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1 Introduction

In this paper, we use fixed and coincidence point results of the author to present new
maximal element type results for general majorized type maps (these general majorized
type maps generalize majorized maps in the literature [2,3,7–9,13,14]). As an application,
we show how our new maximal element type results will guarantee equilibria for some
one-person games.

In this paper, we consider Φ? maps from the literature [1] and also admissible maps
in the sense of Gorniewicz [6]. First, we describe the maps. Let H be the Čech homology
functor with compact carriers and coefficients in the field of rational numbers K from
the category of Hausdorff topological spaces and continuous maps to the category of
graded vector spaces and linear maps of degree zero. Thus H(X) = {Hq(X)} (here X is
a Hausdorff topological space) is a graded vector space, Hq(X) being the q-dimensional
Čech homology group with compact carriers of X . For a continuous map f : X → X ,
H(f) is the induced linear map f? = {f? q}, where f? q : Hq(X)→ Hq(X). A space X
is acyclic if X is nonempty, Hq(X) = 0 for every q > 1, and H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single-valued map
p : Γ → X is called a Vietoris map (written p : Γ ⇒ X) if the following two conditions
are satisfied:

(i) for each x ∈ X , the set p−1(x) is acyclic;
(ii) p is a perfect map, i.e., p is closed and for every x ∈ X the set p−1(x) is nonempty

and compact.
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Let φ : X → Y be a multivalued map (for each x ∈ X , we assume that φ(x) is
a nonempty subset of Y ). A pair (p, q) of single-valued continuous maps of the form
X

p← Γ
q→ Y is called a selected pair of φ (written (p, q) ⊂ φ) if the following two

conditions hold:

(i) p is a Vietoris map, and
(ii) q(p−1(x)) ⊂ φ(x) for any x ∈ X .

Now we define the admissible maps of Gorniewicz [6]. An upper semicontinuous map
φ : X → Y with compact values is said to be admissible (and we write φ ∈ Ad(X,Y )),
provided there exists a selected pair (p, q) of φ. An example of an admissible map is
a Kakutani map. A upper semicontinuous map φ : X → K(Y ) is said to be Kakutani
(and we write φ ∈ Kak(X,Y )); here Y is a Hausdorff topological vector space, and
K(Y ) denotes the family of nonempty, convex, compact subsets of Y .

The following class of maps will play a major role in this paper. Let Z and W be
subsets of Hausdorff topological vector spaces Y1 and Y2, and G is a multifunction. We
say G ∈ Φ?(Z,W ) [2] if W is convex and there exists a map S : Z → W with S(x) ⊆
G(x) for x ∈ Z, S(x) 6= ∅ and has convex values for each x ∈ Z, and the fibre S−1(w) =
{z ∈ Z: w ∈ S(z)} is open (in Z) for each w ∈W .

2 Fixed, maximal and coincidence theory

In this section, we present old and new fixed, coincidence and maximal type point results.
In particular, we will focus on majorized type maps, and in addition, our maps considered
will be either coercive, compact or condensing type. Also, we will apply our results to
some one-person games.

We begin with some ideas on a generalization of majorized type maps [2,3,7,9,13,14].
Let Z and W be sets in a Hausdorff topological vector space with W convex and Z
compact. Suppose H : Z → W , and for each y ∈ Z, assume that there exist a map
Ay : Z → W and an open set Uy containing y with H(z) ⊆ Ay(z) for every z ∈ Uy ,
Ay is convex-valued, and (Ay)

−1(x) is open (in Z) for each x ∈ W . We now claim that
there exists a map T : Z → W with H(z) ⊆ T (z) for z ∈ Z, T is convex-valued and
T−1(x) is open (in Z) for each x ∈ W . To see this, note {Uy}y∈Z is an open covering
of Z, and since Z is compact, there exist a finite set {y1, . . . , yn} (with yi ∈ Z for
i ∈ {1, . . . , n}) and an open covering {Vyi}ni=1 of Z with yi ∈ Vyi and Ωyi = Vyi ⊆ Uyi

for i ∈ {1, . . . , n} [4, 5]. Fix i ∈ {1, . . . , n} and let

Qyi
(z) =

{
Ayi(z), z ∈ Ωyi ,

W, z ∈ Z \Ωyi
.

Now Qyi
is convex-valued, and H(z) ⊆ Qyi

(z) for every z ∈ Z (note if z ∈ Ωyi
,

then since Ωyi ⊆ Uyi and since H(w) ⊆ Ayi(w) for w ∈ Uyi , we have H(z) ⊆
Qyi(z), whereas if z ∈ Z \ Ωyi , then it is immediate since Qyi(z) = W ). Note that for
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any x ∈W ,

(Qyi
)−1(x) =

{
z ∈ Z: x ∈ Qyi

(z)
}

=
{
z ∈ Z \Ωyi

: x ∈ Qyi
(z) =W

}
∪
{
z ∈ Ωyi

: x ∈ Qyi
(z) = Ayi

(z)
}

= (Z \Ωyi
) ∪
{
z ∈ Ωyi

: x ∈ Ayi
(z)
}

= (Z \Ωyi
) ∪
[
Ωyi
∩
{
z ∈ Z: x ∈ Ayi

(z)
}]

= (Z \Ωyi) ∪
[
Ωyi ∩A−1yi

(x)
]
= Z ∩

[
(Z \Ωyi) ∪A−1yi

(x)
]

= (Z \Ωyi) ∪A−1yi
(x),

which is open in Z (note A−1yi
(x) is open in Z, and Ωyi

is closed in Z). Let T : Z → W
be given by

T (z) =

n⋂
i=1

Qyi(z) for z ∈ Z.

Now T is convex-valued, H(z) ⊆ T (z) for every z ∈ Z, and for x ∈W , we have

T−1(x) =
{
z ∈ Z: x ∈ T (z)

}
=

{
z ∈ Z: x ∈

n⋂
i=1

Qyi
(z)

}

=

n⋂
i=1

{
z ∈ Z: x ∈ Qyi

(z)
}
=

n⋂
i=1

(Qyi
)−1(x),

which is open in Z.
We begin by considering the case when the sets are compact. After we discuss the

compact case, we will then consider the cases when the maps are either coercive or
condensing. In [9], we established the following fixed point result.

Theorem 1. Let {Xi}Ni=1 be a family of convex compact sets each in a Hausdorff topo-
logical vector space Ei. For each i ∈ {1, . . . , N}, suppose Fi : X ≡

∏N
i=1Xi → Xi,

and in addition, there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X , Si(x)
has convex values for x ∈ X , and S−1i (w) is open (in X) for each w ∈ Xi. Finally,
suppose for each x ∈ X , there exists i ∈ {1, . . . , N} with Si(x) 6= ∅. Then there exist
x ∈ X and i ∈ {1, . . . , N} with xi ∈ Fi(x) (here xi is the projection of x on Xi).

Now Theorem 1 immediately yields a maximal element type result.

Theorem 2. Let {Xi}Ni=1 be a family of convex compact sets each in a Hausdorff topo-
logical vector space. For each i ∈ {1, . . . , N}, suppose Fi : X ≡

∏N
i=1Xi → Xi, and

in addition, there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X , Si(x) has
convex values for x ∈ X , and S−1i (w) is open (in X) for each w ∈ Xi. Now suppose for
all i ∈ {1, . . . , N}, xi /∈ Fi(x) for each x ∈ X . Then there exists x ∈ X with Si(x) = ∅
for all i ∈ {1, . . . , N}.

Proof. Suppose the conclusion is false. Then for each x ∈ X , there exists i ∈ {1, . . . , N}
with Si(x) 6= ∅. Now Theorem 1 guarantees that x ∈ X and i ∈ {1, . . . , N} with
xi ∈ Fi(x), a contradiction.
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Remark 1. In Theorem 1 (and Theorem 2), one could replace {Xi}Ni=1 with {Xi}i∈I ,
where I is an index set if we rephrase Theorem 1 (and Theorem 2) appropriately (see
[9,11]). This is also true for other theorems in this paper, but we will not refer to it again.

Now we use Theorem 2 to obtain a result for very general majorized type maps.

Theorem 3. Let {Xi}Ni=1 be a family of convex compact sets each in a Hausdorff topo-
logical vector space. For each i ∈ {1, . . . , N}, suppose Hi : X ≡

∏N
i=1Xi → Xi,

and in addition, assume that there exists a map Ti : X → Xi with Hi(w) ⊆ Ti(w) for
w ∈ X , Ti(x) has convex values for x ∈ X , T−1i (z) is open (in X) for each z ∈ Xi,
and wi /∈ Ti(w) for each w ∈ X . Then there exists x ∈ X with Hi(x) = ∅ for all
i ∈ {1, . . . , N}.
Proof. Apply Theorem 2 with Fi = Si = Ti, so there exists x ∈ X with Tj(x) = ∅ for
all j ∈ {1, . . . , N}. Now since Hj(w) ⊆ Tj(w) for w ∈ X , then Hj(x) = ∅ for all
j ∈ {1, . . . , N}.

Remark 2. Suppose that for each i ∈ {1, . . . , N} and for each x ∈ X , there exist
a map Ai,x : X → Xi and an open set Ui,x containing x with Hi(z) ⊆ Ai,x(z) for
every z ∈ Ui,x, Ai,x is convex-valued, (Ai,x)

−1(z) is open (in X) for each z ∈ Xi, and
wi /∈ Ai,x(w) for each w ∈ Ui,x.

From the discussion before Theorem 1 (with Z = X , W = Xi, H = Hi) there
exists a map Ti : X → Xi with Hi(w) ⊆ Ti(w) for w ∈ X , Ti is convex-valued,
(Ti)

−1(z) is open for each z ∈ Xi; here for i ∈ {1, . . . , N}, we have that {Ui,x}x∈X
is an open covering of X , so there exist a finite set {yi,1, . . . , yi,ni

} (with yi,j ∈ X for
j ∈ {1, . . . , ni}), an open covering {Vi,yi,j

}ni
i=1 of X and Ωi,yi,j

= Vi,yi,j
⊆ Ui,yi,j

for
j ∈ {1, . . . , ni}, and for fixed j ∈ {1, . . . , ni},

Qi,yi,j (z) =

{
Ai,yi,j (z), z ∈ Ωi,yi,j ,

Xi, z ∈ X \Ωi,yi,j
,

and

Ti(z) =

ni⋂
j=1

Qi,yi,j (z) for z ∈ X.

We claim that wi /∈ Ti(w) for each w ∈ X and i ∈ {1, . . . , N}. To see this, let i ∈
{1, . . . , N} and w∈X . Note there exists k∈{1, . . . , n} with yi,k∈X and w∈Ωi,yi,k

so

Ti(w) =

ni⋂
j=1

Qi,yi,j
(w) ⊆ Qi,yi,k

(w) = Ai,yi,k
(w),

and since zi /∈ Ai,x(z) for each z ∈ Ui,x, we have wi /∈ Ti(w).
Corollary 1. Let X be a convex compact set in a Hausdorff topological vector space.
Suppose that H :X → X , and in addition, assume that there exists a map T :X → X
with H(w)⊆T (w) for w∈X , T (x) has convex values for x∈X , T−1(z) is open (in X)
for each z ∈ X , andw /∈ T (w) for eachw ∈ X . Then there exists x ∈ X withH(x) = ∅.
Proof. This follows from Theorem 3 with N = 1.
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Remark 3. For each x ∈ X , suppose there exist a map Ax : X → X and an open set Ux

containing x with H(z) ⊆ Ax(z) for every z ∈ Ux, Ax is convex-valued, A−1x (z) is open
(in X) for each z ∈ X , and w /∈ Ax(w) for each w ∈ Ux. Then, as in Remark 2, there
exists a map T : X → X with H(w) ⊆ T (w) for w ∈ X , T is convex-valued, T−1(z) is
open for each z ∈ X , and w /∈ T (w) for w ∈ X .

In [9], we established the following coincidence result.

Theorem 4. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff topo-

logical vector space Ei with
∏N

i=1Xi paracompact, and in addition, {Yi}N0
i=1 is also

a family of compact sets. For each i ∈ {1, . . . , N0}, suppose Fi : X ≡
∏N

i=1Xi → Yi,
and there exists a map Ti : X → Yi with Ti(x) ⊆ Fi(x) for x ∈ X , Ti(x) has
convex values for each x ∈ X , and T−1i (w) is open (in X) for each w ∈ Yi. For
each j ∈ {1, . . . , N}, suppose Gj : Y ≡

∏N0

i=1 Yi → Xj , and there exists a map
Sj : Y → Xj with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y ,
and S−1j (w) is open (in Y ) for each w ∈ Xj . Finally, suppose that for each x ∈ X ,
there exists i ∈ {1, . . . , N0} with Ti(x) 6= ∅, and suppose for each y ∈ Y , there exists
j ∈ {1, . . . , N} with Sj(y) 6= ∅. Then there exist x ∈ X , y ∈ Y , j0 ∈ {1, . . . , N0} and
i0 ∈ {1, . . . , N} with yj0 ∈ Fj0(x) and xi0 ∈ Gi0(y).

We can rewrite Theorem 4 as follows.

Theorem 5. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff topolog-

ical vector space with
∏N

i=1Xi paracompact, and in addition, {Yi}N0
i=1 is also a family

of compact sets. For each i ∈ {1, . . . , N0}, suppose that Fi : X ≡
∏N

i=1Xi → Yi,
and there exists a map Ti : X → Yi with Ti(x) ⊆ Fi(x) for x ∈ X , Ti(x) has
convex values for each x ∈ X , and T−1i (w) is open (in X) for each w ∈ Yi. For each
j ∈ {1, . . . , N}, supposeGj : Y ≡

∏N0

i=1 Yi → Xj , and there exists a map Sj : Y → Xj

with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w)
is open (in Y ) for each w ∈ Xj . Now suppose either for all j ∈ {1, . . . , N0}, we have
yj /∈ Fj(x) for each (x, y) ∈ X × Y with xi0 ∈ Gi0(y) for some i0 ∈ {1, . . . , N} or
for all i ∈ {1, . . . , N}, we have xi /∈ Gi(y) for each (x, y) ∈ X × Y with yj0 ∈ Fj0(x)
for some j0 ∈ {1, . . . , N0}. Then either there exists x ∈ X with Ti(x) = ∅ for all
i ∈ {1, . . . , N0} or there exists y ∈ Y with Sj(y) = ∅ for all j ∈ {1, . . . , N}.

Proof. Suppose the conclusion is false. Then for each x∈X , there exists i∈{1, . . . , N0}
with Ti(x) 6= ∅, and for each y ∈ Y , there exists j ∈ {1, . . . , N} with Sj(y) 6= ∅. Now
Theorem 4 guarantees that x ∈ X , y ∈ Y , j0 ∈ {1, . . . , N0}, i0 ∈ {1, . . . , N} with
yj0 ∈ Fj0(x) and xi0 ∈ Gi0(y), a contradiction.

Remark 4.

(i) To get a contradiction in the proof of Theorem 5, one only needs the statement
“there exist x ∈ X , y ∈ Y , j0 ∈ {1, . . . , N0}, and i0 ∈ {1, . . . , N} with
yj0 ∈ Fj0(x), and xi0 ∈ Gi0(y)” to be false, so one could list other conditions to
guarantee the contradiction.
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(ii) Note (see Theorem 5) part of the assumption in [9, Thm. 2.6] was inadvertently
omitted (but in fact, it is a condition mentioned in part (i)).

Theorem 6. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff topo-

logical vector space with
∏N

i=1Xi paracompact, and in addition, {Yi}N0
i=1 is also a family

of compact sets. For each i ∈ {1, . . . , N0} and for each j ∈ {1, . . . , N}, suppose
Hi : X ≡

∏N
i=1Xi → Yi and Ψj : Y ≡

∏N0

i=1 Yi → Xj , and in addition, there exists
a map Ti : X → Yi with Hi(z) ⊆ Ti(z) for z ∈ X , Ti(x) has convex values for each
x ∈ X , T−1i (w) is open (in X) for each w ∈ Yi, and there exists a map Sj : Y → Xj

with Ψj(y) ⊆ Sj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w)
is open (in Y ) for each w ∈ Xj . Now suppose either for all j ∈ {1, . . . , N0}, we have
yj /∈ Tj(x) for each (x, y) ∈ X × Y with xi0 ∈ Si0(y) for some i0 ∈ {1, . . . , N} or
for all i ∈ {1, . . . , N}, we have xi /∈ Si(y) for each (x, y) ∈ X × Y with yj0 ∈ Tj0(x)
for some j0 ∈ {1, . . . , N0}. Then either there exists x ∈ X with Hi(x) = ∅ for all
i ∈ {1, . . . , N0} or there exists y ∈ Y with Ψj(y) = ∅ for all j ∈ {1, . . . , N}.

Proof. Apply Theorem 5 (with Fi = Ti and Gj = Sj), so either there exists x ∈ X
with Ti(x) = ∅ for all i ∈ {1, . . . , N0} or there exists y ∈ Y with Sj(y) = ∅ for all
j ∈ {1, . . . , N}. Now since Hi(z) ⊆ Ti(z) for z ∈ X and Ψj(w) ⊆ Sj(w) for w ∈ Y
the conclusion follows.

Remark 5.
(i) Note Theorem 6 improves Theorem 2.7 in [9].

(ii) Note we could consider maps of the type before the statement of Theorem 1 to
create the maps Ti and Sj in Theorem 6 (see [9, Thm. 2.7]), where part of the
assumption was inadvertently omitted (but in fact, it is a condition mentioned in
Remark 4(i)).

Now one could also consider coincidence results between other classes. In [9], we
established the following.

Theorem 7. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff topo-

logical vector space Ei, and in addition, {Yi}N0
i=1 is also a family of compact sets. For

each i ∈ {1, . . . , N0}, suppose Fi : X ≡
∏N

i=1Xi → Yi and Fi ∈ Ad(X,Yi). For each
j ∈ {1, . . . , N}, supposeGj : Y ≡

∏N0

i=1 Yi → Xj , and there exists a map Sj : Y → Xj

with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w)
is open (in Y ) for each w ∈ Xj . Finally, suppose that for each y ∈ Y , there exists
j ∈ {1, . . . , N} with Sj(y) 6= ∅. Then there exist x ∈ X , y ∈ Y , i0 ∈ {1, . . . , N} with
yj ∈ Fj(x) for all j ∈ {1, . . . , N0} and xi0 ∈ Gi0(y).

Now Theorem 7 immediately yields the following result.

Theorem 8. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff topo-

logical vector space, and in addition, {Yi}N0
i=1 is also a family of compact sets. For each

i ∈ {1, . . . , N0}, suppose Fi : X ≡
∏N

i=1Xi → Yi and Fi ∈ Ad(X,Yi). For each
j ∈ {1, . . . , N}, supposeGj : Y ≡

∏N0

i=1 Yi → Xj , and there exists a map Sj : Y → Xj

Nonlinear Anal. Model. Control, 28(1):116–132, 2023
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with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w)
is open (in Y ) for each w ∈ Xj . Now suppose either for all i ∈ {1, . . . , N}, we have
xi /∈ Gi(y) for each (x, y) ∈ X × Y with yj ∈ Fj(x) for all j ∈ {1, . . . , N0} or
for each (x, y) ∈ X × Y with xi0 ∈ Gi0(y) for some i0 ∈ {1, . . . , N}, there exists
j ∈ {1, . . . , N0} with yj /∈ Fj(x). Then there exists y ∈ Y with Si(y) = ∅ for all
i ∈ {1, . . . , N}.

Proof. Suppose the conclusion is false. Then for each y ∈ Y , there exists j ∈ {1, . . . , N}
with Sj(y) 6= ∅. Now Theorem 7 guarantees x ∈ X , y ∈ Y , i0 ∈ {1, . . . , N} with
yj ∈ Fj(x) for all j ∈ {1, . . . , N0} and xi0 ∈ Gi0(y), a contradiction.

Remark 6.
(i) To get a contradiction in the proof of Theorem 8, one only needs the statement

”there exist x ∈ X , y ∈ Y , i0 ∈ {1, . . . , N} with yj ∈ Fj(x) for all j ∈
{1, . . . , N0} and xi0 ∈ Gi0(y)” to be false, so one could list other conditions to
guarantee the contradiction.

(ii) Note (see Theorem 8) part of the assumption in [9, Thm. 2.10] was inadvertently
omitted (but in fact, it is a condition mentioned in part (i)).

Theorem 9. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff topo-

logical vector space, and in addition, {Yi}N0
i=1 is also a family of compact sets. For

each i ∈ {1, . . . , N0}, suppose Fi : X ≡
∏N

i=1Xi → Yi and Fi ∈ Ad(X,Yi). For each
j ∈ {1, . . . , N}, suppose Ψj : Y ≡

∏N0

i=1 Yi → Xj , and there exists a map Sj : Y → Xj

with Ψj(z) ⊆ Sj(z) for z ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w)
is open (in Y ) for each w ∈ Xj . Now suppose either for all i ∈ {1, . . . , N}, we have
xi /∈ Si(y) for each (x, y) ∈ X × Y with yj ∈ Fj(x) for all j ∈ {1, . . . , N0} or for each
(x, y) ∈ X×Y with xi0 ∈ Si0(y) for some i0 ∈ {1, . . . , N}, there exists j ∈ {1, . . . , N0}
with yj /∈ Fj(x). Then there exists y ∈ Y with Ψi(y) = ∅ for all i ∈ {1, . . . , N}.

Proof. Apply Theorem 8 with Gj = Sj , so there exists y ∈ Y with Si(y) = ∅ for all
i ∈ {1, . . . , N}. The result now follows since Ψj(z) ⊆ Sj(z) for z ∈ Y .

Remark 7.
(i) Note Theorem 9 improves [9, Thm. 2.11].

(ii) Note we could consider maps of the type before the statement of Theorem 1
to create the maps Sj in Theorem 16 (see [9, Thm. 2.11]), where part of the
assumption was inadvertently omitted (but in fact, it is a condition mentioned in
Remark 6(i)).

In our next results, we will consider the case when our maps are coercive [2,8,10,11].
We first redo the analysis before Theorem 1. Let Z and W be convex sets in a Haus-
dorff topological vector space with Z paracompact. Suppose H :Z → W , and for each
y ∈ Z, assume that there exist a map Ay : Z →W and an open set Uy containing y with
H(z) ⊆ Ay(z) for every z ∈ Uy , Ay is convex-valued, and (Ay)

−1(x) is open (in Z)
for each x ∈ W . We now claim that there exists a map T : Z → W with H(z) ⊆ T (z)
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for z ∈ Z, T is convex-valued, and T−1(x) is open (in Z) for each x ∈ W . To see this,
note {Uy}y∈Z is an open covering of Z, and since Z is paracompact, there exists a locally
finite open covering {Vy}y∈Z of Z with y ∈ Vy andΩy = Vy ⊆ Uy for each y ∈ Z [4,5].
Now for each y ∈ Z, let

Qy(z) =

{
Ay(z), z ∈ Ωy,

W, z ∈ Z \Ωy.

Note, as in the argument before Theorem 1, for any x ∈W , we have

(Qy)
−1(x) = (Z \Ωy) ∪ (Ay)

−1(x),

which is open in Z, Qy is convex-valued, and H(z) ⊆ Qy(z) for every z ∈ Z (to see
this, note if z ∈ Ωy , then it is immediate since Ωy ⊆ Uy , whereas if z ∈ Z \ Ωy , then it
is immediate since Qy(z) =W ). Let T : Z →W be given by

T (z) =
⋂
y∈Z

Qy(z) for z ∈ Z.

Now T is convex-valued, and H(z) ⊆ T (z) for every z ∈ Z. It remains to show that
T−1(x) is open for each x ∈ W . Fix x ∈ W and let u ∈ T−1(x). We now claim that
there exists an open set Wu containing u with u ∈ Wu ⊆ T−1(x), so then as a result,
T−1(x) is open. To prove our claim, note since {Vy}y∈Z is locally finite, there exists an
open neighborhood Nu of u (in Z) such that {y ∈ Z: Nu ∩ Vy 6= ∅} = {y1, . . . , ym}
(a finite set). Now if y /∈ {y1, . . . , ym}, then ∅ = Vy ∩ Nu = Vy ∩ Nu = Ωy ∩ Nu, so
Qy(z) =W for all z ∈ Nu, and as a result,

T (z) =
⋂
y∈Z

Qy(z) =

m⋂
i=1

Qyi(z) for all z ∈ Nu.

Now T−1(x) = {z ∈ Z: x ∈ T (z)}, whereas

{
z ∈ Nu: x ∈ T (z)

}
=

{
z ∈ Nu: x ∈

m⋂
i=1

Qyi
(z)

}
= Nu ∩

[
m⋂
i=1

(Qyi
)−1(x)

]
,

so

u ∈ Nu ∩

[
m⋂
i=1

(Qyi
)−1(x)

]
⊆ T−1(x),

and our claim is true (note Nu ∩ [∩mi=1 (Qyi
)−1(x)] is an open neighborhood of u).

In [11, Thm. 2.12], we established the following fixed point result for coercive maps.
We note that coercive maps could be replaced by compact type maps if we use [11,
Thm. 2.7] (we leave these obvious analogue statements of Theorems 10, 11 and 12 below
to the reader).
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Theorem 10. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff topological
vector spaceEi withX =

∏N
i=1Xi paracompact. For each i ∈ {1, . . . , N}, suppose Fi :

X→Xi, and in addition, there exists a map Si :X→Xi with Si(x)⊆Fi(x) for x∈X ,
Si(x) has convex values for x ∈ X , and S−1i (w) is open (in X) for each w ∈ Xi. Also,
assume that there are a compact subset K of X and, for each i ∈ {1, . . . , N}, a convex
compact subset Yi of Xi such that for each x ∈ X \K, there exists j ∈ {1, . . . , N} with
Sj(x) ∩ Yj 6= ∅. Suppose for each x ∈ X , there exists i ∈ {1, . . . , N} with Si(x) 6= ∅.
Then there exist x ∈ X and i ∈ {1, . . . , N} with xi ∈ Fi(x).

Now Theorem 10 immediately yields a maximal element type result for coercive maps
(see [8] also).

Theorem 11. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff topological
vector space with X =

∏N
i=1Xi paracompact. For each i ∈ {1, . . . , N}, suppose Fi :

X→Xi, and in addition, there exists a map Si :X→Xi with Si(x)⊆Fi(x) for x ∈ X ,
Si(x) has convex values for x ∈ X , and S−1i (w) is open (in X) for each w ∈ Xi. Also,
assume that there are a compact subset K of X and, for each i ∈ {1, . . . , N}, a convex
compact subset Yi of Xi such that for each x ∈ X \K, there exists j ∈ {1, . . . , N} with
Sj(x) ∩ Yj 6= ∅. Now suppose for all i ∈ {1, . . . , N}, xi /∈ Fi(x) for each x ∈ X . Then
there exists x ∈ X with Si(x) = ∅ for all i ∈ {1, . . . , N}.

Now we use Theorem 11 to obtain a result for majorized type maps in the coercive
situation.

Theorem 12. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff topological
vector space with X =

∏N
i=1Xi paracompact. For each i ∈ {1, . . . , N}, suppose Hi :

X → Xi, and in addition, there exists a map Ti : X → Xi with Hi(w) ⊆ Ti(w) for
w ∈ X , Ti(x) has convex values for x ∈ X , T−1i (w) is open (in X) for each w ∈ Xi,
and wi /∈ Ti(w) for each w ∈ X . Also, assume that there are a compact subset K of X
and, for each i ∈ {1, . . . , N}, a convex compact subset Yi of Xi such that for each
x ∈ X \K, there exists j ∈ {1, . . . , N} with Hj(x) ∩ Yj 6= ∅. Then there exists x ∈ X
with Hi(x) = ∅ for all i ∈ {1, . . . , N}.

Proof. Apply Theorem 11 with Fi = Si = Ti (note for x ∈ X \ K, there exists j ∈
{1, . . . , N} with Hj(x) ∩ Yj 6= ∅ with K and Yj as in the statement of Theorem 12,
so then Tj(x) ∩ Yj 6= ∅ since Hj(w) ⊆ Tj(w) for w ∈ X), so there exists x ∈ X
with Ti(x) = ∅ for all i ∈ {1, . . . , N}. Now since Hj(w) ⊆ Tj(w) for w ∈ X , then
Hi(x) = ∅ for all i ∈ {1, . . . , N}.

Remark 8. Note in the statement of Theorem 12 (see the proof above), we could replace
”Also, assume that there are a compact subset K of X and, for each i ∈ {1, . . . , N},
a convex compact subset Yi of Xi such that for each x ∈ X \ K, there exists j ∈
{1, . . . , N} with Hj(x)∩ Yj 6= ∅” with ”Also, assume that there are a compact subset K
of X and, for each i ∈ {1, . . . , N}, a convex compact subset Yi of Xi such that for each
x ∈ X \K, there exists j ∈ {1, . . . , N} with Tj(x) ∩ Yj 6= ∅”.
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Remark 9. Suppose for each i ∈ {1, . . . , N} and for each x ∈ X , there exist a map
Ai,x : X → Xi and an open set Ui,x containing x with Hi(z) ⊆ Ai,x(z) for every
z ∈ Ui,x, Ai,x is convex-valued, (Ai,x)

−1(z) is open (in X) for each z ∈ Xi, and
wi /∈ Ai,x(w) for each w ∈ Ui,x. From the discussion before Theorem 10 (with Z = X ,
W = Xi, H = Hi) there exists a map Ti : X → Xi with Hi(w) ⊆ Ti(w) for w ∈ X , Ti
is convex-valued, and (Ti)

−1(z) is open for each z ∈ Xi. Here

Qi,x(z) =

{
Ai,x(z), z ∈ Ωi,x,

Xi, z ∈ X \Ωi,x,
and Ti(z) =

⋂
x∈X

Qi,x(z) for z ∈ X,

where {Vi,x}x∈X is a locally finite open covering of X with x ∈ Vi,x, and Ωi,x =
Vi,x ⊆ Ui,x for each x ∈ X . Now let i ∈ {1, . . . , N} and w ∈ X . Note there exists
y ∈ X with w ∈ Ωi,y (recall {Vi,x}x∈X is a locally finite open covering of X), so
Ti(w) = ∩x∈X , Qi,x(w) ⊆ Qi,y(w) = Ai,y(w), and since wi /∈ Ai,y(w) for each
w ∈ Ui,y , we have wi /∈ Ti(w) for w ∈ X .

Corollary 2. LetX be a convex paracompact set in a Hausdorff topological vector space
with H : X → X , and in addition, there exists a map T : X → X with H(w) ⊆ T (w)
for w ∈ X , T (x) has convex values for x ∈ X , T−1(w) is open (in X) for each w ∈ X ,
and w /∈ T (w) for each w ∈ X . Also, assume that there are a compact subset K of X
and a convex compact set Y of X such that for each x ∈ X \K, we have H(x) ∩ Y 6= ∅
(or, alternatively, T (x) ∩ Y 6= ∅). Then there exists x ∈ X with H(x) = ∅.

Proof. This follows from Theorem 12 with N = 1.

Remark 10. For each x ∈ X , suppose there exist a map Ax : X → X and an open set
Ux containing x with H(z) ⊆ Ax(z) for every z ∈ Ux, Ax is convex-valued, A−1x (z) is
open (in X) for each z ∈ X , and w /∈ Ax(w) for each w ∈ Ux. Then as in Remark 9,
there exists a map T : X → X with H(w) ⊆ T (w) for w ∈ X , T is convex-valued,
T−1(z) is open for each z ∈ X , and w /∈ T (w) for w ∈ X .

In [10, Thm. 2.15], we established the following coincidence type result in the coer-
cive case. We note that the coercive type map could be replaced by a compactness type
map if we use [10, Thm. 2.9] (we leave the obvious statements of Theorems 13, 14 and
15 below in the compactness map type setting to the reader).

Theorem 13. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space Ei with
∏N

i=1Xi and
∏N0

i=1 Yi paracompact. For each i ∈
{1, . . . , N0}, suppose Fi : X ≡

∏N
i=1Xi → Yi, and there exists a map Ti : X → Yi with

Ti(x) ⊆ Fi(x) for x ∈ X , Ti(x) has convex values for each x ∈ X , and T−1i (w) is open
(in X) for each w ∈ Yi. For each j ∈ {1, . . . , N}, suppose Gj : Y ≡

∏N0

i=1 Yi → Xj ,
and there exists a map Sj : Y → Xj with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex
values for each y ∈ Y , and S−1j (w) is open (in Y ) for each w ∈ Xj . In addition,
assume that there are a compact subset K of Y and, for each i ∈ {1, . . . , N}, a convex
compact subset Zi of Xi such that for each y ∈ Y \K, there exists i ∈ {1, . . . , N} with
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Si(y) ∩ Zi 6= ∅. Finally, suppose for each x ∈ X , there exists i ∈ {1, . . . , N0} with
Ti(x) 6= ∅, and suppose for each y ∈ Y , there exists j ∈ {1, . . . , N} with Sj(y) 6= ∅.
Then there exist x ∈ X , y ∈ Y , j0 ∈ {1, . . . , N0} and i0 ∈ {1, . . . , N}with yj0 ∈ Fj0(x)
and xi0 ∈ Gi0(y).

We can rewrite Theorem 13 as follows.

Theorem 14. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff topo-

logical vector space with
∏N

i=1Xi and
∏N0

i=1 Yi paracompact. For each i ∈ {1, . . . , N0},
suppose Fi : X ≡

∏N
i=1Xi → Yi, and there exists a map Ti : X → Yi with Ti(x) ⊆

Fi(x) for x ∈ X , Ti(x) has convex values for each x ∈ X , and T−1i (w) is open (in X)
for each w ∈ Yi. For each j ∈ {1, . . . , N}, suppose Gj : Y ≡

∏N0

i=1 Yi → Xj , and there
exists a map Sj : Y → Xj with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for
each y ∈ Y , and S−1j (w) is open (in Y ) for each w ∈ Xj . In addition, assume that there
are a compact subset K of Y and, for each i ∈ {1, . . . , N}, a convex compact subset Zi

ofXi such that for each y ∈ Y \K, there exists i ∈ {1, . . . , N} with Si(y)∩Zi 6= ∅. Now
suppose either for all j ∈ {1, . . . , N0}, we have yj /∈ Fj(x) for each (x, y) ∈ X×Y with
xi0 ∈ Gi0(y) for some i0 ∈ {1, . . . , N} or for all i ∈ {1, . . . , N}, we have xi /∈ Gi(y)
for each (x, y) ∈ X × Y with yj0 ∈ Fj0(x) for some j0 ∈ {1, . . . , N0}. Then either
there exists x ∈ X with Ti(x) = ∅ for all i ∈ {1, . . . , N0} or there exists y ∈ Y with
Sj(y) = ∅ for all j ∈ {1, . . . , N}.

Proof. Suppose the conclusion is false. Then for each x ∈ X , there exists i∈{1, . . . , N0}
with Ti(x) 6= ∅, and for each y ∈ Y , there exists j ∈ {1, . . . , N} with Sj(y) 6= ∅. Now
Theorem 13 guarantees x ∈ X , y ∈ Y , j0 ∈ {1, . . . , N0} and i0 ∈ {1, . . . , N} with
yj0 ∈ Fj0(x) and xi0 ∈ Gi0(y), a contradiction.

Remark 11.
(i) To get a contradiction in the proof of Theorem 14, one only needs the statement

”there exist x ∈ X , y ∈ Y , i0 ∈ {1, . . . , N}, j0 ∈ {1, . . . , N0} with yj0 ∈
Fj0(x) and xi0 ∈ Gi0(y)” to be false, so one could list other conditions to
guarantee the contradiction.

(ii) Note (see Theorem 14) part of the assumption in [8, Thm. 3.4] was inadvertently
omitted (but in fact, it is a condition mentioned in part (i)).

Theorem 15. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff topo-

logical vector space with
∏N

i=1Xi and
∏N0

i=1 Yi paracompact. For each i ∈ {1, . . . , N0}
and for each j ∈ {1, . . . , N}, suppose Hi : X ≡

∏N
i=1Xi → Yi and Ψj : Y ≡∏N0

i=1 Yi → Xj , and in addition, assume that there exists a map Ti : X → Yi with
Hi(z) ⊆ Ti(z) for z ∈ X , Ti(x) has convex values for each x ∈ X , and T−1i (w) is
open (in X) for each w ∈ Yi, and there exists a map Sj : Y → Xj with Ψj(w) ⊆ Sj(w)
for w ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w) is open (in Y ) for
each w ∈ Xj . In addition, assume that there are a compact subset K of Y and, for
each i ∈ {1, . . . , N}, a convex compact subset Zi of Xi such that for each y ∈ Y \K,
there exists i ∈ {1, . . . , N} with Ψi(y) ∩ Zi 6= ∅ (or, alternatively, Si(y) ∩ Zi 6= ∅). Now
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suppose either for all j ∈ {1, . . . , N0}, we have yj /∈ Tj(x) for each (x, y) ∈ X×Y with
xi0 ∈ Si0(y) for some i0 ∈ {1, . . . , N} or for all i ∈ {1, . . . , N}, we have xi /∈ Si(y)
for each (x, y) ∈ X × Y with yj0 ∈ Tj0(x) for some j0 ∈ {1, . . . , N0}. Then either
there exists x ∈ X with Hi(x) = ∅ for all i ∈ {1, . . . , N0} or there exists y ∈ Y with
Ψj(y) = ∅ for all j ∈ {1, . . . , N}.

Proof. Apply Theorem 14 (with Fi = Ti and Gj = Sj), so either there exists x ∈ X
with Ti(x) = ∅ for all i ∈ {1, . . . , N0} or there exists y ∈ Y with Sj(y) = ∅ for all
j ∈ {1, . . . , N}. Now since Hi(z) ⊆ Ti(z) for z ∈ X and Ψj(w) ⊆ Sj(w) for w ∈ Y ,
the conclusion follows.

Remark 12.
(i) Note Theorem 15 improves [8, Thm. 3.4].

(ii) We could consider maps of the type before Theorem 10 to create the maps Ti and
Si in Theorem 15 (see [8, Thm. 3.4]).

We now present another coincidence result established in [8].

Theorem 16. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space with
∏N0

i=1 Yi paracompact. For each i ∈ {1, . . . , N0}, suppose
Fi : X ≡

∏N
i=1Xi → Yi and Fi ∈ Ad(X,Yi). For each j ∈ {1, . . . , N}, suppose

Gj : Y ≡
∏N0

i=1 Yi → Xj , and there exists a map Sj : Y → Xj with Sj(y) ⊆ Gj(y)
for y ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w) is open (in Y ) for each
w ∈ Xj . Also, assume that there are a compact subset K of Y and, for each i ∈
{1, . . . , N}, a convex compact subset Zi of Xi such that for each y ∈ Y \ K, there
exists i ∈ {1, . . . , N} with Si(y) ∩ Zi 6= ∅. Finally, suppose for each y ∈ Y , there exists
j ∈ {1, . . . , N} with Sj(y) 6= ∅. Then there exist x ∈ X , y ∈ Y , i0 ∈ {1, . . . , N} with
yj ∈ Fj(x) for all j ∈ {1, . . . , N0} and xi0 ∈ Gi0(y).

Theorem 16 can be rephrased as follows.

Theorem 17. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space with
∏N0

i=1 Yi paracompact. For each i ∈ {1, . . . , N0}, suppose
Fi : X ≡

∏N
i=1Xi → Yi and Fi ∈ Ad(X,Yi). For each j ∈ {1, . . . , N}, suppose

Gj : Y ≡
∏N0

i=1 Yi → Xj , and there exists a map Sj : Y → Xj with Sj(y) ⊆ Gj(y)
for y ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w) is open (in Y ) for each
w ∈ Xj . Also, assume that there is a compact subsetK of Y and, for each i ∈ {1, . . . , N},
a convex compact subset Zi of Xi such that for each y ∈ Y \ K, there exists i ∈
{1, . . . , N} with Si(y) ∩ Zi 6= ∅. Now suppose either for all i ∈ {1, . . . , N}, we have
xi /∈ Gi(y) for each (x, y) ∈ X × Y with yj ∈ Fj(x) for all j ∈ {1, . . . , N} or there
exists j ∈ {1, . . . , N0} with yj /∈ Fj(x) for each (x, y) ∈ X × Y with xi0 ∈ Gi0(y) for
some i0 ∈ {1, . . . , N}. Then there exists y ∈ Y with Si(y) = ∅ for all i ∈ {1, . . . , N}.

Proof. Suppose the conclusion is false. Then for each y ∈ Y , there exists j ∈ {1, . . . , N}
with Sj(y) 6= ∅. Now Theorem 16 guarantees x ∈ X , y ∈ Y , i0 ∈ {1, . . . , N} with
yj ∈ Fj(x) for all j ∈ {1, . . . , N0} and xi0 ∈ Gi0(y), a contradiction.
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Remark 13.

(i) To get a contradiction in the proof of Theorem 17, one only needs the statement
”there exist x ∈ X , y ∈ Y , i0 ∈ {1, . . . , N} with yj ∈ Fj(x) for all j ∈
{1, . . . , N0} and xi0 ∈ Gi0(y)” to be false, so one could list other conditions to
guarantee the contradiction.

(ii) Note (see Theorem 17) part of the assumption in [8, Thm. 3.5] was inadvertently
omitted (but in fact, it is a condition mentioned in part (i)).

Theorem 18. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space with
∏N0

i=1 Yi paracompact. For each i ∈ {1, . . . , N0}, suppose
Fi : X ≡

∏N
i=1Xi → Yi and Fi ∈ Ad(X,Yi). For each j ∈ {1, . . . , N}, suppose

Ψj : Y ≡
∏N0

i=1 Yi → Xj , and there exists a map Sj : Y → Xj with Ψj(z) ⊆ Sj(z)
for z ∈ Y , Sj(y) has convex values for each y ∈ Y , and S−1j (w) is open (in Y ) for
each w ∈ Xj . Also, assume that there are a compact subset K of Y and, for each
i ∈ {1, . . . , N}, a convex compact subset Zi of Xi such that for each y ∈ Y \ K,
there exists i ∈ {1, . . . , N} with Ψi(y) ∩ Zi 6= ∅ (or, alternatively, Si(y) ∩ Zi 6= ∅). Now
suppose either for all i ∈ {1, . . . , N}, we have xi /∈ Si(y) for each (x, y) ∈ X × Y with
yj ∈ Fj(x) for all j ∈ {1, . . . , N} or there exists j ∈ {1, . . . , N0} with yj /∈ Fj(x) for
each (x, y) ∈ X × Y with xi0 ∈ Si0(y) for some i0 ∈ {1, . . . , N}. Then there exists
y ∈ Y with Ψi(y) = ∅ for all i ∈ {1, . . . , N}.

Proof. Apply Theorem 17 with Gj = Sj , so there exists y ∈ Y with Si(y) = ∅ for all
i ∈ {1, . . . , N}. The result follows since Ψj(z) ⊆ Sj(z) for z ∈ Y .

Remark 14.

(i) Note Theorem 18 improves [8, Thm. 3.6].
(ii) We could consider maps of the type before Theorem 10 to create the maps Si in

Theorem 18 (see [8, Thm. 3.6]).

Finally, before we consider an application in games, we recall some fixed point results
for condensing type maps in [12] (one could also consider the coincidence type results
in [12] and obtain results similar to those obtained for coercive type maps; we leave this
to the reader).

Theorem 19. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff topological
vector space Ei. For each i ∈ {1, . . . , N}, suppose Fi : X ≡

∏N
i=1Xi → Xi and

Fi ∈ Φ?(X,Xi). In addition, assume that there is a compact convex subset K of X with
F (K) ⊆ K, where F (x) =

∏N
i=1 Fi(x) for x ∈ X . Then there exists x ∈ X with

xi ∈ Fi(x) for i ∈ {1, . . . , N}.

Next, we state the following special version when N = 1.

Corollary 3. Let X be a convex set in a Hausdorff topological vector space and suppose
F : X → X with F ∈ Φ?(X,X). Also, assume that there is a compact convex subset K
of X with F (K) ⊆ K. Then there exists x ∈ X with x ∈ F (x).
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We can rewrite Corollary 3 as a maximal element type result.

Theorem 20. Let X be a convex set in a Hausdorff topological vector space and suppose
F : X → X . In addition, assume that there exists a map S : X → X with S(z) ⊆ F (z)
for z ∈ X , S(x) has convex values for each x ∈ X , and S−1(w) is open (in X) for each
w ∈ X . Also, assume that there is a compact convex subset K of X with F (K) ⊆ K.
Finally, assume x /∈ F (x) for x ∈ X . Then there exists y ∈ X with S(y) = ∅.

Proof. Assume that the conclusion is false. Then S(y) 6= ∅ for each y ∈ X , so F ∈
Φ?(X,X). Now Corollary 3 guarantees x ∈ X with x ∈ F (x), a contradiction.

Similar, we have immediately a maximal element type result from Theorem 19.

Theorem 21. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff topological
vector space Ei. For each i ∈ {1, . . . , N}, suppose Fi : X ≡

∏N
i=1Xi → Xi, and

there exists a map Si : X → Xi with Si(z) ⊆ Fi(z) for z ∈ X , Si(x) has convex values
for each x ∈ X , and S−1i (w) is open (in X) for each w ∈ Xi. Also, assume that there
is a compact convex subset K of X with F (K) ⊆ K, where F (x) =

∏N
i=1 Fi(x) for

x ∈ X . Finally, suppose for each x ∈ X , there exists i ∈ {1, . . . , N} with xi /∈ Fi(x).
Then there exists y ∈ X with Si0(y) = ∅ for some i0 ∈ {1, . . . , N}.

Proof. Assume that the conclusion is false. Then for each i ∈ {1, . . . , N}, we have
Si(y) 6= ∅ for each y ∈ X and so Fi ∈ Φ?(X,Xi). Now Theorem 19 guarantees x ∈ X
with xi ∈ Fi(x) for i ∈ {1, . . . , N}, a contradiction.

Now we use Theorem 20 to obtain a result for majorized maps in the condensing
setting.

Theorem 22. Let X be a convex set in a Hausdorff topological vector space and suppose
H : X → X . In addition, assume that there exists a map T : X → X with H(z) ⊆ T (z)
for z ∈ X , T (x) has convex values for each x ∈ X , T−1(w) is open (in X) for each
w ∈ X , and w /∈ T (w) for w ∈ X . Also, assume that there is a compact convex subset
K of X with T (K) ⊆ K. Then there exists y ∈ X with H(y) = ∅.

Proof. Apply Theorem 20 with F = S = T , so there exists x ∈ X with T (x) = ∅. Now
since H(z) ⊆ T (z) for z ∈ X , the conclusion follows.

Similarly, from Theorem 21 we have the following result.

Theorem 23. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff topological
vector space Ei. For each i ∈ {1, . . . , N}, suppose Hi : X ≡

∏N
i=1Xi → Xi, and

there exists a map Ti : X → Xi with Hi(z) ⊆ Ti(z) for z ∈ X , Ti(x) has convex values
for each x ∈ X , and T−1i (w) is open (in X) for each w ∈ Xi. Also, assume that there
is a compact convex subset K of X with T (K) ⊆ K, where T (x) =

∏N
i=1 Ti(x) for

x ∈ X . Finally, suppose for each x ∈ X , there exists i ∈ {1, . . . , N} with xi /∈ Ti(x).
Then there exists y ∈ X with Hi0(y) = ∅ for some i0 ∈ {1, . . . , N}.
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Proof. Apply Theorem 21 with Fi = Si = Ti, so there exists y ∈ X with Ti0(y) = ∅ for
some i0 ∈ {1, . . . , N}. The result follows since Hi(z) ⊆ Ti(z) for z ∈ X .

We will now use Corollary 2 and Theorem 22 to obtain equilibrium theorems for
a one-person game. A one-person game is given by Γ = (X,A,B, P ), where we have
one player (agent). The agent has a nonempty choice set or strategy set X , which is
a nonempty subset of a Hausdorff topological vector space E. Now, A,B :X → E are
constraint correspondences (multivalued maps), and P :X → E is a preference corre-
spondence (multivalued map). An equilibrium of Γ is a point x∈X such that x∈B(x)
and A(x) ∩ P (x) = ∅.

Theorem 24. LetX be a convex paracompact set in a Hausdorff topological vector space
E. Let A,B, P : X → E with clB (≡ B) : X → CK(X) upper semicontinuous; here
CK(X) denotes the family of nonempty convex compact subsets of X . Also, assume that
the following conditions are satisfied:

(i) A : X → X has nonempty convex values, and A−1(x) is open (in X) for each
x ∈ X;

(ii) A(x) ⊆ B(x) for x ∈ X;
(iii) There exists a map S : X → X with (A ∩ P )(z) ⊆ S(z) for z ∈ X , S(x)

is convex-valued for each x ∈ X , S−1(z) is open (in X) for each z ∈ X , and
x /∈ S(x) for x ∈ X .

Assume that there are a compact subset K of X and a convex compact set Y of X such
that for each x ∈ X \K, we have (A∩P )(x)∩ Y 6= ∅. Then there exists an equilibrium
point x, i.e., x ∈ X with x ∈ B(x) and A(x) ∩ P (x) = ∅.

Proof. Let M = {x ∈ X: x /∈ B(x)} and noteM is open in X since B : X → CK(X)
is upper semicontinuous. Let H : X → X and T : X → X be given by

H(x) =

{
A(x) ∩ P (x), x /∈M,

A(x), x ∈M,
and T (x) =

{
A(x) ∩ S(x), x /∈M,

A(x), x ∈M.

First, note H(w) ⊆ T (w) for w ∈ X , and T (x) has convex values for each x ∈ X . Next,
we show that T−1(y) is open (in X) for each y ∈ X . To see this, let y ∈ X and note

T−1(y) =
{
z ∈ X: y ∈ T (z)

}
=
{
z ∈M : y ∈ A(z)

}
∪
{
z ∈ X \M : y ∈ A(z) ∩ S(z)

}
=
[
M ∩

{
z ∈ X: y ∈ A(z)

}]
∪
[
(X \M) ∩

{
z ∈ X: y ∈ A(z) ∩ S(z)

}]
=
[
M ∩A−1(y)

]
∪
[
(X \M) ∩

[
A−1(y) ∩ S−1(y)

]]
=
[
M ∪ S−1(y)

]
∩A−1(y)

(note A−1(y) ∩ S−1(y) ⊆ A−1(y)), which is open in X . Now we claim w /∈ T (w) for
w ∈ X . First, consider w ∈M . Then w /∈ B(w), so w /∈ A(w) from (ii), i.e., w /∈ T (w)
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if w ∈M . Next, consider w /∈M . Then w /∈ (A∩S)(w) since (A∩S)(w) ⊆ S(w), and
x /∈ S(x) for x ∈ X , i.e., w /∈ T (w) if w /∈M . Consequently, w /∈ T (w) for w ∈ X .

Now let K and Y be as in the statement of Theorem 24. We note H(x) ∩ Y 6= ∅ for
x ∈ X \ K since this is immediate if x /∈ M , whereas if x ∈ M , it is also true since
∅ 6= (A ∩ P )(x) ∩ Y ⊆ A(x) ∩ Y . Now Corollary 2 guarantees x ∈ X with H(x) = ∅.
Now, see condition (i), A has nonempty values, so in fact, x /∈ M . Thus x /∈ M with
H(x) = ∅, i.e., x ∈ B(x) and A(x) ∩ P (x) = ∅.

Theorem 25. Let X be a convex set in a Hausdorff topological vector space E. Let
A,B, P : X → E with clB (≡ B) : X → CK(X) upper semicontinuous. Suppose
conditions (i)–(iii) hold, and in addition, assume that there is a compact convex subset K
of X with A(K) ⊆ K. Then there exists x ∈ X with x ∈ B(x) and A(x) ∩ P (x) = ∅.

Proof. Let M , H and T be as in Theorem 24 and note H(w) ⊆ T (w) for w ∈ X , T (x)
has convex values for each x ∈ X , T−1(y) is open (inX) for each y ∈ X , and w /∈ T (w)
for w ∈ X . Now let K be as in the statement of Theorem 25 and note T (K) ⊆ K since
T (K) ⊆ A(K) ⊆ K. Thus all the conditions of Theorem 22 are satisfied, so there exists
x ∈ X with H(x) = ∅. Thus x /∈M with H(x) = ∅.

Remark 15. Notice that in Theorems 24 and 25, B is upper semicontinuous, and A is
a Ky Fan map, which are well-known maps in the literature (see, e.g., [6]).
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