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Saulėtekio 3, LT-10257 Vilnius, Lithuania
arturas.acus@tfai.vu.lt

Received: April 13, 2022 / Revised: September 28, 2022 / Published online: November 1, 2022

Abstract. The aim of the paper is to give a uniform picture of complex, hyperbolic, and quaternion
algebras from a perspective of the applied Clifford geometric algebra. Closed form expressions
for a multivector exponential and logarithm are presented in real geometric algebras Clp,q when
n = p + q = 1 (complex and hyperbolic numbers) and n = 2 (Hamilton, split, and conectorine
quaternions). Starting from Cl0,1 and Cl1,0 algebras wherein square of a basis vector is either −1
or +1, we have generalized exponential and logarithm formulas to 2D quaternionic algebras Cl0,2,
Cl1,1, and Cl2,0. The sectors in the multivector coefficient space, where 2D logarithm exists are
found. They are related with a square root of the multivector.

Keywords: Clifford (geometric) algebra, exponential and logarithm of Clifford numbers,
quaternions.

1 Introduction

Quaternion algebras find a wide application in graphics, robotics, and control of spatial
rotation of solid bodies, including aerospace flight dynamics [4,10,13,14]. During the last
ten years, there is a tendency to replace quaternions by multivectors (MVs) of geometric
(aka Clifford) algebras (GAs), mainly due to the possibility to carry out calculations
in higher dimensional GAs of mixed signatures [9, 11, 15, 17, 18] and, consequently, to
employ wider GA capabilities. Of special mention is conformal Cl4,1 GA that allows
to do complicated graphics in 5D vector space and then transform the graphics to 3D
Euclidean space for visualization [21].

In this paper, we investigate low-dimensional algebras from GA perspective, namely,
1D complex and hyperbolic number algebras as well as 2D algebras Cl0,2, Cl1,1, and
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Cl2,0 that are isomorphic to quaternionic algebras: the Hamilton quaternion (or briefly
the quaternion) [10,13], coquaternion also known as a split quaternion [7,20], and conec-
torine [19]. The properties of the Hamilton quaternion, which is isomorphic to Cl0,2,
recently have been summarized in a handbook [13]. The coquaternion and conectorine
are less known. They are isomorphic to Cl1,1 and Cl2,0 algebras that are noncommutative
too. As we shall see, in all 2D algebras the exponential and logarithm may be treated in a
uniform way if they are reformulated in GA terms what, in turn, helps to generalize and
better understand known properties as well as to discover new ones, for example, continu-
ous degrees of freedom related to a free vector pointing in an arbitrary direction [3]. Gen-
eralized exponential and logarithm formulas and square roots of multivector have been
found, including the sectors, where they exist for the first time. The subject considered
in this paper is akin to exponential factorization of MV into product of exponentials [12]
and square root of MV [1, 5].

In Section 2 the notation and general properties of GA exponential and logarithm func-
tions are introduced. The GA expressions in 1D are presented in Section 3. In Sections 4
and 5, respectively, the exponential and logarithm in 2D are considered. In Addendum
(Section 6) the square root of MV is discussed. Finally, in Section 7 the conclusion and
short discussion are given.

2 Properties of exponential and logarithm in GA

Let ei be the basis vector, and let eij ≡ eiej = −eji be the bivector. The latter is the
geometric product of two orthogonal basis vectors. Complex and hyperbolic numbers
(aka Clifford numbers) in GA [22] are represented by the following MVs:

Cl0,1: A = a0 + a1I, where I ≡ e1 and e21 = −1,
Cl1,0: A = a0 + a1I, where I ≡ e1 and e21 = +1,

where a0 and a1 are the real coefficients, a0, a1 ∈ R. a0 is called the scalar part of MV,
and a1I is the pseudoscalar. In 1D GAs the basis vectors coincide with an elementary
pseudoscalar I . The squares, e21 ≡ i2 = −1 in Cl0,1 and e21 = 1 in Cl1,0, suggest that we
have to do with complex and hyperbolic numbers, respectively.

In 2-dimensional (2D) algebras, there are two basis vectors e1 and e2 and a bivector
e12 ≡ I (oriented plane). The general Clifford number A is

Cl0,2: A = a0 + a1e1 + a2e2 + a12I, where e21 = e22 = −1, I2 = −1,
Cl1,1: A = a0 + a1e1 + a2e2 + a12I, where e21 = −e22 = −1, I2 = 1,

Cl2,0: A = a0 + a1e1 + a2e2 + a12I, where e21 = e22 = +1, I2 = −1.
(1)

The sum a = a1e1 + a2e2 represents a general vector in 2D bivector plane. The basis
vectors satisfy e1 ·e2 = 0 (orthogonality) and e1∧e2 = e1e2 ≡ e12 (oriented unit plane),
where the dot and wedge denote the inner and outer products. e12 plays the role of an
elementary pseudoscalar I . The sign of I2 depends on algebra, Eq. (1). The algebras Cl1,1
and Cl2,0 are isomorphic under the following exchange of GA basis elements: e1 ↔ e1,
e2 ↔ e12, and e12 ↔ e2.
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The main involutions, namely, the reversion, inversion, and Clifford conjugation de-
noted, respectively, by tilde, circumflex, and their combination are defined by the follow-
ing changes in component signs of MV A = a0 + a+ a12I:

Ã = a0 + a− a12I, ÛA = a0 − a+ a12I, Û̃A = a0 − a− a12I.

For complex and hyperbolic numbers, there is only a single involution, ÛA = a0 + a1ÛI =
a0 − a1I that usually is denoted by asterisk in physics and engineering and overline in
mathematics.

The exponential of MV is another MV that belongs to the same geometric algebra
Clp,q . If A and B are MVs, the following properties hold:

exp(A+ B) = exp(A) exp(B) ⇐⇒ AB = BA,‹eA = eÃ, ÙeA = e
ÛA, ‹ÙeA = e

Û̃A,
where e is the base of the natural logarithm. In 1D algebras the first property is always
satisfied since the commutation of scalar and vector is satisfied.

The GA exponential can be represented as a power series in a form similar to scalar
exponential [16]. In numerical form, i.e., when coefficients at basis elements e1, e1, and
e12 are real numbers, the exponential can be summed up approximately [3]. To minimize
the number of multiplications, it is convenient to rewrite the exponential in a nested form
(aka Horner’s rule),

eA = 1 +
A

1

Å
1 +

A

2

Å
1 +

A

3
(1 + · · · )

ãã
, (2)

which requires fewer MV products. If numerical coefficients in A are small enough,
the exponential eA can be approximated by truncated series (2) to high precision. For
examples, we refer to paper [3].

The following properties hold for MV logarithm:

log(AB) = log(A) + log(B) ⇐⇒ AB = BA,

e− log(A) = A−1,‡log(A) = log(Ã), l̇og(A) = log(ÛA), ‡̇
log(A) = e

Û̃A.
When the logarithm of MV exists, it may be approximated by series

logB = B

Å
1 + B

Å
−1

2
+ B

Å
1

3
+ B

Å
−1

4
+ · · ·

ãããã
, 0 < |B| < 1.

Here |B| is the determinant norm [3]. If logarithm exists, a series can be summed up but
there may be sector(s) in the MV coefficient domain, where the logarithm does not exist
at all.

In Cl0,1 algebra the norm |B|, which is equal to the square root of MV determinant
Det(B) = BÛB = b20 + b21 > 0, is called the magnitude or absolute value of the MV (or
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magnitude of the complex number in this case). In hyperbolic number theory the similar
role is played by product BÛB = b20 − b21, which may be positive, negative, or zero. In this
case the magnitude called a determinant seminorm (or pseudonorm) ‖B‖ =

»
abs(BÛB) =√

abs(b20 − b21) > 0 is introduced. Note that now the equality sign appears, therefore, the
seminorm ‖B‖ may be zero even if B 6= 0. The equality sign in case of the norm |B|
would require the MV to nullify.

3 Exponential and logarithm in 1D algebras

One-dimensional GAs are represented by two commutative algebras: the well-known
complex number algebra, which is isomorphic to Cl0,1, and the hyperbolic number al-
gebra Cl1,0 [22]. In Fig. 1 the geometrical properties of both algebras are compared
graphically on xy-plane (equivalently on b0b1-plane). In Fig. 1(b) the two branches of
hyperbola close down at plus/minus infinities [8]. The shaded area in both cases is pro-
portional either to inner ϕc or outer ϕh angle between the center and the point b on circle
y2+x2 = 1 or hyperbola y2−x2 = 1, respectively. If a point b on the circle or hyperbola
represents the MV B = b0 + b1e1, then in GA the quantity BÛB = b20 + b21 = |B|2 > 0
is the square of norm that graphically represents the sector Ac in Fig. 1(a). Similarly, the
sector Ah in Fig. 1(b) represents the seminorm ‖B‖ (pseudonorm) that as mentioned may
be positive, negative, or zero.

3.1 Exponential and logarithm of MV in Cl0,1

In the commutative Cl0,1 algebra where e21 = −1, we bave

eB = eb0+b1e1 = eb0eb1e1 = eb0
(
cos b1 + e1 sin b1

)
, (3)

where Euler’s rule was used. Presence of trigonometric functions indicates that the ex-
ponential in Cl0,1 is a periodic function with period 2πk, where k ∈ Z is an arbitrary
integer. Thus, more generally in Cl0,1, we have eB = eb0+b1e1+2πke1 .

The logarithm of a complex number z = x+ iy is

log z = log
(
reiϕ

)
= log|z|+ iϕ = log

(√
x2 + y2

)
+ iϕ,

which in Cl0,1 algebra notation is

logB = log
»
b20 + b21 + e1 arctan

b1
b0

= log|B|+ e1ϕ. (4)

The angle ϕ = arctan(y/x), or ϕ = arctan(b1/b0), is called the argument of log-
arithm. If r = (b20 + b21)

1/2 is a constant, then ϕ may be interpreted as a rotation
angle of a vector around coordinate center, Fig. 2(a). To eliminate sign ambiguity be-
tween quadrants 1 and 3 (or 2 and 4), the arc tangent of a single argument usually is
replaced by double argument arc tangent arctan(x, y). If signs of x and y are already
fixed, then arctan(x, y) = arctan(y/x). To include multiple rotations, after every single
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Figure 1. Analogy between unit circle x2+y2 = 1 and unit hyperbola x2−y2 = 1. For a circle the coordinates
of point b are x = cosϕc and y = sinϕc, and for a hyperbola, they are x = coshϕh and y = sinhϕh.
The trigonometric and hyperbolic angles are defined, respectively, by ϕc = arctan(y/x) in the range [0, 2π)
and ϕh = artanh(y/x) in the range (−∞,+∞). For hyperbola, they are limited by asymptotes (dashed
lines). The shaded areas Ac and Ah are proportional to trigonometric and hyperbolic angles: Ac = ϕc/2
and Ah = ϕh/2. The infinity signs at asymptotes show extreme values of ϕh/2, where the infinities having
opposite signs meet, −∞ = +∞ [8].
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Figure 2. Graphical representation of Cl0,1 logarithm: (a) the real part Re(log(B)) = log(
»
b20 + b21) and

(b) the principal logarithm ϕ = Im(log(B)) in the range [−π, π] is represented by a single winding on the
right panel. At a fixed ϕ the lines run parallel to horizontal b0b1-plane.

rotation, the period 2π is added to ϕ, so that after k rotations, we have k-windings in
Fig. 2(b) and angle ϕ = arctan(b0, b1) + 2πk, where k ∈ Z = . . . − 2,−1, 0, 1, 2, . . . .
Similarly, in case of hyperbolic functions, to include the sign of x and y in the quad-
rants 1–4, one may introduce a double angle hyperbolic tangent1 tanh(x, y) = y/x =
sinhϕh/ coshϕh = tanhϕh. As follows from Fig. 1(b), the range of the hyperbolic

1Figure 1(b) represents properties of hyperbola drawn on the Euclidean plane. The properties of hyperbola
on sphere and complex cylinder are described in [8]. Note that Mathematica computes the area hyperbolic
tangent of real or complex argument on a complex closed cylinder.
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tangent is (−1, . . . , 1) when−∞<ϕh<∞. Then, in the quadrants 1, 2, 3, 4, we have, re-
spectively, tanh(+|x|,+|y|), tanh(−|x|,+|y|), tanh(−|x|,−|y|), and tanh(+|x|,−|y|).

We shall assume that in GA the defining equation of the logarithm is logB = A, which
takes into account only the principal value (principal logarithm). To include multiple
values, we add a free MV F,

logB = A+ F, A,B,F ∈ Cl0,1, (5)

that satisfies eF = 1. Equation (5) is more general because, as we shall see, it allows to
include the multiplicity into GA logarithm in case of higher (n = 3) dimensional GAs [2].
Let us apply the described approach to Eq. (4)

logB = log|B|+ e1 arctan(b0, b1) ≡ log r + e1ϕ,

where |B| =
√
BÛB =

√
b20 + b21 = r is the radius r (magnitude or norm of B), and

ϕ is the angle between the horizontal axis and line that connects the coordinate center
with the point b, Fig. 1(a). To include multiplicity in the angle, a free term F is added,
logB = A+F. After substitution of F = f0+e1f1 into eF = 1 and using the trigonometric
expansion similar to Eq. (3), we find ef0(cos f1 + e1 sin f1) = 1, the solution of which
is f0 = 0 and f1 = 2πk, where k ∈ Z. Thus, the full solution in agreement with the
complex function theory can be written

Cl0,1: logB = log|B|+ e1(ϕ+ 2πk), 0 6 ϕ < 2π, k ∈ Z.

At a fixed r = |B|, this equation represents the spiral with period 2π since the argument
(0 6 ϕ < 2π) increases by 2π after every single winding in the “complex” plane b0, b1.
The logarithm (4) exists for all values of B. Often it is assumes that the principal logarithm
is in the range −π < ϕ < π, the logarithm is

Cl0,1: logB =



log|B|+ e1ϕ if b0 > 0 and b1 6= 0,

log|B|+ e1(ϕ+ π) if b0 < 0 and b1 > 0,

log|B|+ e1(ϕ− π) if b0 < 0 and b1 < 0,

b0 if b0 > 0 and b1 = 0,

b0 + e1π if b0 < 0 and b1 = 0,

b1 + e1π/2 if b0 = 0 and b1 > 0,

b1 − e1π/2 if b0 = 0 and b1 < 0.

(6)

The first three expressions are the main formulas. The remaining represent special cases:
they show the behavior of logarithm on the real and imaginary axis. When b0 = b1 = 0,
the logarithm is undefined. The definition given by Eqs. (6) and visualized in Fig. 2(b)
frequently is met in applications. It has been accepted in ISO standards such as C pro-
gramming language and Mathematica.
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3.2 Exponential and logarithm of MV in Cl1,0

For 1D algebras the inverse of MV B = b0 + b1e1 is

Cl0,1: B−1 =
ÛB
BÛB =

b0 − e1b1
b20 + b21

; Cl1,0: B−1 =
ÛB
BÛB =

b0 − e1b1
b20 − b21

(7)

and satisfies B−1B = BB−1 = 1. From (7) follows that, in contrast to complex algebra,
where each nonzero complex number has its inverse, in Cl1,0, zero divisors appear if
b20 = b21 as shown by dashed lines in a hyperbolic plane in Fig. 3. Since e21 > 0, Cl1,0
exponential may be expanded in hyperbolic sine and cosine functions [16],

Cl1,0: eB = eb0+b1e1 = eb0eb1e1 = eb0(cosh b1 + e1 sinh b1), (8)

where b0, b1 ∈ R. The hyperbolic functions are monotonic, therefore, the exponential in
Cl1,0 inherits this property as well. In Cl1,0 a logarithm defining equation is logB = A,
in solution of which the hyperbolic functions and the identity cosh2 x−sinh2 x = 1 are to
be used. The following expression for principal logarithm (the first formula) and special
case (the second formula) is found:

Cl1,0: logB =

{
log
√
b20 − b21 + e1 artanh

b1
b0
; b0 > 0 and b20 > b21,

1
2 (log(0+) + log(2b0))± e1

1
2 (− log(0+) + log(2b0); b1 = b0,

(9)

where artanh is the area tangent function, −1 < artanh(b1/b0) < 1. The scalar part
log
√
b20 − b21 exists if b20 > b21. The logarithm has a genuine value if a pair {b0, b1} is in

the shaded sector of Fig. 3. Thus, the existence of both the logarithm and the square root
are determined by condition b20 > b22. The special case belongs to asymptotes b0 = b1,
where log(0+) is the logarithm of a point infinitesimally close to zero. This term vanishes
in exp (logB) = B (see Example 2). The first equation of (9) can be rewritten in hyperbola
parameters in Fig. 1(b). Since B = r(coshϕh + e1 sinhϕh), where r = a0 is the radius
(r = 1 in Fig. 1(b)), we have b0 = r coshϕh and b1 = r sinhϕh. Since r =

√
b20 − b21

b0

b1

B

B
`

III

IIIIV

Figure 3. Hyperbolic plane b0, b1 that represents Cl1,0 algebra. The arrows show MV B = b0 + e1b1 and its
conjugate ÛB. The dashed lines are asymptotes b20 − b21 = 0. The principal square root and logarithm exist in
the shaded sector, where b0 > b1. I–IV are the hyperbolic plane quadrants.
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and tanhϕh = b1/b0, we have that logB = log r + e1ϕh, which is to be compared with
Eq. (4).

To find the free term F, we solve exp(F) = 1, for this purpose bringing into play
Eq. (8),

eF = ef0+e1f1 = ef0
(
cosh|f1|+ e1 sinh |f1|

)
= 1.

This equation can be satisfied if f0 = f1 = 0. So, in this algebra, we have only the
principal logarithm.

Example 1. Cl1,0: If b20 > b21, b0 > 0, and B = 3± 2e1, then

logB = log
√
5± e1 artanh

2

3
= a0 ± e1a1.

The exponential of logarithm gives exp(logB) = B. If b20 > b21, b0 < 0, and B′ =
−3± 2e1, then

logB′ = log
√
5± e1 artanh

2

3
= a0 ± e1a1.

The answer is wrong since the initial MV is returned with an opposite sign: exp(logB′) =
−B′.

Example 2. Cl1,0: b0 = b1, B = 2 + 2e1. In this case the second formula of (9) should
be used:

logB =
1

2
(log 4 + log 0+) +

1

2
e1(log 4− log 0+).

Then exp(logB) = 4(1 + e1)/2 + elog 0+(−1 + e1)/2 → 2(1 + e1), which in the limit
log 0+ → −∞ gives B = 2 + 2e1 that represents a point on the asymptote.

4 Exponential and logarithm in 2D algebras

4.1 Quaternionic “vector”

The following defining equations for exponential and logarithm in 2D GAs are used,
expB = A and logB = A, where MVs A and B belong to the same algebra. It is
convenient to introduce base-free MVs A′ = a + b12e12 and B′ = b + b12e12, where a
and b are vectors in e12-plane. By analogy to Hamilton quaternion theory [10,13], in the
following, we shall treat the quantity A′ as a 3D “vector”. Introduction of such a “vector”
appears very helpful in calculating the exponential as well as logarithm in all 2D algebras.
Thus, a full MV in 2D algebras may be represented as a sum of scalar and “vector”:

A = a0 +A′, A′ = a1e1 + a2e2 + a12e12.

In Cl0,2 the squares of all three basis elements satisfy e21 = e22 = e212 = −1 and
e1e2e12 = −1. Similarly, in the Hamilton quaternion algebra [10, 13] a set of three
imaginary units {i, j, k} satisfy i2 = j2 = k2 = −1 and ijk = −1. In 3D Euclidean space
the quaternionic vector is defined by v = a1i+a2j+a12k, the square of which is a negative
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number. The same property is satisfied by “vector”, (A′)2 ≡ A′2 = −a21− a22− a212 < 0,
where a1, a2, and a12 are the real numbers. Thus, the MV A′ is equivalent to quaternion
vector, and A′ may be treated exactly in the same way as the Hamilton vector v =
a1i + a2j + a12k. For Cl0,2 “vector” A′, the norm is defined by |A′| =

√
−A′2.

Because Cl1,1 and Cl2,0 are not division algebras, i.e., in these algebras, not every
MV has inverse, for these algebras, we have different cases. Now A′2 ≡ (A′)2 may be
either positive or negative, or even zero. The first (positive) case, as we shall see, is related
to hyperbolic functions, while the second is related to trigonometric functions. Both cases
will be investigated separately in Cl1,1 and Cl2,0 algebras. The seminorm of “vector” A′

is defined by ‖A′‖ =
√
abs(A′2) > 0.

4.2 Exponentials of MV in 2D algebras

In Table 1, two-dimensional exponentials in expanded form including the case of null MV
(when B2 = 0) are summarized. The structure of the formulas reminds de Moivre’s–
Euler’s rules. For Cl0,2, only trigonometric functions appear. For algebras Cl1,1 and
Cl2,0, also hyperbolic functions appear if B′2 > 0. In case of Cl0,2, which is isomorphic
to Hamilton quaternion, the exponential formula can be found easily if the property
(B′/|B′|)2 = −1 is taken into account. Since B′/|B′| behaves like an imaginary unit,
we can write at once

eB
′
= cos|B′|+ B′

|B′|
sin|B′|.

Then the exponential of B = b0 +B′ is

Cl0,2: eB = eb0+B
′
= eb0eB

′
= eb0

Å
cos|B′|+ B′

|B′|
sin|B′|

ã
.

In the remaining algebras the different normalization must be used. The square of
a normalized “vector” now is (B′/‖B′‖)2 = ±1, and apart from trigonometric, in addi-
tion, hyperbolic functions for plus sign appear,

Cl1,1,Cl2,0: eB = eb0eB
′
=

{
eb0
(
cos‖B′‖+ B′

‖B′‖ sin‖B
′‖), B′2 < 0,

eb0(cosh‖B′‖+ B′

‖B′‖ sinh‖B
′‖), B′2 > 0.

Thus, in Cl1,1 and Cl2,0 algebras depending on sign of B′2 and coefficient values in the
seminorm, the exponentials may be expanded either in trigonometric or in hyperbolic
functions and, as a result, may be periodic or monotonic. Finally, in Table 1 the exponen-
tial eB = eb0(1+B′) comes from the null MV, the square of which nullifies B′2 = 0 and
yields a linearly dependence onB′. Recently, we have found [3] that in three-dimensional
GAs (and probably in higher dimensional spaces) the entanglement or mixing of vector
and bivector components may take place, so that in the expanded form the exponential
loses de Moivre’s–Euler’s formula structure. The latter is regained if both the vector and
bivector lie in the same plane. This is in agreement with the present 2D formulas, where
the vector and bivector are always in e1e2-plane.

Nonlinear Anal. Model. Control, 27(6):1129–1149, 2022
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Table 1. Exponentials of general MV B = b0 + B′ = b0 + b1e1 + b2e2 +
b12e12 in 2D GAs. |B′| =

√
−B′2 and ‖B′‖ =

√
abs(B′2) are real numbers that

represent the norm and seminorm, respectively. The trigonometric functions appear
when B′2 < 0, while hyperbolic when B′2 > 0. Zero values of the seminorm
corresponds to limx→0 sin(x)/x = limx→0 sinh(x)/x = 1.

exp(B) = exp(b0 +B′) −B′ = b1e1 + b2e2 + b12e12

Cl0,2

{
eb0 (cos|B′|+ B′

|B′| sin|B
′|) B′2 = b21 + b22 + b212 > 0

eb0 B′ = 0

Cl1,1


eb0 (cosh‖B′‖+ B′

‖B′‖ sinh‖B′‖) B′2 = b21 − b22 + b212 > 0

eb0 (1 +B′) B′2 = b21 − b22 + b212 = 0

eb0 (cos‖B′‖+ B′

‖B′‖ sin‖B′‖) B′2 = b21 − b22 + b212 < 0

Cl2,0


eb0 (cosh‖B′‖+ B′

‖B′‖ sinh‖B′‖) B′2 = b21 + b22 − b212 > 0

eb0 (1 +B′) B′2 = b21 + b22 − b212 = 0

eb0 (cos‖B′‖+ B′

‖B′‖ sin‖B′‖) B′2 = b21 + b22 − b212 < 0

Example 3.

B = 2 + 5e1 − 4e2 − 7e12 = 2 +B′,

Cl0,2: expB = e2
Å
cos
√
90 +

5e1 − 4e2 − 7e12√
90

sin
√
90

ã
,

B′2 = −90, |B′| =
√
90,

Cl1,1: expB = e2
Å
cosh

√
58 +

5e1 − 4e2 − 7e12√
58

sinh
√
58

ã
,

B′2 = 58, ‖B′‖=
√
58,

Cl2,0: expB = e2
Å
cos
√
8 +

5e1 − 4e2 − 7e12√
8

sin
√
8

ã
,

B′2 = −8, ‖B′‖ =
√
8.

4.3 Products of exponentials

Using Table 1, it is easy to calculate the geometric product of two exponentials. For
example, for trigonometric functions in Cl0,2 when B′2 < 0, we find

eAeB = ea0+A
′
eb0+B

′

= ea0+b0
Å
cos|A′| cos|B′|+ 〈A

′B′〉0
|A′||B′|

sin|A′| sin|B′|
ã

+ ea0+b0
Å
A′

|A′|
sin|A′| cos|B′|+ B′

|B′|
sin|B′| cos|A′|

+
1

2

[A′, B′]

|A′||B′|
sin|A′| sin|B′|

ã
. (10)
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When A′ = B′, the commutator [A′, B′] = 0, and Eq. (10) reduces to double 2A
argument exponential. For remaining algebras, the norm should be replaced by seminorm.
Below, particular cases follow from (10).

Case 1. Product of vectorial exponentials. If A and B represent vectors a = a1e1 +
a2e2 and b = b1e1 + b2e2, then

eaeb = cos |a| cos |b| − cos θ sin |a| sin |b|

+
a

|a|
sin |a| cos |b|+ b

|b|
sin |b| cos |a|

+ e12 sin θ sin |a| sin |b|,

where θ is the angle between vectors a and b.
Case 2. Product of bivectorial exponentials. If A and B are simple bivectors A =

a12e12, B = b12e12, then

eAeB = eA+B = cos|A+ B|+ e12 sin|A+ B|,

where |A + B| =
»
(A+ B)‚�(A+ B). Since A + B is the bivector and (A + B)2 < 0,

this formula follows directly.
Case 3. Product of vector and bivector exponentials:

eaeB =

Å
cos |a|+ a

|a|
sin |a|

ã(
cos |B|+ e12 sin |B|

)
.

Case 4. The commutator also vanishes if the coefficients satisfy a1b12 = b1a12,
a2b12 = b2a12, and a2b1 = b2a1. Since in this case [A,B] = [A′, B′], we have eAeB =
eA+B and Eq. (10) reduced to

eAeB = eA+B = eBeA = ea0+b0
Å
cos|A′ +B′|+ A′ +B′

|A′ +B′|
sin|A′ +B′|

ã
.

When B
′2 > 0, similar formulas exist for hyperbolic functions.

5 Logarithm of MV in 2D algebras

The approach to commutative algebras in Section 3.1 here is generalized to 2D algebras.
The “vector” property B′2 T 0 allows to get 2-dimensional logarithm formulas that are
very similar to those found in 1D case but with basis vector e1 replaced by unit multivector
B′/|B′| or B′/‖B′‖.

5.1 Cl0,2 algebra

In this algebra, according to Table 1, the norm (or magnitude) of B′ is

|B′| =
√
−B′2 =

√
B′ı̃B′ =»b21 + b22 + b212.
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The logarithm defining equation is logB = A, where B is a given MV, and coefficients
of A are to be determined. Since B′2 < 0, the exponential of logarithm can be expanded
by trigonometric functions

elogB = eA = ea0+A
′
= ea0

Å
cos|A′|+ A′

|A′|
sin|A′|

ã
,

from which we write the following relation between “‘vectors”’ B′ and A′:

b0 +B′ = ea0
Å
cos|A′|+ A′

|A′|
sin|A′|

ã
. (11)

Equation (11) can be rewritten as a system of two equations

b0 = ea0 cos|A′|, B′ = ea0
A′

|A′|
sin|A′|, (12)

where the second equation, in fact, represents three scalar equations. System (12) can be
solved with respect to a0 and A′ in the following way. After squaring both sides of (12)
and noting that in Cl0,2, B′2 = −|B′|2, we have

b20 = e2a0 cos2|A′|, |B′|2 = e2a0 sin2|A′|. (13)

The sum gives b20 + |B′|2 = e2a0 , from which and b20 + |B′|2 = |B|2 follows

a0 = log|B|. (14)

The ratio of equations in (13) gives |B′|/b0 = tan|A′|. The inverse of the latter is

|A′| = arctan
|B′|
b0

. (15)

To express the “vector” A′ in terms of B′, the second equation in (12) is divided by the
first,

B′

b0
=

A′

|A′|
tan|A′|. (16)

As from (15) follows tan|A′| = |B′|/b0, therefore, Eq. (16) reduces to

B′

b0
=

A′

|A′|
|B′|
b0

,

from which the property B′/|B′| = A′/|A′|, i.e., B′ and A′ are parallel in ijk-space,
follows. The latter along with (14) allow to get

logB = a0 +A′ = log|B|+ |A′| B
′

|B′|
.
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Finally, the needed generic logarithm formula is

Cl0,2: logB = log|B|+ B′

|B′|

Å
arctan

|B′|
b0

ã
, B′2 < 0. (17)

To logarithm (17) we may add a free MV F = 2πkF̂ ′, where F̂ ′ plays the role of
imaginary unit, (F̂ ′)2 = −1. In addition, it satisfies exp(2πkF̂ ′) = 1 and |F̂ ′| = 1. As
we shall see, the free MV takes into account the multivaluedness of arc tangent. Then
logB = A + F = A + 2πkF̂ ′. Since F = f0 + f1e1 + f2e2 + f12e12 = f0 + F ′ and
|F ′| =

√
−F ′2 = (F ′ı̃F ′)1/2 =

√
f21 + f22 + f212, we have

eF = ef0
Å
cos|F ′|+ F ′

|F ′|
sin|F ′|

ã
= 1,

which is satisfied if f0 = 0 and |F ′| =
√
f21 + f22 + f212 = 2πk, k ∈ Z. Thus, in Cl0,2,

we have that the free MV is

F = 2πkF̂ ′ = 2πk
f1e1 + f2e2 + f12e12√

f21 + f22 + f212
= 2πk

F ′

|F ′|

that represents all possible “vectors”, the ends of which lie on a sphere of radius equal
to 1 in the 3D anti-Euclidean ijk-space. When k = 0, |F ′| = 0 and F = 0 because
f0 = 0. Thus, we conclude that the generic solution of equation logB = A represents the
principal value of argument ϕ = arctan(|B′|/b0) = arctan(

√
b21 + b22 + b23/b0) in the

range 0 6 ϕ < 2π if k = 0. When multivaluedness is included, the Hamilton quaternion
logarithm takes the form

logB+ F = log|B|+ B′

|B′|

(
arctan

|B′|
b0

+ 2πk
)
, B′2 < 0, k ∈ Z, (18)

|B| = (b20 + |B′|2)1/2. Formula (18) satisfies elogB+F = B for all integers k. Thus, in
Cl0,2 the free MV is F = F ′ = (B′/|B′|)2πk, where the “vector” (B′/|B′|) plays the
role of an imaginary unit (compare with Eq. (4)). When k = 0, we return back to the
principal logarithm. Thus, after replacement of the arc tangent by a double-argument arc
tangent in order to take account of all four quadrants correctly, the generic formula (18)
with special cases included becomes

Cl0,2: logB =


log|B|+ (arctan(b0, |B′|) + 2πk) B

′

|B′| , |B
′| 6= 0,

log(b0) + 2πk F̂ ′, (|B′| = 0) ∧ (b0 > 0),

log(−b0) + π(2k + 1) F̂ ′, (|B′| = 0) ∧ (b0 < 0).

(19)

To summarize, we have shown that, similar to complex number logarithm, the Hamilton
number logarithm is a multivalued function too.
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Example 4. Cl0,2: B = 2+ 4e1 − 5e2 − e12, |B| =
√
46, B′2 = −42 < 0, |B′| =

√
42.

The principal logarithm is

logB = log
√
46 + arctan

Å√
42

2

ã
4e1 − 5e2 − e12√

42

≈ 1.914 + 4.662e1 − 5.826e2 − 1.165e12.

After exponentiation elogB, we recover the initial MV B.

5.2 Cl1,1 and Cl2,0 algebras when B′2 666 0

When B′2 = −B′ı̃B′ < 0, the exponentials for both Cl1,1 and Cl2,0 algebra, are ex-
pressed in trigonometric functions in the same way as for Cl0,2 but the norm replaced by
seminorm (see Table 1). The free MV F = f0+ F̂

′ also satisfies the condition e2πkF = 1,
from which we have f0 = 0 and

Cl1,1: F̂ ′ = f1e1 + f12e12 +
»
1 + f21 + f212 e2,

Cl2,0: F̂ ′ = f1e1 + f2e2 −
»
1 + f21 + f22 e12

(20)

with properties ‖F̂ ′‖ = 1 and F̂ ′2 = −1.
Generic logarithm for both Cl1,1 and Cl2,0, are given by equations similar to (19) but

with F̂ ′ replaced by (20) and norm replaced by seminorm,

Cl1,1,Cl2,0: log(B) =


log(‖B‖) + (arctan(b0, ‖B′‖) + 2πk) B′

‖B′‖ ,

(B′2 < 0),

log(b0) +
B′

b0
, (B′2 = 0) ∧ (b0 > 0),

log(−b0) + π(2k + 1)F̂ ′, (B′ = 0) ∧ (b0 < 0).

(21)

The last two equations represent special cases. Now the logarithm of MV exists when
‖B′‖ 6= 0 and ‖B′‖ = 0. More specific cases are presented in Section 5.4.

Example 5. Cl1,1: B = 2 + 4e1 − 5e2 − e12, B′2 = −8, ‖B‖ =
√
12, ‖B′‖ =

√
8.

The answer

logB =
1

2
log(12) +

1

2
√
2
(arctan

√
2 + 2πk)(4e1 − 5e2 − e12)

satisfies elogB = B.

Example 6. Cl2,0: B = 2 + 5e1 − 4e2 − 7e12, B′2 = −8, ‖B′‖ =
√
8, ‖B‖ =

√
12.

The answer

logB =
log(12)

2
+

1

2
√
2
(arctan

√
2 + 2πk)(5e1 − 4e2 − 7e12).

satisfies elogB = B.
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Example 7. Cl2,0: B = 2+3e1−4e2−5e12, B′2 = 0, ‖B′‖ = 0, ‖B‖ = 2. The answer

logB = log b0 +
B′

b0
= log 2 +

1

2
(3e1 − 4e2 − 5e12).

satisfies elogB = B.

Example 8. Cl2,0: B = −2, B′2 = 0, ‖B′‖ = 0.

logB = log(−b0) + π(2k + 1)F̂ ′

= log 2 + π(2k + 1)
(
f1e1 + f2e2 −

»
1 + f21 + f22

)
e12.

The answer satisfies elogB = −2.

5.3 Cl1,1 and Cl2,0 algebras when B′2 > 0

When B′2 > 0, calculations proceed in a similar way. Therefore, only intermediate
results are put down briefly. Let the general MV be B = b0 + B′. The seminorm in
Cl1,1 is ‖B′‖ =

√
b21 − b22 + b212, and in Cl2,0 it is ‖B′‖ =

√
b21 + b22 − b212, where

expression under the root should be positive. As in previous case, the defining equation
is logB = A, where A = a0 +A′. Since the square of A′ now is positive scalar, A′2 > 0,
in agreement with the Table 1, the exponential is expanded in hyperbolic functions,

elogB = ea0+A
′
= ea0

Å
cosh‖A′‖+ A′

‖A′‖
sinh‖A′‖

ã
.

Thus, we have the following relation between “vectors” B′ and A′:

b0 +B′ = ea0
Å
cosh‖A′‖+ A′

‖A′‖
sinh‖A′‖

ã
that may be rewritten as a system of equations

b0 = ea0 cosh‖A′‖, B′ = ea0
A′

‖A′‖
sinh‖A′‖. (22)

Squaring of Eqs. (22) and the property B′2 = ‖B′‖2 give

b20 = e2a0 cosh2‖A′‖, ‖B′‖2 = e2a0 sinh2‖A′‖. (23)

Now, applying the property cosh2A′ − sinh2A′ = 1, the difference of equations in (23)
yields the scalar equation b20 − ‖B′‖2 = e2a0 , from which and the relation ‖B‖2 =
b20 − ‖B′‖2 follows a0 = log‖B‖. Also, from Eq. (23) we have the ratio ‖B′‖/b0 =
tanh‖A′‖, from which we find equation analogous Eq. (15), ‖A′‖= artanh(‖B′‖/b0),
where artanh is the area hyperbolic tangent. To express A′ in terms of B′, we divide
equations in (22),

B′

b0
=

A′

‖A′‖
tanh‖A′‖. (24)
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Since tanh‖A′‖ = ‖B′‖/b0, Eq. (24) can be reduced to

B′

b0
=

A′

‖A′‖
|B′|
b0

,

from which the property B′/‖B′‖ = A′/‖A′‖ follows. The latter allows to get the
required formula for the principal logarithm,

Cl1,1,Cl2,0: logB = log‖B‖+ artanh

Å‖B′‖
b0

ã
B′

‖B′‖
,
(
B′2 > 0

)
∧ (b0 6= 0).

To this formula we should add a free MV F = f0 +F ′ = f0 + f1e1 + f2e2 + f12e12 that
satisfies eF = 1, or

eF = ef0eF
′
= ef0

Å
cosh‖F ′‖+ F ′

‖F ′‖
sinh‖F ′‖

ã
= 1.

The solution of this MV equation (equivalently of four scalar equations) is f0 = 0, and
‖F ′‖ =

√
f21 − f22 + f212 = 0 for Cl1,1 and ‖F ′‖ =

√
f21 + f22 − f212 = 0 for Cl2,0.

From this we conclude that F′ = 0. Thus, in the case B2 > 0 the principal logarithm is
the only solution.

5.4 Cl1,1 and Cl2,0 algebras: Summary

Taking into account the generic and special cases, finally, we can write

Cl1,1,Cl2,0: logB =



log‖B‖+ (arctan(b0, ‖B′‖) + 2πk) B′

‖B′‖ ,

(B′2 < 0),

log‖B‖+ arctanh(‖B
′‖

b0
) B′

‖B′‖ ,

(B′2 > 0) ∧ (b0 > 0) ∧ (b20 −B′2 > 0),

log(b0) +
1
2 log(0+)(1−

B′

‖B′‖ ) +
1
2 log(2)(1+

B′

‖B′‖ ),

(B′2 > 0) ∧ (b0 > 0) ∧ (‖B‖= 0),

log(b0) +
B′

b0
, (B′2 = 0) ∧ (b0 > 0),

log(−b0) + (π + 2πk)F̂ ′, (B′ = 0) ∧ (b0 6 0),

∅, no solution,
(B′2 > 0) ∧ ((b0 6 0) ∨ (b20 −B′2 6 0)),

(25)

where ‖B‖ =
√

abs(b20 −B′2) and ‖B′‖ =
√
abs(B′2). Explicit form of a free MV F̂ ′

is algebra dependent and is given in (20).
In conclusion, we shall remark that in Cl0,2 algebra the GA logarithm is defined for

all MVs. However, in the remaining 2D algebras, we have to satisfy the conditions for
coefficients for a logarithm to exist. Thus, in these algebras, there are sectors in a domain
of argument, where logarithm does not exist at all.
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Example 9. Cl2,0, line 2 in (25). Case (B′2 > 0) ∧ (b0 > 0) ∧ (b20 − B′2 > 0),
B = 2+B′ = 2+5e1−e2−5e12,B′2 = 1, ‖B‖ =

√
3, ‖B′‖ = 1, ‖B‖2 = b20−B′2 = 3.

The answer:

logB =
1

2
log 3 + arctanh

Å
1

2

ã
(5e1 − 5e12 − e2).

Example 10. Cl2,0, line 3 in (25). Case (B′2 > 0) ∧ (b0 > 0) ∧ (b20 − B′2 = 0),
B = 9− 9e1 + 8e2 + 8e12, B′2 = 81, ‖B′‖ = 9, ‖B‖2 = b20 −B′2 = 0. The answer:

logB =
1

18
log

Å
2

0+

ã
(−9e1 + 8e2 + 8e12) +

1

2
log(2 + 0+) + log(9),

where 0+ is infinitesimally small positive number. lim0+→0 e
logB = B.

Example 11. Cl2,0, line 4 in (25). Case (B′2 = 0)∧(b0 > 0), B = 2+3e1−4e2−5e12 =
2 +B′, ‖B‖ = 2, B′2 = 0, ‖B′‖ = 0. The answer:

logB = log 2 +
B′

b0
= log 2 +

1

2
(3e1 − 4e2 − 5e12).

Example 12. Cl2,0, line 5 in (25). Case (B′ = 0) ∧ (b0 6 0). The logarithm of MV
B = −2 is

logB = log(2) + (π + 2πk)
(
f1e1 − e12

»
1 + f21 + f22 + f2e2)

After exponentiation, F̂ ′ simplifies out, and we get elogB = −2.

Example 13. Cl1,1, line 6 in (25). B = 2+5e1−4e2−7e12,B′2 = 58, b20−B′2 = −54.
Logarithm does not exist since, under the condition B′2 > 0, solution exists only when
b20 − B′2 > 0 (case 2 of (25)). Here we have b20 − B′2 < 0, and therefore, by line 6 of
(25) the solution set is empty.

The knowledge of logarithm and exponential provides a possibility to calculate the
square root of a MV by formula

√
B = ± exp(log(B)/2). For example, for B = 2−e1+

2e12 in Cl2,0, we haveB′2 = −3 and ‖B‖ =
√
7. Then, using the formula (21), one finds

logB =
1

2
log 7− 1√

3
(e1 − 2e12) arctan

1√
3
,

and after multiplication by 1/2 and application of exponential, one obtains the root

√
B =

2 +
√
7− e1 + 2e12»
2(2 +

√
7)

.

In this way calculated root coincides with a root formula (27) in the next section. It is
easy to verify that the geometric product

√
B
√
B simplifies to the initial B. The formula√

B = ± exp(log(B)/2) gives only two (plus/minus) roots. If B is a unity, B = 1, then the
square root exists for all algebras since

√
1 = ± exp(log(1)/2) = ±1. From works [1,
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5] we know that in the Clifford number algebra, in general, the square root of MV is
a multivalued function. Below in Section 6, such (isolated) roots are presented for

√
+1

and
√
−1. The multiple roots also have been found for a general MV in Cl1,1 (see the

next section), where up to four roots may happen simultaneously. In higher dimensional
GAs the number of roots may be even larger [1].

6 Addendum: Formulas for square roots of MV

Below the square roots
√
B for 1D and 2D algebras that may be useful in practice are

presented. They were calculated from the defining equation B = A2, which is equivalent
to a system of two in 2D or four 2D real coupled equations.

For Cl0,1, there are two (plus and minus) roots of B = b0 + e1b1,

Cl0,1:
√
B = ±

√
b20 + b31 + (b0 + b1e1)
√
2
»
b0 +

√
b20 + b21

= ± |B|+ B√
2
√
〈B〉0 + |B|

, (26)

where |B| =
√
BÛB is the magnitude (norm), and 〈B〉0 = b0 is the scalar part of MV. The

roots (26) exists for all MVs B 6= 0.
For Cl1,0 algebra, in general, there are four roots of B = b0 + e1b1,

Cl1,0:
√
B =

{
±−

√
b20 − b21 + b0 + b1e1

√
2
»
b0 −

√
b20 − b21

, ±
√
b20 − b21 + b0 + b1e1
√
2
»
b0 +

√
b20 − b21

}
.

If b0 > b1, all roots are different. If b0 = b1, only two distinct roots remain.
In 2D algebras the MV is B = b0 + b1e1 + b2e2 + b12e12. The square root has the

same form for all algebras:

Cl0,2,Cl1,1,Cl2,0:
√
B = ±b0 +

√
DetB+ b1e1 + b2e2 + b12e12√

2
√
b0 +

√
DetB

. (27)

For individual algebras, the determinant is

DetB = BÛ̃B =


b20 + b21 + b22 + b212 for Cl0,2,
b20 − b21 + b22 − b212 for Cl1,1,
b20 − b21 − b22 + b212 for Cl2,0.

For Hamilton quaternion, the square root exists for all MVs. For Cl1,1 and Cl2,0 algebras,
the roots exist when the determinant is positive or zero. In Cl1,1 an additional plus/minus
roots may appear if DetB > b0 > 0 [7],

√
B = ±−b0 +

√
DetB− (b1e1 + b2e2 + b12e12)√

2
√
−b0 +

√
DetB

.

https://www.journals.vu.lt/nonlinear-analysis
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Square roots of +1 in 2D. The square roots of B = +1 in 2D are

√
+1 =



Cl0,2: {±1},
Cl1,1: {±1, e1, 1√

2
(e1 ± e12)}

and ± (c1e1 + c2e2 ±
√
1 + c21 + c22 e12),

Cl2,0: {±1, e1, e2, 1√
2
(e1 ± e2)}

and ± (c1e1 + c2e2 ±
√
−1 + c21 + c22 e12).

In case of Cl2,0 and Cl1,1 the coefficients c1 and c2 are arbitrary and may be considered
as free parameters. Their range is determined by expression under the square root, which
must be positive. Thus, in this case, we have two types of roots: the isolated roots and the
continuum of roots determined by free parameters ci.

Square roots of −1 in 2D.The square roots of B = −1 in 2D are

√
−1 =


Cl0,2: {e1, e2, e12, 1√

2
(e1 ± e2),

1√
2
(e1 ± e12),

1√
2
(e2 ± e12)}

and ± (c1e1 + c2e2 ±
√
1− c21 − c22 e12),

Cl1,1: {e2} and ± (c1e1 + c2e2 ±
√
−1− c21 + c22 e12),

Cl2,0: {e12} and ± (c1e1 + c2e2 ±
√
1 + c21 + c22 e12).

7 Conclusions and discussion

The paper presents exponential and logarithm functions of multivector argument for Cl0,1,
Cl1,0 (1-dimensional commutative) and Cl0,2, Cl1,1, Cl2,0 (2-dimensional noncommu-
tative) Clifford geometric algebras (GAs). The well-known approach to Hamilton quater-
nion identified by three imaginaries {i, j, k} was generalized and adapted, specifically, the
imaginaries have been replaced by 2D unit multivectors, the squares of which are equal
to ±1, and which have been constructed from Clifford basis vectors {e1, e2, e12}.

The 2D basis-free exponentials in this approach assume a form of either Euler’s or
de Moivre’s rules. The principal logarithm was determined as an inverse of respective
exponential. 2π-multiplicity in the logarithm was included by adding a free MV F that
satisfies the condition eF = 1. The obtained formulas for exponential and logarithm can
be applied to quaternions too since Cl0,2, Cl1,1, and Cl2,0 algebras are isomorphic to,
correspondingly, the Hamilton quaternion, coquaternion, and conectorine [19],

Since in GA the nth root of MV is (A)1/n = exp(log(A)/n), the obtained exponential
and logarithm formulas may be applied to extract the nth root from general MV. However,
this exp-log formula allows to calculate no more then two (plus/minus) square roots.
Workable formulas for square roots are presented. In particular, using the defining equa-
tion, we have found explicit formulas for square roots in 1D and 2D Clifford algebras and
the sectors of their existence in MV coefficient space. In the space of MV coefficients the
sectors, where the roots do not exist, the logarithm does not exist as well. Also, multiple
square roots (up to four) have been found in Cl1,0 and Cl1,1 algebras.

Nonlinear Anal. Model. Control, 27(6):1129–1149, 2022
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The presented results may be useful in applied GAs, especially in dealing with GA
differential equations, the solutions of which are expressed through GA exponentials [3,
6]. Finally, the low-dimensional Clifford algebras may be helpful in doing calculations
in higher dimensional algebras as well because the former are subalgebras of the latter.
Also, it is expected that the described in the paper approach may be adapted to higher
grade Clifford algebras.
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