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Abstract. We analytically study the exact solitary wave solutions of the perturbed nonlinear
Biswas–Milovic equation with Kudryashov’s law of refractive index, which describes the prop-
agation of pulses of various types in optical fiber. We apply three efficient and reliable schemes,
specifically, the simple equation method, the (G′/G)-expansion method, and the new Kudryashov
method. These approaches lead to a range of solitons and other solutions comprising of the
bright solitons, dark solitons, singular solitons, periodic, rational, and exponential solutions. These
solutions are also presented graphically. Furthermore, all obtained solutions are verified by symbolic
computations.

Keywords: perturbed Biswas–Milovic equation, simple equation method, (G′/G)-expansion
method, new Kudryashov method, Kudryashov’s law.

1 Introduction

The nonlinear Schrödinger (NLS) equation, which is a primary complete integrable non-
linear dispersive partial differential equation (PDE), has been crucial towards establishing
a better understanding of a wide variety of systems from atomic physics and nonlinear
optics to rogue waves, deep water waves, plasmas, among others [1, 11, 13, 15, 27, 30].
For several years, one of the most interesting and stimulating fields of research in the field
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of engineering and science has been the search for exact soliton solutions to nonlinear
models [7, 8, 10, 12, 16, 24, 26, 32]. The study of solitons has a critical role to play in
the creation of new theories in the field mathematical physics. The most significant in-
ventions application of the soliton is that it is utilized in optical fibers to transmit digital
information. The development of mathematical methods further provide us with more
detailed findings for the extraction of these solitons. An effective approach to examine the
exact solitons and other solutions of nonlinear models is to propose a transformation in a
way to formulate at nonlinear ordinary differential equations (NODEs) that can be solved
using computational techniques like modified simple equation [9], modified tanh-function
method [31], sine-Gordon expansion method [2], subequation method [4], homogeneous
balance method [18], new extended direct algebraic method [25], Jacobi elliptic function
method [5], Riccati–Bernoulli’s sub-ODE method [23], extended rational sine-cosine
method [29], generalized exponential rational function method [14], functional variable
method [17], and so on.

The nonlinear Biswas–Milovic (NLBM) equation in polarization preserving fibers
without nonlinear perturbation terms is defined as [28, 33]

i
(
Qm
)
t
+ δ
(
Qm
)
xx

+ λF
(
|Q|2

)
Qm = 0, m > 1,

where Q(x, t) is a complex valued function, δ and λ specify respectively the coefficients
of group velocity dispersion and nonlinearity. The spatial and temporal variables gener-
ally represent the independent variables x and t. The function F(|Q|2)Qm is believed to
be r-times continuously differentiable, so

F
(
|Q|2

)
Qm ∈

∞⋃
k,l=1

Cr
[
(−k, k)× (−l, l);R2

]
,

where C is a complex plane, while R2 is a two-dimensional linear space. The critical
concept of this paper is to establish the soliton solutions of NLBM equation incorporated
with Kudryashov’s in polarization preserving fibers and nonlinear perturbation terms
given as [34]

i(Qm)t + δ(Qm)xx +

(
λ1
|Q|2n

+
λ2
|Q|n

+ λ3|Q|n + λ4|Q|2n
)
Qm

= i
(
s
(
|Q|2nQm

)
x
+ θ1

(
|Q|2n

)
x
Qm + θ2|Q|2n

(
Qm
)
x

)
, (1)

where m and n are the maximum intensity and power nonlinearity respectively, λk,
k = 1, 2, 3, 4, indicate the coefficients of nonlinearity effects, while s is the coefficient
of self-steepening term. To achieve this aim, we employed three efficient and reliable
schemes, explicitly, the simple equation method, the (G′/G)-expansion method, and the
new Kudryashov method. Recently, Zayed et al. in [34] studied this model with unified
auxiliary equation method. Zayed et al. in [35] applied the modified Kudryashov’s ap-
proach and the addendum to Kudryashov’s approach to obtained optical soliton solutions
to the cubic–quartic perturbation with Biswas–Milovic equation including Kudryashov’s
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law of refractive index. This present study further complements and presents new solu-
tions to this nonlinear problem, some of which do not exist in [34, 35] before.

The structure of this article is as follows: the mathematical formulation of soliton solu-
tions to NLBM equation incorporated with Kudryashov’s in polarization preserving fibers
and nonlinear perturbation terms along with the application of three novel techniques, the
simple equation method, the (G′/G)-expansion method, and the new Kudryashov method
are detailed in Section 2. The graphic interpretations of some solutions are provided in
Section 3. Finally, in Section 4 we give some conclusions.

2 Mathematical examination and solutions of the model

Consider the transformation

Q(x, t) = Q(ζ)eiΛ, ζ = b1x+ c1t, Λ = b2x+ c2t, (2)

where bj and cj , j = 1, 2, are arbitrary constants. We use the above transformation to
reduce Eq. (1) to the below nonlinear ordinary differential equation (ODE)

i
(
mc1Q

m−1Q′ + imc2Q
m
)
+ δ
(
b21m(m− 1)Qm−2(Q′)2

+ b21mQ
m−1Q′′ + 2ib1b2m

2Qm−1Q′ −m2b22Q
m
)

+
(
λ1Q

−2n+m + λ2Q
−n+m + λ3Q

n+m + λ4Q
2n+m

)
− i
(
sb1(2n+m)Q2n+m−1Q′ + isb2mQ

2n+m + 2θ1b1nQ
2n+m−1Q′

+ θ2b1mQ
2n+m−1Q′ + iθ2b2mQ

2n+m
)
= 0. (3)

The real and imaginary parts of Eq. (3) are attained as follows:

−m
(
c2 + δmb22

)
Qm + δb21mQ

m−1Q′′

+ δb21m(m− 1)Qm−2(Q′)2 + λ1Q
−2n+m + λ2Q

−n+m

+ λ3Q
n+m +

(
λ4 + b2m(s+ θ2)

)
Q2n+m = 0, (4)

and (
c1m+ 2δm2b1b2

)
Qm−1Q′

−
(
sb1(2n+m) + 2θ1b1n+ θ2b1m

)
Q2n+m−1Q′ = 0. (5)

Solving Eq. (5) yields

c1 = −2δmb1b2, s = −θ2m+ 2θ1n

m+ 2n
. (6)

BalanceQ2n+m withQm−1Q′′ in Eq. (4). In accordance to the balancing procedure [21],
we have N = 1/n. Therefore, we proposed another transformation of the form

Q = P1/n, Q′ =
1

n
P 1/n−1P ′,

Q′′ =
1

n

(
1

n
− 1

)
P 1/n−2(P ′)2 +

1

n
P 1/n−1P ′′

Nonlinear Anal. Model. Control, 27(3):479–495, 2022

https://doi.org/10.15388/namc.2022.27.26374


482 L. Akinyemi et al.

to reduce Eq. (4) to

−mn2
(
c2 + δb22m

)
P 2 + δb21m

(
nPP ′′ + (1− n)(P ′)2

)
+ δb21m(m− 1)(P ′)2 + λ1n

2 + λ2n2
P + λ3n

2P 3

+ n2
(
λ4 + b2m(s+ θ2)

)
P 4 = 0. (7)

Balancing P 4 with PP ′′ in Eq. (4) yields N = 1. Promptly, we now focus on the method
of solutions to solve Eq. (7). We applied three procedures, which are the simple equation
method, (G′/G)-expansion method, and new Kudryashov method.

2.1 The simple equation method (SEM)

The solution of Eq. (7) utilizing the SEM [19] can be described as

P (ζ) = g0 +

N∑
j=1

gjΦ
j(ζ), gN 6= 0,

where constants gj , j = 0, 1, 2, . . . , N , to be determined later. This functionΦ(ζ) satisfies
the Bernoulli and Riccati equations, respectively, as follows:

Φ′(ζ) = µ1Φ(ζ) + µ2Φ
2(ζ) (8)

and
Φ′(ζ) = µ1Φ

2(ζ) + µ2. (9)

For Eq. (8), the solutions are given as

(i) the rational form

Φ(ζ) =
1

µ2(ζ0 − ζ)
when µ1 = 0; (10)

(ii) the exponential form

Φ(ζ) =
µ1e

(µ1(ζ+ζ0))

1− µ2 e(µ1(ζ+ζ0))
when µ1 > 0 and µ2 < 0,

Φ(ζ) = − µ1e
(µ1(ζ+ζ0))

1 + µ2e(µ1(ζ+ζ0))
when µ1 < 0 and µ2 > 0.

(11)

For Eq. (9), the solutions are as follows.
If µ1µ2 < 0, the hyperbolic form

Φ(ζ) = −
√
−µ1µ2

µ1
tanh(

√
−µ1µ2 ζ + ζ0),

Φ(ζ) = −
√
−µ1µ2

µ1
coth(

√
−µ1µ2 ζ + ζ0).
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If µ1µ2 > 0, the periodic form

Φ(ζ) =

√
µ1µ2

µ1
tan(
√
µ1µ2 ζ + ζ0),

Φ(ζ) = −
√
µ1µ2

µ1
cot(
√
µ1µ2 ζ + ζ0),

(12)

where ζ0 is the constant of integration. With N = 1, the solution of Eq. (7) is

P (ζ) = g0 + g1Φ(ζ), g1 6= 0. (13)

Substituting Eqs. (8) and (13) into Eq. (7), then collecting all the coefficient of Φj(ζ),
j = 1, 2, 3, 4, to zero, we achieve some equations involving g0, g1, and other constants.
Now with the use of Mathematica assistance and in addition to Eq. (6), the following
solutions are possible.

c1 = −2δb1b2m, s = −θ2m+2θ1n

m+2n
,

g0 = − λ3(m+n)

2(2m+n)(b2m(s+θ2)+λ4)
∓
b1µ1

√
−δm(m+n)(λ4+b2m(s+θ2))

2n(λ4+b2m(θ2+s))
,

g1 = ∓
b1µ2

√
−δm(m+ n)(λ4 + b2m(s+ θ2))

n(λ4 + b2m(s+ θ2))
,

λ1 =
(m−n)(m+n)(δb21µ

2
1m(2m+n)2(λ4+b2m(s+θ2))+λ

2
3n

2(m+n))2

16n4(2m+n)4(λ4+b2m(s+θ2))3
,

λ2 =
λ3(2m−n)(m+n)(δb21µ

2
1m(2m+n)2(λ4+b2m(s+θ2))+λ

2
3n

2(m+n))

4n2(2m+n)3(λ4+b2m(s+θ2))2
,

c2 = − 1

2n2(2m+n)2(λ4+b2m(s+θ2))

×
(
2δb32m

2n2(2m+n)2(s+θ2)+δb
2
1b2µ

2
1m

2(2m+n)2(s+θ2)

+ 2δb22λ4mn
2(2m+n)2+δb21λ4µ

2
1m(2m+n)2+3λ23n

2(m+n)
)
.

(14)

Use Eq. (13) assisted with Eqs. (10), (11), and (14). The rational and exponential form
solutions of Eq. (1) are provided below:

Q1(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
− δb21m(m+ n)

n2(λ4 + b2m(s+ θ2))

1

(ζ0 − ζ)

)1/n
ei(b2x+c2t)

in conjunction with µ1 = 0, λ3(λ4 + b2m(s+ θ2)) < 0, and δ(λ4 + b2m(s+ θ2)) < 0;
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Q2(x, t) =

(
− λ3(m+ n)

2(2m+ n)(b2m(s+ θ2) + λ4)

±

√
− δb21µ

2
1m(m+ n)

4n2(λ4 + b2m(s+ θ2))

(
1 + µ2e

(µ1(ζ+ζ0))

1− µ2e(µ1(ζ+ζ0))

))1/n
ei(b2x+c2t)

along with µ1 > 0, µ2 < 0, λ3(λ4 + b2m(s+ θ2)) < 0, and δ(λ4 + b2m(s+ θ2)) < 0;

Q3(x, t) =

(
− λ3(m+ n)

2(2m+ n)(b2m(s+ θ2) + λ4)

±

√
− δb21µ

2
1m(m+ n)

4n2(λ4 + b2m(s+ θ2))

(
1− µ2e

(µ1(ζ+ζ0))

1 + µ2e(µ1(ζ+ζ0))

))1/n
ei(b2x+c2t) (15)

along with µ1 < 0, µ2 > 0, λ3(λ4 + b2m(s+ θ2)) < 0, and δ(λ4 + b2m(s+ θ2)) < 0.
Again, inserting Eqs. (9) and (13) into (7), later collecting all the coefficient of Φj(ζ),

j = 1, 2, 3, 4, to zero, we get certain equations in g0, g1, and other constants. With the
use of Mathematica assistance and in addition to Eq. (6), the following solutions are
achievable.

c1=−2δb1b2m, s=−θ2m+2θ1n

m+2n
,

g0=−
λ3(m+n)

2(2m+n)(b2m(s+θ2)+λ4)
, g1=±

ib1µ1

n

√
δm(m+n)

λ4+b2m(s+θ2)
,

λ1=
(m−n)(m+n)(λ23n

2(m+n)−4b21δµ1µ2m(2m+n)2(λ4+b2m(s+θ2)))
2

16n4(2m+n)4(λ4+b2m(s+θ2))3
, (16)

λ2=−
λ3(2m−n)(m+n)(4δb21µ1µ2m(2m+n)2(λ4+b2m(s+θ2))−λ23n2(m+n))

4n2(2m+n)3(λ4+b2m(s+θ2))2
,

c2=
1

2n2(2m+n)2(λ4+b2m(s+θ2))

×
(
−2δb32m2n2(2m+n)2(s+θ2)+4δb21b2µ1µ2m

2(2m+n)2(s+θ2)

− 2δb22λ4mn
2(2m+n)2+4δb21λ4µ1µ2m(2m+n)2−3λ23n2(m+n)

)
.

Use Eq. (16) assisted with Eqs. (10), (11), and (14). The dark and singular solutions of
Eq. (1) are listed below:

Q4(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

± ib1
n

√
− δm(m+ n)µ1µ2

λ4 + b2m(s+ θ2)
tanh(

√
−µ1µ2 ζ + ζ0)

)1/n
ei(b2x+c2t), (16)
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Q5(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

± ib1
n

√
− δm(m+ n)µ1µ2

λ4 + b2m(s+ θ2)
coth(

√
−µ1µ2 ζ + ζ0)

)1/n
ei(b2x+c2t), (17)

provided µ1µ2 < 0, λ3(λ4 + b2m(s + θ2)) < 0, and δ(λ4 + b2m(s + θ2)) < 0. The
periodic solutions of Eq. (1) are listed below:

Q6(x, t) =

(
− λ3(m+ n)

2(2m+ n)
(
λ4 + b2m(s+ θ2)

)
∓ ib1

n

√
δm(m+ n)µ1µ2

λ4 + b2m(s+ θ2)
tan(
√
µ1µ2 ζ + ζ0)

)1/n
ei(b2x+c2t), (18)

Q7(x, t) =

(
− λ3(m+ n)

2(2m+ n)
(
λ4 + b2m(s+ θ2)

)
± ib1

n

√
δm(m+ n)µ1µ2

λ4 + b2m(s+ θ2)
cot(
√
µ1µ2 ζ + ζ0)

)1/n
ei(b2x+c2t), (19)

provided µ1µ2 > 0, λ3(λ4 + b2m(s+ θ2)) < 0, and δ(λ4 + b2m(s+ θ2)) > 0.

2.2 The (G′/G)-expansion method

Consider the (G′/G)-expansion method [6, 22], the solution to Eq. (7) is given as

P (ζ) = g0 +

N∑
j=1

gj

(
G′(ζ)

G(ζ)

)j
, gN 6= 0, (20)

where G(ξ) fulfills the below ODE

G′′(ζ) = −µ1G
′(ζ)− µ2G(ζ). (21)

Here the unknowns gj , j = 0, 1, 2, . . . , N , and µj , j = 1, 2, can be determined subse-
quently. The solutions of Eq. (21) are given as

G′(ζ)

G(ζ)
=


−µ1

2 +
√
ρ

2 (
Ω1 sinh( 1

2

√
ρ ζ)+Ω2 cosh( 1

2

√
ρ ζ)

Ω1 cosh( 1
2

√
ρ ζ
)
+Ω2 sinh( 1

2

√
ρ ζ)

), ρ > 0,

−µ1

2 +
√
−ρ
2 (

Ω1 sin( 1
2

√
−ρ ζ)+Ω2 cos( 1

2

√
−ρ ζ)

Ω1 cos
(

1
2

√
−ρ ζ)+Ω2 sin( 1

2

√
−ρ ζ)

), ρ < 0,

−µ1

2 + Ω2

Ω1+Ω2ζ
, ρ = 0,

(22)

where Ω1 and Ω2 are arbitrary constants, and ρ = µ2
1−4µ2. We already obtained N = 1,

thus Eq. (20) reads

P (ζ) = g0 + g1
G′(ζ)

G(ζ)
, g1 6= 0. (23)

Putting Eqs. (21) and (23) into Eq. (7) and equating the (G′/G)i, i = 0, 1, 2, 3, 4, co-
efficients to zero leads to some solvable algebraic equations. After solving the algebraic
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equations through Mathematica software with Eq. (6), we have

c1 = −2δb1b2m, s = −θ2m+2θ1n

m+2n
,

g0 = − λ3(m+n)

2(2m+n)(λ4+b2m(s+θ2))
∓
b1µ1

√
−δm(m+n)(λ4+b2m(s+θ2))

2n(λ4+b2m(s+θ2))
,

g1 = ∓
b1
√
−δm(m+n)(λ4+b2m(s+θ2))

n(λ4+b2m(s+θ2))
,

λ1 =
(m−n)(m+n)(δb21mρ(2m+n)2(λ4+b2m(s+θ2))+λ

2
3n

2(m+n))2

16n4(2m+n)4(λ4+b2m(s+θ2))3
,

λ2 =
λ3(2m−n)(m+n)(δb21mρ(2m+n)2(λ4+b2m(s+θ2))+λ

2
3n

2(m+n))

4n2(2m+n)3(λ4+b2m(s+θ2))2
,

c2 = − 1

2n2(2m+n)2(λ4+b2m(s+θ2))

×
(
2δb32m

2n2(2m+n)2(s+θ2)+δb
2
1b2m

2ρ(2m+n)2(s+θ2)

+ 2δb22λ4mn
2(2m+n)2+δb21λ4mρ(2m+n)2+3λ23n

2(m+n)
)
.

(24)

Using Eq. (24) supported with Eqs. (22) and (23), we obtain the following solutions of
Eq. (1):

Q8(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
− δb21m(m+ n)ρ

4n2(λ4 + b2m(s+ θ2))

(
Ω1 sinh(

√
ρ

2 ζ) +Ω2 cosh(
√
ρ

2 ζ)

Ω1 cosh(
√
ρ

2 ζ) +Ω2 sinh(
√
ρ

2 ζ)

))1/n
× ei(b2x+c2t), (25)

provided ρ > 0, λ3(λ4 + b2m(s+ θ2)) < 0, and δ(λ4 + b2m(s+ θ2)) < 0;

Q9(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
δb21m(m+ n)ρ

4n2(λ4 + b2m(s+ θ2))

(−Ω1 sin(
√
−ρ
2 ζ) +Ω2 cos(

√
−ρ
2 ζ)

Ω1 cos(
√
−ρ
2 ζ) +Ω2 sin(

√
−ρ
2 ζ)

))1/n
× ei(b2x+c2t), (26)

given ρ < 0, λ3(λ4 + b2m(s+ θ2)) < 0, and δ(λ4 + b2m(s+ θ2)) < 0;

Q10(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
− δb21m(m+ n)ρ

n2(λ4 + b2m(s+ θ2))

Ω2

(Ω1 +Ω2ζ)

))1/n
ei(b2x+c2t),

provided ρ = 0, λ3(λ4 + b2m(s+ θ2)) < 0, and δ(λ4 + b2m(s+ θ2)) < 0.
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Remark 1. A specific example where Ω1 6= 0 and Ω2 = 0 in Eq. (25) results to the dark
soliton solution of Eq. (1) as

Q(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
− δb21m(m+ n)ρ

4n2(λ4 + b2m(s+ θ2))
tanh

(√
ρ

2
ζ

))1/n
ei(b2x+c2t). (27)

For Ω1 = 0 and Ω2 6= 0 in Eq. (25), we get the singular soliton solution of Eq. (1) as

Q(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
− δb21m(m+ n)ρ

4n2(λ4 + b2m(s+ θ2))
coth

(√
ρ

2
ζ

))1/n
ei(b2x+c2t). (28)

Remark 2. A special example when Ω1 6= 0 and Ω2 = 0 in Eq. (26) reveals the periodic
solutions of Eq. (1) as

Q(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

∓

√
δb21m(m+ n)ρ

4n2(λ4 + b2m(s+ θ2))
tan

(√
−ρ
2

ζ

))1/n
ei(b2x+c2t). (29)

For Ω1 = 0 and Ω2 6= 0 in Eq. (26), we also get the periodic solutions of Eq. (1) as

Q(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
δb21m(m+ n)ρ

4n2(λ4 + b2m(s+ θ2))
cot

(√
−ρ
2

ζ

))1/n
ei(b2x+c2t). (30)

2.3 The new Kudryashov method

Based on the new Kudryashov method [3, 20], assume that the solution to Eq. (2) is

P (ζ) = g0 +

N∑
j=1

giΦ
j(ζ), gN 6= 0. (31)

The function Φ(ζ) satisfies an ODE expressed as(
Φ′(ζ)

)2
= Φ2(ζ)

(
1−ΩΦ2(ζ)

)
. (32)

The solution to the above-mentioned ODE is provided as

Φ(ζ) =
4Ω1

(4Ω2
1 −Ω) sinh (ζ) + (4Ω2

1 +Ω) cosh (ζ)
, Ω = 4Ω1Ω2, (33)

for arbitrary constants Ω1 and Ω2. Again, N = 1, and from Eq. (31) we get

P (ζ) = g0 + g1Φ(ζ), g1 6= 0. (34)
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Inserting Eqs. (31) and (32) into Eq. (7), gathering all the coefficient of Φj(ζ), j =
0, 1, 2, 3, 4, to zero, after solving the resulting equations with the unknown constants and
taking int account Eq. (6), we obtain

c1 = −2δb1b2m, s = −θ2m+2θ1n

m+2n
,

g0 = − λ3(m+n)

2(2m+n)(λ4+b2m(s+θ2))
, g1 = ±b1

n

√
δΩm(m+n)

λ4+b2m(s+θ2)
,

c2 = −δb22m+
δb21m

n2
− 3λ23(m+n)

2(2m+n)2(b2m(s+θ2)+λ4)
,

λ1 = −λ
2
3(m−n)(m+n)2(4δb21m(2m+n)2(λ4+b2m(s+θ2))−λ23n2(m+n))

16n2(2m+n)4(λ4+b2m(s+θ2))3
,

λ2 = −λ3(2m−n)(m+n)(2δb21m(2m+n)2(λ4+b2m(s+θ2))−λ23n2(m+n))

4n2(2m+n)3(λ4+b2m(s+θ2))2
.

Incorporating these parameters into Eq. (34) assisted with Eq. (33), we obtain solutions

Q11(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
δΩ b21m(m+n)

n2(λ4+b2m(s+θ2))

(
4Ω1

(4Ω2
1−Ω) sinh ζ+(4Ω2

1+Ω) cosh ζ

))1/n
× ei(b2x+c2t), (35)

given that λ3(λ4 + b2m(s+ θ2)) < 0, δΩ(λ4 + b2m(s+ θ2)) > 0, and Ω = 4Ω1Ω2.

Remark 3. SettingΩ1 = Ω2 = 1 in Eq. (35) results the bright soliton solutions of Eq. (1)
as follows:

Q(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

±

√
δb21m(m+ n)

n2(λ4 + b2m(s+ θ2))
sech ζ

)1/n
ei(b2x+c2t), (36)

provided that λ3(λ4 + b2m(s+ θ2)) < 0 and δ(λ4 + b2m(s+ θ2)) > 0.

Remark 4. SettingΩ1 = 1 andΩ2 = −1 in Eq. (35) results the singular soliton solutions
of Eq. (1) as

Q(x, t) =

(
− λ3(m+ n)

2(2m+ n)(λ4 + b2m(s+ θ2))

∓

√
− δb21m(m+ n)

n2(λ4 + b2m(s+ θ2))
csch ζ

)1/n
ei(b2x+c2t), (37)

provided that λ3(λ4 + b2m(s+ θ2)) < 0 and δ(λ4 + b2m(s+ θ2)) < 0.
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3 Graphical descriptions of some solutions

In this section, our principal objective is to demonstrate that the newly obtain solutions are
more general and useful when examining the graphical representations of these solutions
and can undoubtedly play a prominent role in this virtue. In Figs. 1–7, the graphics of the
soliton wave solutions of Eq. (1) are displayed in 2D and 3D. It can be found from the cited
figures that the acquired soliton solutions consist of bright, dark, singular, periodic, expo-
nential, and solitary waves. With some parameter values, Figs. 2(a)-(c) and Figs. 4(a)-(c)
show respectively the structure of the dark soliton solutions. Figures 2(d)–(f), 4(d)–(f),
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Figure 1. The plots of exponential solution for Eq. (15) with additional parameters δ = −1, λ3 = −1, λ4 = 1,
θ1 = θ2 = 1, ζ0 = 1, b1 = b2 = 0.1, µ1 = −1, and µ2 = 1.
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Figure 2. The plots of dark soliton for Eq. (16) in (a)–(c) and singular soliton for Eq. (17) in (d)–(f) with
additional parameters δ = −1, λ3 = −1, λ4 = θ1 = θ2 = ζ0 = 1, b1 = b2 = 0.1, µ1 = −1, and µ2 = 1.
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Figure 3. The plots of periodic solutions for Eq. (18) in (a)–(c) and for Eq. (19) in (d)–(f) with additional
parameters δ = −1, λ3 = −1, λ4 = 1, θ1 = θ2 = 1, b1 = b2 = 0.1, and µ1 = µ2 = 1.
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Figure 4. The plots of dark soliton for Eq. (27) in (a)–(c) and singular soliton for Eq. (28) in (d)–(f) with
additional parameters δ = −1, λ3 = −1, λ4 = 1, θ1 = θ2 = 1, b1 = b2 = 0.1, µ1 =

√
8, and µ2 = 1.
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Figure 5. (a)–(c) The plots of periodic solutions of Eq. (29); (d)–(f) of Eq. (30) with additional parameters
δ = −1, λ3 = −1, λ4 = 1, θ1 = θ2 = 1, b1 = b2 = 0.1, µ1 = 0.8, and µ2 = 1.
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Figure 6. The plots of bright soliton of Eq. (36) with additional parameters δ = −1, λ3 = −1, λ4 = 1,
θ1 = θ2 = 1, and b1 = b2 = 0.1.
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Figure 7. The plots of singular soliton for Eq. (37) with additional parameters δ = 1, λ3 = −1, λ4 = 1,
θ1 = θ2 = 1, and b1 = b2 = 0.1.

and 7(a)–(b) reveal the singular soliton solutions. Figures 3, 5 represent the periodic
wave solutions, while Figs. 6(a)–(f) exhibit the bright soliton solution. The plot in Fig. 1
exhibits the exponential solution of NLBM equation with Kudryashov’s in polarization
preserving fibers and nonlinear perturbation terms. Nevertheless, the remaining plots are
not depicted since some of the aforementioned solutions display identical behavior. The
obtained solutions and the cited figures presented in this work provide us with some
physical explanation of the proposed problem.

4 Concluding remarks

We have successfully investigated the exact solitons and other solutions of the perturbed
nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index that de-
scribes the propagation of pulses of various types in optical fiber. Three different schemes,
specifically, the simple equation method, the (G′/G)-expansion method, and the new
Kudryashov method, have been implemented to construct several exact solutions, which
include multiple soliton solutions, singular solutions, periodic solutions, solitary wave
solutions, bright and dark soliton solutions of different structures. These solutions are pre-
sented under constraint conditions. The proposed methods obtained the results promptly
and need simple algorithms in programming. Moreover, we presented the graphical rep-
resentations of some solutions, which apparently reveal that the obtained solutions are
more practical and clear to understand. Our results further strengthened the fact that the
proposed methods are powerful, efficient, and easy mathematical tools for constructing
solutions to numerous nonlinear problems in mathematical physics.
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