions of Ricatti–Bernoulli

equation
U ′ = aU2−m + bU + cUm, (11)

where a, b, c and m are constants. Equation (11) implies

U ′′ = ab(3−m)U2−m + a2(2−m)U3−2m +mc2U2m−1

+ bc(m+ 1)Um + (2ac+ b2)U,

U ′′′ = (ab(3−m)(2−m)U1−m+ a2(2−m)(3− 2m)U2−2m

+m(2m− 1)c2U2m−2 + bcm(m+ 1)Um−1 + (2ac+ b2))U ′,

. . . .

For further details, please see [31].
Equation (11) has the following solutions.

Case 1. When m = 1, the solution of equation (11) is

U(ξ) = Ce(a+b+c)ξ.
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Case 2. When m 6= 1, b = 0 and c = 0, the solution of equation (11) is

U(ξ) =
(
a(m− 1)(ξ + C)

)1/(m−1)
. (12)

Case 3. If m 6= 1, b 6= 0 and c = 0, then the solution of equation (11) is

U(ξ) =

(
−a
b
+ Ceb(m−1)ξ

)1/(m−1)

.

Case 4. If m 6= 1, a 6= 0 and b2 − 4ac < 0, then the solutions of equation (11) are

U(ξ) =

(
− b

2a
+

√
4ac− b2
2a

tan

(
(1−m)

√
4ac− b2

2

)
(ξ + C)

)1/(1−m)

and

U(ξ) =

(
− b

2a
−
√
4ac− b2
2a

cot

(
(1−m)

√
4ac− b2

2

)
(ξ + C)

)1/(1−m)

.

Case 5. If m 6= 1, a 6= 0 and b2 − 4ac > 0, then the solutions of equation (11) are

U(ξ) =

(
− b

2a
−
√
b2 − 4ac

2a
coth

(
(1−m)

√
b2 − 4ac

2

)
(ξ + C)

)1/(1−m)

and

U(ξ) =

(
− b

2a
−
√
b2 − 4ac

2a
tanh

(
(1−m)

√
b2 − 4ac

2

)
(ξ + C)

)1/(1−m)

.

Case 6. If m 6= 1, a 6= 0 and b2 − 4ac = 0, then the solution of equation (11) is

U(ξ) =

(
1

a(m− 1)(ξ + C)
− b

2a

)1/(1−m)

.

4 Application of method and mathematical formulation of solutions

Suppose that Riccati–Bernoulli equation is the solution of equation (1). Now applying the
transformation u(x, t) = U(ξ) with ξ = kx+ νt, (1) becomes[

ε2aν − k2ab(3−m)
]
U2−m − k2a2(2−m)U3−2m

− k2c2mU2m−1 +
[
ε2cν − k2bc(m+ 1)

]
Um

− κε2U2 +
[
ε2bν − k2

(
2ac+ b2

)
− ε3Ẇ − 1

]
U = 0.
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We get the following solutions of (1).

Case 1. If m = 1, then

u(x, t) = Ce(kx+νt)(νε
2±k
√

(k+2)(k−2)−4ε3Ẇ )/2k2 .

Case 2. If m = 0, c = b = 0, then

u(x, t) =
−ν

κ(kx+ νt+ C)
.

Case 3. If m 6= 1, b 6= 0 and c = 0, we chose m = 0, and hence we get a = 0, κ = 0

and b = (ε2ν±
√
(ε2ν − 2k)(ε2ν + 2k)− 4k2ε3Ẇ )/2k2. The solutions in this

case are

u(x, t) =
(
Ce−(kx+νt)(ε

2ν±
√

(ε2ν−2k)(ε2ν+2k)−4k2ε3Ẇ )/2k2
)−1

.

Case 4. Ifm 6= 1, a 6= 0 and ν2ε4+2k2(1+ε3Ẇ ) < 0 andA =
√
−ν2ε4−2k2(1+ε3Ẇ ),

then

u(x, t) =

(
−ε2κ

2(1 + ε3Ẇ )
+

κA

2ν(1 + ε3Ẇ )
tan

(
− 1

2k2
A(kx+ νt+ C)

))−1
and

u(x, t) =

(
−ε2κ

2(1 + ε3Ẇ )
+

κA

2ν(1 + ε3Ẇ )
cot

(
− 1

2k2
A(kx+ νt+ C)

))−1
.

Case 5. Ifm 6= 1, a 6= 0 and ν2ε4+2k2(1+ε3Ẇ ) > 0 andB =
√
ν2ε4 + 2k2(1 + ε3Ẇ ),

then

u(x, t) =

(
−ε2κ

2(1 + ε3Ẇ )
+

κB

2ν(1 + ε3Ẇ )
coth

(
− 1

2k2
B(kx+ νt+ C)

))−1
and

u(x, t) =

(
−ε2κ

2(1 + ε3Ẇ )
+

κB

2ν(1 + ε3Ẇ )
tanh

(
− 1

2k2
B(kx+ νt+C)

))−1
.

Case 6. If m 6= 1, a 6= 0 and ν2ε4 + 2k2(1 + ε3Ẇ ) = 0, then

u(x, t) =

(
k2κ

ν(1 + ε3Ẇ )(kx+ νt+ C)
− ε2κ

2(1 + ε3Ẇ )

)−1
.

5 Simulations

This section consists of simulations of the obtained solutions. Figures 2–7 are the surface
and contour plots of the solutions u(x, t), which have been obtained in the previous
section.
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Figure 2. The surface and contour plots of u(x, t) for Case 1.
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Figure 3. The surface and contour plots of u(x, t) for Case 2.

• Figure 2: Case 1 of u(x, t) consists of parameters k, ν, ε and C. We chose ν = 3,
C = .5, k = 4, ε = .4, and the resulting exponential graphs and contour plots for
Case 1 are shown in this figure.

• Figure 3: The second case consists of the parameter k, κ, ν and C. The values
that we chose for these parameters are ν = 1.2, C = 1, k = 9, κ = 10, and the
corresponding plots are shown there.

• Figure 4: The third, fourth, fifth and sixth case consist of the parameters ν, k, κ, ε
and C. For Case 3, the values for these parameters are ν = 5, C = 3, k = 1.5,
κ = 3 and ε = 0.3. The corresponding plots for Case 3 are shown in this figure.

• Figure 5: The following values have been chosen for Case 4: ν = 1, C = 1, k = 2,
κ = 1, ε = 0.7.
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Figure 4. The surface and contour plots of u(x, t) for Case 3.
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Figure 5. The surface and contour plots of u(x, t) for Case 4.
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Figure 6. The surface and contour plots of u(x, t) for Case 5.
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Figure 7. The surface and contour plots of u(x, t) for Case 6.

• Figure 6: For Case 5, we chose ν = 4, C = 10, k = 1, κ = 4, ε = 0.9, and the
graphs are shown in this figure.

• Figure 7: We chose ν = 5, C = .5, k = 4, κ = 6 and ε = .5. The corresponding
plots for Case 6 are shown in this figure.

For the better understanding of the reader, Table 1 has been constructed for the ob-
tained solutions of Case 1. Since, we have obtained the exact solutions and in general
no comparisons have been made, such tables are obvious for each case of the obtained
solutions.
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Table 1

x t u(x, t)

−2 −0.1 0.5 e−0.1245000000+1.037500000
√

12−0.256 Ẇ

−1.5 −0.0375 0.5 e−0.09168750000−0.7640625000
√

12−0.256 Ẇ

−1 0.0250 0.5 e−0.05887500000−0.4906250000
√

12−0.256 Ẇ

−0.5 0.0875 0.5 e−0.02606250000−0.2171875000
√

12−0.256 Ẇ

0 0.15 0.5 e0.006750000000+0.05625000000
√

12−0.256 Ẇ

0.5 0.2125 0.5 e0.03956250000+0.3296875000
√

12−0.256 Ẇ

1 0.2750 0.5 e0.07237500000+0.6031250000
√

12−0.256 Ẇ

1.5 0.3375 0.5 e0.1051875000+0.8765625000
√

12−0.256 Ẇ

2 0.40 0.5 e0.1380000000+1.150000000
√

12−0.256 Ẇ

Table 2

0.0115 0.0298 0.0724 0.1748 0.4368 1.0761 2.6181 6.4618 15.9255
0.0128 0.0313 0.0785 0.1991 0.4754 1.1766 2.9067 7.4165 16.6205
0.0150 0.0355 0.0855 0.2129 0.5174 1.2620 3.1537 7.7692 18.2876
0.0160 0.0371 0.0929 0.2300 0.5618 1.3590 3.3867 8.6067 19.6727
0.0162 0.0406 0.1040 0.2480 0.6122 1.5086 3.6856 9.0977 21.3715
0.0172 0.0445 0.1119 0.2696 0.6615 1.6212 4.0673 9.6251 25.4104
0.0197 0.0478 0.1207 0.2962 0.7247 1.7843 4.3253 10.1363 25.4948
0.0220 0.0532 0.1285 0.3236 0.7855 1.9253 4.5859 10.9104 28.4565
0.0245 0.0571 0.1397 0.3472 0.8614 2.0600 5.1683 12.6345 31.8407

Since Ẇ is a random function, hence from the above chosen values for x and t the
values of the function u(x, t) are given in Table 2.

Remark 2. It is worth noting that the simulation of our results are similar to the results
published in [33].

6 Conclusion

The mathematical analysis of the partial differential equation (equipped with quadratic
singularity and white noise) has been done by using Schauder’s fixed point theorem.
Moreover, the singularity control with respect to the singularity coefficient ε has been
verified. The exact solutions to the said problem have been obtained, and the correspond-
ing surface and contour plots for various cases have been drawn.

Acknowledgment. We would like to thank the anonymous reviewers for their critical
input to improve this article.
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