
Nonlinear Analysis: Modelling and Control, Vol. 27, No. 2, 385–411
https://doi.org/10.15388/namc.2022.27.26314

Press

Optimal harvesting in a unidirectional
consumer–resource mutualisms system
with size structure in the consumer*

Rong Liua , Guirong Liub,1

aSchool of Applied Mathematics,
Shanxi University of Finance and Economics,
Taiyuan, Shanxi 030006, China
rliu29@sxufe.edu.cn
bSchool of Mathematical Sciences,
Shanxi University,
Taiyuan, Shanxi 030006, China
lgr5791@sxu.edu.cn

Received: January 21, 2021 / Revised: October 6, 2021 / Published online: February 15, 2022

Abstract. This paper considers the optimal harvesting problem for a size-structured model of
unidirectional consumer–resource mutualisms in which the consumer species has both positive
and negative effects on the resource species, while the resource has only a positive effect on the
consumer. First, we show the existence of a unique nonnegative solution of the system and give
the continuous dependence of solutions on the control variable. Next, the adjoint system is derived,
which is necessary for optimality and the existence of a unique optimal policy. Then necessary
conditions for optimality are established via the normal cone and adjoint system. Moreover, the
existence of a unique optimal strategy is proved via Ekeland’s variational principle and fixed-point
reasoning in convex analysis. Finally, we use numerical simulations to verify the main results and
find other dynamic properties of the system.

Keywords: consumer–resource interaction, size structure, optimal harvesting, Ekeland’s variational
principle.

1 Introduction

Ecological researches show that the outcomes resulting from interactions between species
can vary with context-dependent factors (see [6]). The outcome of the interaction is that
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the density of each species may end up above, equal to, or below its carrying capacity in
isolation from the other species (see [29]). Thus, the interaction outcomes of a two species
system are classified into positive (+), neutral (0) or negative (−) effects (see [11]).
Wang and Wu [30] pointed that the interaction outcomes between two species are not
fixed but vary with biotic and/or abiotic factors. Moreover, Wang and DeAngelis [29] di-
vided the outcomes between two species into six forms: mutualism (+ +), commensalism
(+ 0), predation/parasitism (+−), amensalism (− 0), competition (−−) and neutralism
(0 0).

Holland and DeAngelis [11] established the consumer–resource theory by using dif-
ferential equations, which provides a way to deal quantitatively with the problem. The
consumer–resource system is a system that discusses the process of energy or nutrient
transfer between a consumer organism and a resource in which a resource is defined as
a biotic or abiotic factor, which could increase the consumers’ growth, while a consumer
will utilize the supply of resource and then reduces its growth rate (see [26]). The one-
way and two-way flow of energy or matter between species makes that the consumer–
resource system can be divided into unidirectional and bidirectional system (see [29]).
In nature, there are many bidirectional consumer–resource interactions (such as lichens
and plant mycorrhizal fungi) and unidirectional consumer–resource interactions (such as
insect pollinator and host plant).

The traditional consumer–resource interaction is simulated by the (+−) type rela-
tionship in which the consumer obtains some material benefits at the cost of the resource,
such as the classic predator–prey models or parasite-host models. The unidirectional
consumer–resource mutualisms are consistent with the traditional consumer–resource in-
teraction (see [10, 27, 28]). Wang and DeAngelis [29] considered the following unidirec-
tional consumer–resource system:

dN1(t)

dt
= N1(t)

[
r1 +

α12N2(t)

γ2 +N2(t)
− β1N2(t)− d1N1(t)

]
,

dN2(t)

dt
= N2(t)

[
r2 +

α21N1(t)

γ1 +N1(t)
− d2N2(t)

]
.

(1)

Here N1(t) and N2(t), respectively, represent the densities of the resource species and
the consumer species at time t.

However, populations consist of individuals with many structural differences, such as
age, size, location, status, movement, etc. According to these structural characteristics,
structured population models distinguish individuals from one another to determine the
birth, growth and death rates, interaction with each other and with environment, etc. (see
[22]). In the last century, structured population models have played a significant role in the
mathematical analysis and control of populations in biology and demography. Especially,
age-structured first-order partial differential equations (PDEs) provide a main tool for
modeling population systems and are recently employed in economics (see [2, 14, 20,
21, 23, 24, 31]). In [20], the authors investigated the oscillation theory of the following
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unidirectional consumer–resource model with age-structure in the consumer:

dN1(t)

dt
= N1(t)

[
r − d1N1(t) +

α12A(t)

γ2 +A(t)
− β1A(t)

]
,

∂N2(t, a)

∂t
+
∂N2(t, a)

∂a
= −d2N2(t, a), a > 0,

N2(t, 0) =
α21N1(t)A(t)

γ1 +N1(t)
,

N1(0) = N10 > 0, N2(0, ·) = N20(·) ∈ L1
+

(
(0,+∞), R

)
,

(2)

where N1(t) is the density of the resource species at time t, and N2(t, a) is the density of
the consumer species at time t with age a. A(t)

.
=
∫ +∞

0
β(a)N2(t, a) da is the number

of matured (reproducing) consumers with the age-dependent maturation function β(a).
r and d1 are the intrinsic growth rate and logistic type limitation of resource species,
respectively. d2 is the death rate of the consumer species. α12N1(t)A(t)/(γ2 +A(t))
describes the positive effect on the growth of the resource species due to mutualistic
interactions with the consumer species, where α12 denotes the saturation level of the
functional response of the consumer species, and γ2 denotes the half-saturation density of
resource species. β1N1(t)A(t) represents the consumption level of resource species by
the matured consumer. α21N1(t)A(t)/(γ1 +N1(t)) in the boundary condition denotes
the new born individual of the consumer species N2 depending on resource supplied
by N1, where α21 is the interaction strength, and γ1 is the half-saturation constant.

Note that age is only a special kind of size and size of an individual has a strong
influence upon dynamical processes like its feeding, growth and reproduction, which in
turn affect the dynamics of the population as a whole [5]. Here sizes can be mass, length,
diameter, surface area, volume, maturity, and so on. For some animals, the amount of
food obtained by individuals is proportional to their surface area, and the cost of the
metabolism is proportional to their volume (see [25]). As a result, modeling population
dynamics, it is natural to assume that the vital rates, such as fertility, mortality, and growth
rates of individuals, depend on their body size and time (see [3, 7–9, 15, 17–19, 32, 33]).

To the best of our knowledge, so far there is no investigation on the optimal control
of size-structured population models of consumer–resource mutualisms. The purpose of
this paper is to make some contribution in this direction. To build the model, we assume
that N1(t) is the density of the resource at time t and N2(x, t) represents the density of
the consumer at time t with size x. Let Q = [0, l) × [0, T ]. Here l ∈ (0,+∞) is the
maximum size of any individual in the consumer species, and T ∈ (0,+∞) is a given
time. Similar to [20], let

A(t)
.
=

l∫
0

β(x)N2(x, t) dx (3)

be the number of matured consumers with the size-dependent maturation function β(x).
In a similar way as to develop (2), we propose the following unidirectional consumer–
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resource mutualisms system with size structure in the consumer to study the optimal
harvest problem

dN1(t)

dt
= N1(t)

[
r − d1N1(t) +

α12A(t)

γ2 +A(t)
− β1A(t)− u1(t)

]
, t ∈ [0, T ],

∂N2(x, t)

∂t
+
∂(V (x, t)N2(x, t))

∂x
= −d2N2(x, t)− u2(x, t)N2(x, t),

(t, x) ∈ Q,

V (0, t)N2(0, t) =
α21N1(t)A(t)

γ1 +N1(t)
, t ∈ [0, T ],

N1(0) = N10 > 0, N2(·, 0) = N20(·) ∈ L1
+

(
(0, l), R+

)
.

(4)

All meanings of the parameters are exact to or similar as those for system (2) except the
following. Here V (x, t) is the growth rate of individual’s size, that is, dx/dt = V (x, t).
The control variables u1(t) and u2(x, t) are the harvesting efforts for the resource species
and the consumer species, respectively, which belong to

U =
{

(u1, u2) ∈ L∞
(
[0, T ]

)
× L∞(Q)

∣∣ 0 6 u1(t) 6 H1 a.e. t ∈ [0, T ],

0 6 u2(x, t) 6 H2 a.e. (x, t) ∈ Q
}
.

Here H1 and H2 are positive constants. Let (N1(t), N2(x, t)) be solution of (4) corre-
sponding to (u1, u2) ∈ U . As done in [16], in this paper, we discuss the optimization
problem as follows:

max
(u1,u2)∈U

J(u1, u2), (5)

where

J(u1, u2) =

T∫
0

ω1(t)u1(t)N1(t) dt+

T∫
0

l∫
0

ω2(x, t)u2(x, t)N2(x, t) dx dt

− 1

2

T∫
0

c1
[
u1(t)

]2
dt− 1

2

T∫
0

l∫
0

c2
[
u2(x, t)

]2
dx dt.

Here ω1(t) and ω2(x, t) are, respectively, the economic values of the individual of the
resource and the consumer at time t; ci > 0 (i = 1, 2) is the weight factor of the costs
for implementing the controls. Thus, the optimization problem represents the total net
economic benefit yielded from harvesting the resource and the consumer during a time
of T .

Denote R+=̇[0,∞), L1
+=̇L1(0, l;R+) and L∞+ =̇L∞(0, l;R+). We make the follow-

ing assumptions throughout this paper.

(A1) V : [0, l) × [0, T ] → R+ is a bounded continuous function; V is of C1-class
with respect to x ∈ [0, l) for each t ∈ [0, T ]; limx↑l V (x, t) = 0 uniformly
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for t ∈ [0, T ]. Further, there is a Lipschitz constant LV such that |V (x1, t) −
V (x2, t)| 6 LV |x1 − x2| for all x1, x2 ∈ [0, l) and t ∈ [0, T ].

(A2) β ∈ L∞+ with ‖β‖∞ 6 β̄, and β̄ is a positive constant. Moreover, for any
(x, t) ∈ [0, l)× [0, T ], we assume that Vx(x, t) > −d2.

(A3) N20 ∈ L1
+, and there is a positive constant N̄2 such that

∫ l
0
N20(x) dx 6 N̄2.

2 Well-posedness of the state system

This section is devoted to the well-posedness of system (4). As in [16], we first introduce
the definition of characteristic curve.

Definition 1. (See [16, Def. 1].) The unique solution x = ϕ(t; t0, x0) of the initial-
valued problem ẋ(t) = V (x, t) with x(t0) = x0 is said to be a characteristic curve. Let
z(t) = ϕ(t; 0, 0) be the characteristic curve through (0, 0) in x, t-plane.

For any point (x, t) in the first quadrant of x, t-plane such that x 6 z(t), that is,
ϕ(t; t, x) 6 z(t), define initial time τ=̇τ(x, t). It is clear that ϕ(t; τ, 0) = x if and only
if ϕ(τ ; t, x) = 0. Obviously, τ = ϕ−1(0; t, x). Using characteristic curve technique as
in [1], the solution of system (4) can be defined as follows.

Definition 2. A pair of functions (N1(t), N2(x, t)) is said to be a solution of system (4)
if it satisfies

N1(t) = N10 exp

{ t∫
0

[
r − d1N1(s) +

α12A(s)

γ2 +A(s)
− β1A(s)− u1(s)

]
ds

}
, (6)

N2(x, t) =


FN1

(τ,N2(·,τ))

V (0,τ) +
∫ t
τ
GV (s,N2(·, s))(ϕ(s; t, x)) ds, x 6 z(t),

N20(ϕ(0; t, x)) +
∫ t

0
GV (s,N2(·, s))(ϕ(s; t, x)) ds, x > z(t),

(7)

where A(s) =
∫ l

0
β(x)N2(x, s) dx, FN1 and GV are given by

FN1
(t, φ) =

α21N1(t)
∫ l

0
β(x)φ(x) dx

γ1 +N1(t)
,

GV (t, φ)(x) = −d2φ(x)− Vx(x, t)φ(x)− u2(x, t)φ(x)

for t ∈ [0, T ] and φ ∈ L1.

To discuss the well-posedness of (4), let X = L∞(0, T ) × L∞(0, T ;L1(0, l)) and
define a new norm in X by

∥∥(N1, N2)
∥∥
∗ = ess sup

t∈(0,T )

{
e−λt

[∣∣N1(t)
∣∣+

l∫
0

∣∣N2(x, t)
∣∣dx]}
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for some λ > 0. Obviously, ‖·‖∗ is equivalent to the usual norm on X. Thus, X is
a Banach space with the norm ‖·‖∗. Further, denote

M = max
{
N10 exp

{
(r + α12)T

}
, N̄20

[
1 + exp

{
(LV + α21β̄)T

}]}
and define the space

X =

{
(N1, N2) ∈ X

∣∣∣ 0 6 N1(t) 6M a.e. t ∈ (0, T ), N2(x, t) > 0

and

l∫
0

N2(x, t) dx 6M a.e. (x, t) ∈ Q

}
.

It is clear that X is a nonempty closed subset in X. Define A : X → X by

A(N1, N2) =
(
A1(N1, N2),A2(N1, N2)

)
,

where A1(N1, N2) and A2(N1, N2) are defined by the right-hand sides of (6) and (7),
respectively. Clearly, if (N1(t), N2(x, t)) is a fixed point of A, then it must be a solution
of (4) and vice versa.

Next, we show that A is a contraction mapping on X . To do this, we first introduce
the following lemmas.

Lemma 1. (See [13, Lemma 3.3].) For any t ∈ [0, T ], let τt(x)
.
= τ(x, t). Then τt :

[0, z(t)]→ [0, t] is continuous, decreasing and onto, and hence τt has the inverse τ−1
t (·),

which is continuous from [0, t] onto [0, z(t)].

Lemma 2. (See [13, Lemma 3.4].) Let x = ϕ(t; τ, η). Then x is differentiable with
respect to τ , and

dx

dτ
= −V (η, τ) exp

( t∫
τ

Vx(ϕ(σ; τ, η), σ) dσ

)
; (8)

and x is differentiable with respect to η, and

dx

dη
= exp

( t∫
τ

Vx(ϕ(σ; τ, η), σ) dσ

)
. (9)

Theorem 1. Assume that (A1)–(A3) hold. Then, for any (u1, u2) ∈ U , system (4) has
a unique solution (N1, N2) ∈ X .

Proof. First, we show that the mapping A maps X into X . For any (N1, N2) ∈ X ,
let b(t) = V (0, t)N2(0, t). It is clear that b(t) = α21N1(t)A(t)/(γ1 + N1(t)) =
FN1

(t,N2(·, t)). From (A2) it follows that GV (s,N2(·, s)) 6 0. Thus, for 0<t<z−1(l),
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we have

b(t) =
α21N1(t)A(t)

γ1 +N1(t)
6 α21A(t) = α21

l∫
0

β(x)N2(x, t) dx

6 α21β̄

z(t)∫
0

FN1
(τ,N2(·, τ))

V (0, τ)
dx+ α21β̄

l∫
z(t)

N20

(
ϕ(0; t, x)

)
dx

6 α21β̄N̄20 + α21β̄

z(t)∫
0

b(τ)

V (0, τ)
dx

.
= α21β̄N̄20 + α21β̄I. (10)

Let s = τ = ϕ−1(0; t, x). By Definition 1 s = twhen x = 0, while s = 0 when x = z(t).
Moreover, from s = ϕ−1(0; t, x) it follows that x = ϕ(t; s, 0). Then from Lemma 2,
dx/ds = −V (0, τ) exp(

∫ t
τ
Vx(ϕ(σ; s, 0), σ) dσ). Thus, we have

I = −
0∫
t

b(s) exp

( t∫
s

Vx
(
ϕ(σ; s, 0), σ

)
dσ

)
ds 6

t∫
0

eLV (t−s)b(s) ds. (11)

This, together with (10), yields e−LV tb(t) 6 α21β̄N̄20 + α21β̄
∫ t

0
e−LV sb(s) ds. From

Gronwall’s inequality it follows that

b(t) 6 α21β̄N̄20 exp
{

(α21β̄ + LV )t
}
. (12)

For z−1(l) < t < T , inequality (12) still holds, and the proof is more simple.
For any (N1, N2) ∈ X , we consider A(N1, N2) = (A1(N1, N2),A2(N1, N2)).

From (6) it is easy to see that∣∣A1(N1, N2)
∣∣(t) 6 N10 exp

{
(r + α12)T

}
.

Further, from (7), (11) and (12), for 0 < t < z−1(l), we can see that

l∫
0

∣∣A2(N1, N2)
∣∣(x, t) dx 6

z(t)∫
0

FN1
(τ,N2(·, τ))

V (0, τ)
dx+

l∫
z(t)

N20(ϕ
(
0; t, x)

)
dx

6 N̄20 +

t∫
0

eLV (t−s)b(s) ds

6 N̄20 + α21β̄N̄20eLV t

t∫
0

eα21β̄s ds

6 N̄20

[
1 + exp

{
(LV + α21β̄)T

}]
.
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For z−1(l) < t < T , the above inequality still holds, and the proof is more simple. Thus,
A maps X into itself.

Next, we discuss the compressibility of A. For any (N1, N2) and (N ′1, N
′
2) ∈ X ,

from (6) it follows that∣∣A1(N1, N2)−A1(N ′1, N
′
2)
∣∣(t)

= N10

∣∣∣∣∣e(r+α12)t exp

{ t∫
0

[
−d1N1(s) +

α12A(s)

γ2 +A(s)
− α12 − β1A(s)− u1(s)

]
ds

}

− e(r+α12)t exp

{ t∫
0

[
−d1N

′
1(s) +

α12A
′(s)

γ2 +A′(s)
− α12 − β1A

′(s)− u1(s)

]
ds

}∣∣∣∣∣
6 N10e(r+α12)T

×
t∫

0

[
d1

∣∣N1(s)−N ′1(s)
∣∣+

(
α12

γ2
+ β1

) l∫
0

β(x)|N2 −N ′2|(x, s) dx

]
ds

6M1

t∫
0

[∣∣N1(s)−N ′1(s)
∣∣+

l∫
0

∣∣N2(x, s)−N ′2(x, s)
∣∣dx] ds, (13)

where M1 = N10e(r+α12)T max
{
d1, (α12/γ2 + β1)β̄

}
. For 0 < t < z−1(l), we have

l∫
0

∣∣A2(N1, N2)−A2(N ′1, N
′
2)
∣∣(x, t) dx

6

z(t)∫
0

|FN1(τ,N2(·, τ))− FN ′1(τ,N ′2(·, τ))|
V (0, τ)

dx

+

z(t)∫
0

t∫
τ

∣∣GV (s,N2(·, s)
)(
ϕ(s; t, x)

)
−GV

(
s,N ′2(·, s)

)(
ϕ(s; t, x)

)∣∣dsdx

+

l∫
z(t)

t∫
0

∣∣GV (s,N2(·, s)
)(
ϕ(s; t, x)

)
−GV

(
s,N ′2(·, s)

)(
ϕ(s; t, x)

)∣∣dsdx

.
= I1 + I2 + I3. (14)

For I1, let s = τ = ϕ−1(0; t, x). By Definition 1 s = t when x = 0, while s = 0 when
x = z(t). From s = ϕ−1(0; t, x) it follows that x = ϕ(t; s, 0). Then from Lemma 2 it
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follows that dx/ds = −V (0, τ) exp(
∫ t
τ
Vx(ϕ(σ; s, 0), σ) dσ). Thus,

I1 6 eLV T

t∫
0

∣∣FN1

(
τ,N2(·, s)

)
− FN ′1

(
τ,N ′2(·, s)

)∣∣ds.
Further, we can obtain

I1 6 eLV T

t∫
0

∣∣∣∣α21N1(s)A(s)

γ1 +N1(s)
− α21N

′
1(s)A′(s)

γ1 +N ′1(s)

∣∣∣∣ds
6 eLV T

t∫
0

α21γ1|N1(s)A(s)−N ′1(s)A′(s)|
(γ1 +N1(s))(γ1 +N ′1(s))

ds

6 eLV T

t∫
0

[
α21

∣∣A(s)−A′(s)
∣∣+

α21

γ1
A′(s)

∣∣N1(s)−N ′1(s)
∣∣]ds

6 eLV Tα21β̄

[ t∫
0

l∫
0

|N2 −N ′2|(x, s) dx ds+
M

γ1

t∫
0

|N1 −N ′1|(s) ds

]
. (15)

For I2 + I3, as in [12], using Fubini’s theorem and Lemma 1, we have

I2 + I3 =

t∫
0

z(t)∫
τ−1
t (s)

∣∣GV (s,N1(·, s)
)(
ϕ(s; t, x)

)
−GV

(
s,N ′2(·, s)

)(
ϕ(s; t, x)

)∣∣dxds

+

t∫
0

l∫
z(t)

∣∣GV (s,N1(·, s)
)(
ϕ(s; t, x)

)
−GV

(
s,N ′2(·, s)

)(
ϕ(s; t, x)

)∣∣dxds.

From Lemma 1 it follows that if x = τ−1
t (s), then s = τt(x) = τ(x, t). Further, let

η = ϕ(s; t, x). By Definition 1 η = ϕ(τ ; t, x) = 0 when x = τ−1
t (s) (i.e. s = τ(x, t)),

while η = ϕ(s; t, l) < l when x = l. Moreover, it follows from η = ϕ(s; t, x) that
x = ϕ(t; s, η). Thus, from Lemma 2 we have dx = exp(

∫ t
s
Vx(ϕ(σ; s, η), σ) dσ)dη.

Thus, we have

I2 + I3 6 eLV T

t∫
0

l∫
0

∣∣−(d2 + Vx(η, s) + u2(η, s)
)(
N2(η, s)−N ′2(η, s)

)∣∣dη ds

6 eLV T (d2 + LV +H2)

t∫
0

l∫
0

∣∣N2(η, s)−N ′2(η, s)
∣∣ dη ds. (16)
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Hence, from (14)–(16) we obtain

l∫
0

∣∣A2(N1, N2)−A2(N ′1, N
′
2)
∣∣(x, t) dx

6 eLV T (α21β̄ + d2 + LV +H2)

t∫
0

l∫
0

∣∣N2(x, s)−N ′2(x, s)
∣∣dxds

+ eLV T
α21β̄M

γ1

t∫
0

∣∣N1(s)−N ′1(s)
∣∣ds

6M2

t∫
0

[∣∣N1(s)−N ′1(s)
∣∣+

l∫
0

∣∣N2(x, s)−N ′2(x, s)
∣∣dx] ds, (17)

where M2 = eLV T max{α21β̄ + d2 + LV +H2, α21β̄M/γ1}. For z−1(l) < t < T , the
above inequality still holds, and the proof is more simple.

It follows from (13) and (17) that∥∥A(N1, N2)−A(N ′1, N
′
2)
∥∥
∗

=
∥∥(A1(N1, N2)−A1(N ′1, N

′
2),A2(N1, N2)−A2(N ′1, N

′
2)
)∥∥
∗

6M3 ess sup
t∈(0,T )

{
e−λt

[ t∫
0

(
|N1 −N ′1|(s) +

l∫
0

|N2 −N ′2|(x, s) dx

)
ds

]}

6
M3

λ

∥∥(N1 −N ′1, N2 −N ′2)
∥∥
∗.

Choose λ such that λ > M3 = M1+M2. Thus,A is a contraction mapping on the Banach
space (X , ‖·‖∗). Hence, A owns a unique fixed point, which is the solution of (4).

To conclude this section, we will discuss the continuous dependence of solutions on
the control variable. Let L∞1 = L∞(0, T ;L1(0, l)).

Theorem 2. For any (u1, u2), (u′1, u
′
2) ∈ U , let (N1, N2) and (N ′1, N

′
2) be solutions

of (4) corresponding to (u1, u2) and (u′1, u
′
2), respectively. If T is small enough, then

there are positive constants K1 and K2 such that

‖N1 −N ′1‖L∞(0,T ) + ‖N2 −N ′2‖L∞1
6 K1T

[
‖u1 − u′1‖L∞(0,T ) + ‖u2 − u′2‖L∞1

]
and

‖N1 −N ′1‖L1(0,T ) + ‖N2 −N ′2‖L1(Q)

6 K2T
[
‖αi − α′i‖L1(0,T ) + ‖α1 − α′1‖L1(Q)

]
.
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Proof. We only prove the first estimate as the proof for the second one is similar. From (6)
it follows that∣∣N1(t)−N ′1(t)

∣∣
6 N10e(r+α12)T

t∫
0

[
d1

∣∣N1(s)−N ′1(s)
∣∣+

α12γ2

∫ l
0
β(x)|N2(x, s)−N ′2(x, s)|dx

(γ2 +A(s))(γ2+A′(s))

+ β1

l∫
0

β(x)
∣∣N2(x, s)−N ′2(x, s)

∣∣dx+
∣∣u1(s)− u′1(s)

∣∣] ds

6 N10e(r+α12)T

×
t∫

0

[
d1|N1 −N ′1|(s) +

(
α12

γ2
+β1

) l∫
0

β(x)|N2 −N ′2|(x, s) dx

]
ds

+N10e(r+α12)T

t∫
0

∣∣u1(s)− u′1(s)
∣∣ds

6M3

[ t∫
0

∣∣N1(s)−N ′1(s)
∣∣ds+

t∫
0

l∫
0

|N2 −N ′2|(x, s) dxds

+

t∫
0

∣∣u1(s)− u′1(s)
∣∣ ds],

where M3 = max{M1, N10e(r+α12)T }. Further, from (7) we have

l∫
0

∣∣N2(x, t)−N ′2(x, t)
∣∣dx

6

z(t)∫
0

|FN1
(τ,N2(·, τ))− FN ′1(τ,N ′2(·, τ))|

V (0, τ)
dx

+

z(t)∫
0

t∫
τ

∣∣GV (s,N2(·, s)
)(
ϕ(s; t, x)

)
−GV

(
s,N ′2(·, s)

)(
ϕ(s; t, x)

)∣∣dsdx

+

l∫
z(t)

t∫
0

∣∣GV (s,N2(·, s)
)(
ϕ(s; t, x)

)
−GV

(
s,N ′2(·, s)

)(
ϕ(s; t, x)

)∣∣dsdx

.
= J1 + J2 + J3.
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By a similar discussion as that in I1 (changing variable s = ϕ−1(0; t, x)) we have

J1 6 eLV T

t∫
0

∣∣FN1

(
τ,N2(·, s)

)
− FN ′1

(
τ,N ′2(·, s)

)∣∣ds
6 eLV T

t∫
0

α21γ1|N1(s)
∫ l

0
β(x)N2(x, s) dx−N ′1(s)

∫ l
0
β(x)N ′2(x, s) dx|

(γ1 +N1(s))(γ1 +N ′1(s))
ds

6 eLV Tα21β̄

t∫
0

[ l∫
0

|N2 −N ′2|(x, s) dx+
1

γ1

l∫
0

N2(x, s) dx |N1 −N ′1|(s)

]
ds

6 eLV Tα21β̄

t∫
0

l∫
0

|N2 −N ′2|(x, s) dx ds+ eLV T
α21β̄M

γ1

t∫
0

|N1 −N ′1|(s) ds.

By a similar discussion as that in I2 + I3 (changing variable η = ϕ(s; t, x)) we also have

J2 + J3 6 eLV T

t∫
0

l∫
0

∣∣GV (s,N2(·, s)
)
(η)−GV

(
s,N ′2(·, s)

)
(η)
∣∣dη ds

6 eLV T

t∫
0

l∫
0

∣∣−(d2 + Vx(η, s)
)(
N2(η, s)−N ′2(η, s)

)∣∣dη ds

+ eLV T

t∫
0

l∫
0

∣∣u2(η, s)N2(η, s)− u′2(η, s)N ′2(η, s)
∣∣dη ds

6 eLV T (d2 + LV +H2)

t∫
0

l∫
0

∣∣N2(η, s)−N ′2(η, s)
∣∣dη ds

+ eLV TM

t∫
0

l∫
0

∣∣u2(η, s)− u′2(η, s)
∣∣dη ds.

Hence, we can obtain

l∫
0

∣∣N2(x, t)−N ′2(x, t)
∣∣ dx

6 eLV T
α21β̄M

γ1

t∫
0

∣∣N1(s)−N ′1(s)
∣∣ds+ eLV TM

t∫
0

l∫
0

∣∣u2(x, s)−u′2(x, s)
∣∣dxds
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+ eLV T (α21β̄d2 + LV +H2)

t∫
0

l∫
0

∣∣N2(x, s)−N ′2(x, s)
∣∣ dxds

6M4

[ t∫
0

∣∣N1(s)−N ′1(s)
∣∣ds+

t∫
0

l∫
0

|N2 −N ′2|(x, s) dxds

+

t∫
0

∣∣u1(s)− u′1(s)
∣∣ds],

where M4 = max{M2,M}. The result follows immediately from above analysis.

3 The adjoint system

In this section, we will derive adjoint system of (4). Here and below we denote by TU (α)
and NU (α) the tangent cone and normal cone of U at α, respectively.

Lemma 3. (See [4, Prop. 5.3].) Suppose that ϑ(x, t) ∈ L∞(Q) satisfies

T∫
0

l∫
0

[
ϑ(x, t)v(x, t) + ρ

∣∣v(x, t)
∣∣]dxdt > 0 for any v ∈ TU (α).

Then there is θ ∈ L∞(Q) such that ‖θ‖∞ 6 1 and ρθ − ϑ ∈ NU (α).

Lemma 4. Let (N1, N2) be solution of (4) corresponding to (u1, u2) ∈ U . For each
(v1, v2) ∈ TU (u1, u2) such that (u1 + εv1, u2 + εv2) ∈ U for sufficiently small ε > 0,
we have

1

ε
[Nε

1 −N1]→ z1,
1

ε
[Nε

2 −N2]→ z2

as ε→ 0, where (Nε
1 , N

ε
2 ) is the solution of (4) corresponding to (u1 + εv1, u2 + εv2),

and (z1, z2) is the solution of the following system:

dz1(t)

dt
= z1(t)

[
r − 2d1N1(t) +

α12γ2A(t)

γ2 +A(t)
− β1A(t)− u1(t)

]
+N1(t)

[
α12γ2B(t)

(γ2 +A(t))2
− β1B(t)− v1(t)

]
,

∂z2

∂t
+
∂[V (x, t)z2]

∂x
= −

[
d2 + u2(x, t)

]
z2(x, t)− v2(x, t)N2(x, t),

V (0, t)z2(0, t) =
α21N1(t)B(t)

γ1 +N1(t)
+
α21γ1z1(t)A(t)

(γ1 +N1(t))2
,

z1(0) = 0, z2(·, 0) = 0, B(t) =

l∫
0

β(x)z2(x, t) dx.

(18)
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Proof. The existence and uniqueness of the solution to (18) can be established in a similar
way as in Theorem 1. By [1, Lemma 3.1.3], limε→0[Nε

1 −N1]/ε and limε→0[Nε
2 −N2]/ε

make sense. Note that (Nε
1 , N

ε
2 ) and (N1, N2) are solutions of system (4) corresponding

to (u1 + εv1, u2 + εv2) and (u1, u2), respectively. For simplicity, we denote Aε(t) =∫ l
0
β(x)Nε

2 (x, t) dx. It follows from Theorem 2 that

1

ε

[
Aε(t)−A(t)

]
=

l∫
0

β(x)
1

ε

[
Nε

2 (x, t)−N2(x, t)
]

dx→
l∫

0

β(x)z2(x, t) dx
.
= B(t)

as ε→ 0. Thus, ([Nε
1 −N1]/ε, [Nε

1 −N1]/ε) must be solution of

d[ 1
ε (Nε

1 −N1)]

dt

=
1

ε

[
rNε

1 (t)− rN1(t)
]
− 1

ε

[
d1

(
Nε

1 (t)
)2 − d1

(
N1(t)

)2]
+

1

ε

[
α12N

ε
1 (t)Aε(t)

γ2 +Aε(t)
− α12N1(t)A(t)

γ2 +A(t)

]
− 1

ε

[
β1N

ε
1 (t)Aε(t)− β1N1(t)A(t)

]
− 1

ε

[
u1(t)

(
Nε

1 (t)−N1(t)
)]
− v1(t)Nε

1 (t),

∂[ 1
ε (Nε

2 −N2)]

∂t
+
∂[V 1

ε (Nε
2 −N2)]

∂x

= −1

ε
(d2 + u2)

[
Nε

2 (x, t)−N2(x, t)
]
− v2(x, t)Nε

2 (x, t),

V (0, t)
1

ε

[
Nε

2 (0, t)−N2(0, t)
]

=
1

ε

[
α21N

ε
1 (t)Aε(t)

γ1 +Nε
1 (t)

− α21N1(t)A(t)

γ1 +N1(t)

]
,

1

ε

[
Nε

1 (0)−N1(0)
]

= 0,
1

ε

[
Nε

2 (·, 0)−N2(·, 0)
]

= 0.

(19)

It follows from Theorem 2 that

1

ε

[
rNε

1 (t)− rN1(t)
]
→ rz1(t),

1

ε

[
u1(t)

(
Nε

1 (t)−N1(t)
)]
→ u1(t)z1(t),

1

ε

[
d1

(
Nε

1 (t)
)2 − d1(N1(t))2

]
= d1

[
Nε

1 +N1

]1
ε

[
Nε

1 (t)−N1(t)
]
→ 2d1N1(t)z1(t),

1

ε

[
α12N

ε
1 (t)Aε(t)

γ2 +Aε(t)
− α12N1(t)A(t)

γ2 +A(t)

]
→ α12γ2N1(t)B(t)

(γ2 +A(t))2
+
α12γ2z1(t)A(t)

γ2 +A(t)
,

1

ε

[
β1N

ε
1 (t)Aε(t)− β1N1(t)A(t)

]
→ β1N1(t)B(t) + β1A(t)z1(t),

1

ε

[
d2N

ε
2 (x, t)− d2N2(x, t)

]
→ d2z2(x, t),
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1

ε

[
u2(x, t)

(
Nε

2 (x, t)−N2(x, t)
)]
→ u2(x, t)z2(x, t),

1

ε

[
α21N

ε
1 (t)Aε(t)

γ1 +Nε
1 (t)

− α21N1(t)A(t)

γ1 +N1(t)

]
→

α21N1(t)
∫ l

0
B(t)

γ1 +N1(t)
+
α21γ1z1(t)A(t)

(γ1 +N1(t))2

as ε→ 0. Taking ε→ 0 in (19) and using the above results yield system (18).

The adjoint system corresponding to control (u1, u2) and state (N1, N2) is

dη1(t)

dt
= −η1(t)

[
r − 2d1N1(t) +

α12γ2A(t)

γ2 +A(t)
− β1A(t)− u1(t)

]
− α21γ1η2(0, t)A(t)

(γ1 +N1(t))2
+ ω1(t)u1(t),

∂η2

∂t
+ V (x, t)

∂η2

∂x
=
[
d2 + u2(x, t)

]
η2(x, t)− α21η2(0, t)N1(t)β(x)

γ1 +N1(t)

+ β1β(x)N1(t)η1(t)− α12γ2β(x)N1(t)η1(t)

(γ2 +A(t))2

+ ω2(x, t)u2(x, t),

η1(T ) = 0, η2(x, T ) = η2(l, t) = 0.

(20)

Methods similar to Theorem 1 can be used to prove the existence of the solution to
system (20). Moreover, for (20), by similar discussion as in Theorem 2 one has the
following result.

Theorem 3. For each (u1, u2) ∈ U , the adjoint system (20) has a unique bounded
solution (η1, η2) ∈ L∞(0, T ) × L∞(Q). Moreover, for T sufficiently small, there is
a positive constant K3 such that

‖η1 − η′1‖L∞(0,T ) + ‖η2 − η′2‖L∞(Q)

6 K3T
[
‖u1 − u′1‖L∞(0,T ) + ‖u2 − u′2‖L∞(0,T )

]
,

where (η1, η2) and (η′1, η
′
2) are the solutions of system (20) corresponding to (u1, u2) and

(u′1, u
′
2) ∈ U , respectively.

4 Optimality conditions

In this section, we will give first-order necessary conditions of optimality in the form of
an Euler–Lagrange system.

Theorem 4. Let (u∗1, u
∗
2) be an optimal harvest policy for the optimization problem (5),

let and (N∗1 , N
∗
2 ) be the corresponding optimal state of system (4). Then

α∗1(t) = F1

[
[(ω1 + η1)N∗1 ](t)

c1

]
, α∗2(x, t) = F2

[
[(ω2 + η2)N∗2 ](x, t)

c2

]
, (21)
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where the truncated mappings Fi are given by

Fi(S) =


0, S < 0,

S, 0 6 S 6 Hi,

Hi, S > Hi,

i = 1, 2, (22)

where (η1(t), η2(x, t)) is the solution of the following system:

dη1(t)

dt
= −η1(t)

[
r − 2d1N

∗
1 (t) +

α12γ2A
∗(t)

γ2 +A∗(t)
− β1A

∗(t)− u∗1(t)

]
− α21γ1η2(0, t)A∗(t)

(γ1 +N∗1 (t))2
+ ω1(t)u∗1(t),

∂η2

∂t
+ V (x, t)

∂η2

∂x
=
[
d2 + u∗2(x, t)

]
η2(x, t)− α21η2(0, t)N∗1 (t)β(x)

γ1 +N∗1 (t)

+ β1β(x)N∗1 (t)η1(t)− α12γ2β(x)N∗1 (t)η1(t)

(γ2 +A∗(t))2

+ ω2(x, t)u∗2(x, t),

η1(T ) = 0, η2(x, T ) = η2(l, t) = 0, A∗(t) =

l∫
0

β(x)N∗2 (x, t) dx.

(23)

Proof. For any (v1, v2) ∈ TU (u∗1, u
∗
2), one has (uε1, u

ε
2)

.
= (u∗1 + εv1, u

∗
2 + εv2) ∈ U

for sufficiently small ε > 0. Let (Nε
1 , N

ε
2 ) be the solution of system (4) corresponding

to (uε1, u
ε
2). From the optimality of (u∗1, u

∗
2) it follows that J(uε1, u

ε
2) 6 J(u∗1, u

∗
2). Thus,

from Lemma 4 it follows that

0 > lim
ε→0+

J(uε1, u
ε
2)− J(u∗1, u

∗
2)

ε

=

T∫
0

ω1(t)u∗1(t)z1(t) dt+

T∫
0

[
ω1(t)N∗1 (t)− c1u∗1(t)

]
v1(t) dt

+

T∫
0

l∫
0

ω2(x, t)u∗2(x, t)z2(x, t) dx dt

+

T∫
0

l∫
0

[
ω2(x, t)N∗2 (x, t)− c2u∗2(x, t)

]
v2(x, t) dx dt. (24)

Here (z1(t), z2(x, t)) is the solution of (18) with (u1, u2) and (N1, N2) replaced by
(u∗1, u

∗
2) and (N∗1 , N

∗
2 ), respectively. Next, we show that

T∫
0

[ω1u
∗
i z1] dt+

T∫
0

l∫
0

[ω2u
∗
2z2] dx dt =

T∫
0

[η1N
∗
1 v1] dt+

T∫
0

l∫
0

[η2N
∗
2 v2] dx dt. (25)
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In fact, multiplying the first equation in (23) by z1(t) and integrating on [0, T ], we obtain

T∫
0

η1
dz1

dt
dt =

T∫
0

η1(t)z1(t)

[
r − 2d1N

∗
1 (t) +

α12γ2A
∗(t)

γ2 +A∗(t)
− β1A

∗(t)− u∗1(t)

]
dt

+

T∫
0

η2(0, t)
α21γ1z1(t)A∗(t)

(γ1 +N∗1 (t))2
dt−

T∫
0

ω1(t)u∗1(t)z1(t) dt. (26)

Multiplying the second equation in (23) by z2(x, t) and integrating on Q, we obtain

T∫
0

l∫
0

η2

[
∂z2

∂t
+
∂(V z2)

∂x

]
dx dt

= −
T∫

0

l∫
0

η2(x, t)
[
d2 + u∗2(x, t)

]
z2(x, t) dx dt− β1

T∫
0

η1(t)N∗1 (t)B(t) dt

+

T∫
0

η1(t)N∗1 (t)
α12γ2B(t)

(γ2 +A∗(t))2
dt−

T∫
0

η2(0, t)
α21γ1z1(t)A∗(t)

(γ1 +N∗1 (t))2
dt

−
T∫

0

l∫
0

ω2(x, t)u∗2(x, t)z2(x, t) dxdt. (27)

It follows from (26) and (27) that

T∫
0

η1
dz1

dt
dt+

T∫
0

l∫
0

η2

[
∂z2

∂t
+
∂(V z2)

∂x

]
dx dt

=

T∫
0

η1z1

[
r − 2d1N

∗
1 (t) +

α12γ2A
∗(t)

γ2 +A∗(t)
−β1A

∗(t)− u∗1
]

dt− β1

T∫
0

[
η1N

∗
1B
]
(t) dt

−
T∫

0

l∫
0

η2(x, t)
[
d2 + u∗2(x, t)

]
z2(x, t) dxdt+

T∫
0

η1(t)N∗1 (t)
α12γ2B(t)

(γ2 +A∗(t))2
dt

−
T∫

0

ω1(t)u∗1(t)z1(t) dt−
T∫

0

l∫
0

ω2(x, t)u∗2(x, t)z2(x, t) dxdt. (28)

Similarly, multiplying the first equation of (18) by η1(t) and multiplying the second equa-
tion of (18) by η2(x, t), with (u1, u2) and (N1, N2) replaced by (u∗1, u

∗
2) and (N∗1 , N

∗
2 )
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in (18), respectively, we also have

T∫
0

η1
dz1

dt
dt+

T∫
0

l∫
0

η2

[
∂z2

∂t
+
∂(V z2)

∂x

]
dx dt

=

T∫
0

η1z1

[
r − 2d1N

∗
1 (t) +

α12γ2A
∗(t)

γ2+A∗(t)
− β1A

∗(t)− u∗1
]

dt− β1

T∫
0

[η1N
∗
1B](t) dt

−
T∫

0

l∫
0

η2(x, t)
[
d2 + u∗2(x, t)

]
z2(x, t) dxdt+

T∫
0

η1(t)N∗1 (t)
α12γ2B(t)

(γ2 +A∗(t))2
dt

−
T∫

0

η1(t)N∗1 (t)v1(t) dt−
T∫

0

l∫
0

η2(x, t)N∗2 (x, t)v2(x, t) dx dt. (29)

By (28) and (29) we obtain that equality (26) is true. Substituting (26) into (24), for each
(v1, v2) ∈ TU (u∗1, u

∗
2), we have

0 >

T∫
0

{[
ω1(t) + η1(t)

]
N∗1 (t)− c1u∗1(t)

}
v1(t) dt

+

T∫
0

l∫
0

{[
ω2(x, t) + η2(x, t)

]
N∗2 (x, t)− c2u∗2(x, t)

}
v2(x, t) dx dt.

Hence, we have ([(ω1 + η1)N∗1 − c1u∗1](t), [(ω2 + η2)N∗2 − c2u∗2](x, t)) ∈ NU (u∗1, u
∗
2).

This implies the conclusion of this theorem.

5 Existence of a unique optimal harvesting

The purpose of this section is to show that the optimization problem (5) has a unique
solution by means of Ekeland’s variational principle. First, we embed the functional J(·, ·)
in the space L1(0, T )× L1(Q) by defining

J̃(u1, u2) =

{
J(u1, u2), (u1, u2) ∈ U ,
−∞, (u1, u2) /∈ U .

Lemma 5. The functional J̃(u1, u2) is upper semicontinuous with respect to (u1, u2) in
L1(0, T )× L1(Q).

Proof. Assume that (un1 , u
n
2 ) → (u1, u2) as n → +∞. From Riesz theorem there is

a subsequence of {(un1 , un2 )} still denoted by {(un1 , un2 )} such that(
un1 (t)

)2 → (
u1(t)

)2
a.s. in [0, T ],

(
un2 (x, t)

)2 → (
u2(x, t)

)2
a.s. in Q
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as n→∞. Then, using the Lebesgue’s dominated convergence theorem, we have

lim
n→+∞

T∫
0

(
un1 (t)

)2
dt =

T∫
0

(
u1(t)

)2
dt,

lim
n→+∞

T∫
0

l∫
0

(
un2 (x, t)

)2
dx dt =

T∫
0

l∫
0

(
u2(x, t)

)2
dx dt.

Let (N1n, N2n) and (N1, N2) be the solutions of system (4) corresponding to (un1 , u
n
2 )

and (u1, u2), respectively. From Theorem 2 it follows that∣∣∣∣∣
T∫

0

ω1(t)un1 (t)N1n(t) dt−
T∫

0

ω1(t)u1(t)N1(t) dt

∣∣∣∣∣
6

T∫
0

ω1(t)N1n(t)
∣∣un1 (t)− u1(t)

∣∣ dt+

T∫
0

ω1(t)u1(t)
∣∣N1n(t)−N1(t)

∣∣ dt
6M‖ω1‖L∞(0,T )

∥∥un1 − u1

∥∥
L1(0,T )

+ ‖ω1‖L∞(0,T )H1K2T
[∥∥un1 − u1

∥∥
L1(0,T )

+
∥∥un2 − u2

∥∥
L1(Q)

]
.

Thus, we obtain

lim
n→+∞

T∫
0

ω1(t)un1 (t)N1n(t) dt =

T∫
0

ω1(t)u1(t)N1(t) dt.

Similarly, we also have

lim
n→+∞

T∫
0

l∫
0

ω2(x, t)un2 (x, t)N2n(x, t) dx dt =

T∫
0

l∫
0

ω2(x, t)u2(x, t)N2(x, t) dx dt.

From Fatou’s lemma it follows that lim supn→+∞ J̃(un1 , u
n
2 ) 6 J̃(u1, u2). This means

that J̃(u1, u2) is upper semicontinuous.

Theorem 5. If T (c−1
1 +c−1

2 ) is small enough, there is a unique optimal harvesting policy
(u∗1, u

∗
2) ∈ U , which is in feedback form and determined by (21)–(22).

Proof. Define the mapping B : U → L∞(0, T )× L∞(Q) by

B(u1, u2) =

(
F1

[
(ω1 + η1)N1

c1

]
,F2

[
(ω2 + η2)N2

c2

])
,

where (N1, N2) and (η1, η2) are, respectively, the solutions of (4) and (20) corresponding
to (u1, u2) ∈ U . Now, we show B owns a unique fixed point, which maximizes J .
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From Lemma 5 and Ekeland’s variational principle it follows that for each ε > 0,
there exists (uε1, u

ε
2) ∈ U such that

J̃(uε1, u
ε
2) > sup

(u1,u2)∈U
J̃(u1, u2)− ε, (30)

J̃(uε1, u
ε
2) > sup

(u1,u2)∈U
J̃ε(u1, u2), (31)

where

J̃ε(u1, u2) = J̃(u1, u2)−
√
ε
∥∥uε1 − u1

∥∥
L1(0,T )

−
√
ε
∥∥uε2 − u2

∥∥
L1(Q)

.

It is clear that perturbed functional J̃ε(u1, u2) attains its supremum at (uε1, u
ε
2). In the

same manner as that in the proof of Theorem 4, we obtain

uε1(t) = F1

[
[ω1(t) + ηε1(t)]Nε

1 (t)

c1
+

√
εθ1(t)

c1

]
,

uε2(x, t) = F2

[
[ω2(x, t) + ηε2(x, t)]Nε

2 (x, t)

c2
+

√
εθ2(x, t)

c2

]
,

where (Nε
1 , N

ε
2 ) and (ηε1, η

ε
2) are solutions of (4) and (20) corresponding to (uε1, u

ε
2),

θ1 ∈ L∞(0, T ) with |θ1(t)| 6 1 a.e. in (0, T ), and θ2 ∈ L∞(Q) with |θ2(x, t)| 6 1 a.e.
in Q.

Step 1. We show that the mapping B has only one fixed point.

(i) For any (u1, u2) ∈ U , from (22) it follows that (0, 0) 6 B(u1, u2) 6 (H1, H2).
Thus, B maps U into itself.

(ii) From Theorems 2 and 3 we know that (N1, N2) and (η1, η2) are continuous about
the control variable (u1, u2). Thus, for any (u1, u2), (u′1, u

′
2) ∈ U , we have∥∥B(u1, u2)− B(u′1, u

′
2)
∥∥ 6

∥∥∥∥ (ω1+η1)N1

c1
− (ω1+η′1)N ′1

c1

∥∥∥∥
L∞(0,T )

+

∥∥∥∥ (ω2+η2)N2

c2
− (ω2+η′2)N ′2

c2

∥∥∥∥
L∞(Q)

6 K4T
(
c−1
1 + c−1

2

)
×
[
‖u1 − u′1‖L∞(0,T ) + ‖u2 − u′2‖L∞(Q)

]
,

where K4 > 0 is a constant. Obviously, B is a contraction if T (c−1
1 + c−1

2 )
is small enough. Thus, B has a unique fixed point (ū1, ū2) ∈ U . In addition,
Theorem 4 shows that if the optimal policy exists, it must be the fixed point of B.
Thus, the uniqueness holds.

Step 2. We show that (ū1, ū2) is the optimal policy. That is, (uε1, u
ε
2) → (ū1, ū2) as

ε→ 0+.
Note that∥∥(ū1, ū2)−

(
uε1, u

ε
2

)∥∥
∞ =

∥∥ū1 − uε1
∥∥
L∞(0,T )

+
∥∥ū2 − uε2

∥∥
L∞(Q)
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and ∥∥B(uε1, u
ε
2)− (uε1, u

ε
2)
∥∥
∞ 6 c−1

1

√
ε
∥∥θ1(t)

∥∥
L∞(0,T )

+ c−1
2

√
ε
∥∥θ2(x, t)

∥∥
L∞(Q)

6
√
ε
(
c−1
1 + c−1

2

)
.

Hence, we have∥∥(ū1, ū2)−
(
uε1, u

ε
2

)∥∥
∞

6
∥∥B(ū1, ū2)− B(uε1, u

ε
2)
∥∥
∞ +

∥∥B(uε1, uε2)− (uε1, uε2)∥∥∞
6 K4T

(
c−1
1 + c−1

2

)∥∥(ū1, ū2)−
(
uε1, u

ε
2

)∥∥
∞ +

√
ε
(
c−1
1 + c−1

2

)
.

If T (c−1
1 + c−1

2 ) is sufficiently small such that K4T (c−1
1 + c−1

2 ) < 1, then

∥∥(ū1, ū2)−
(
uε1, u

ε
2

)∥∥
∞ 6

√
ε(c−1

1 + c−1
2 )

1−K4T (c−1
1 + c−1

2 )
.

Thus, (uε1, u
ε
2)→ (ū1, ū2) as ε→ 0+. From Lemma 5 it follows that

J̃(ū1, ū2) = sup
(u1,u2)∈U

J̃(u1, u2).

This means that (ū1, ū2) ∈ U is the optimal policy.

6 Numerical tests

In this section, we provide some examples to illustrate the effectiveness of the obtained
results. Note that our problem is highly nonlinear, and one cannot expect an explicit
optimal controller. In the following examples, we do not consider the interaction between
resource and consumer species and do not consider the costs of controls. We take r = 2,
d1 = 0.8, d2 = 0.1, γ1 = γ2 = β1 = 0, α12 = α21 = 0.8, β(x) = 10x2(1 + x),
V (x, t) = 1 − x, l = 1, T = 1, ω1(t) = 0.35(1 + sin(4πt)), ω2(x, t) = 1/120 ×
(5πx+ sin(8πt) + 1).

Example 1. Take H1 = 0.5, H2 = 2, N10 = 1.5 and N20(x) = 2(1 + x)2(1 − x)2 (see
Figs. 1–3).

Example 2. Take H1 = 0.5, H2 = 2, N10 = 4 and N20(x) = 8(1 + x)2(1 − x)2 (see
Fig. 4).

Example 3. Take H1 = H1(t) = 0.5 + 0.2 sin(4πt), H2 = H2(x, t) = 2 + 0.2x +
0.3 sin(8πt), N10 = 1.5 and N20(x) = 2(1 + x)2(1− x)2 (see Figs. 5–7).

From the numerical simulations given in Figs. 1 and 4 we can see that the optimal
harvesting strategies for both the resource species and the consumer species basically have
a bang-bang structure. Further, by comparing Fig. 1 and Fig. 4 it can be seen that given
other parameters, the optimal harvesting strategy for the resource species has nothing
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Figure 1. Optimal harvesting efforts u∗
1(t) in Example 1 (left) and u∗

2(x, t) in Example 1 (right).
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Figure 2. Population density N2(x, t) in Example 1 with u2 = 0 (left); with u2 = u∗
2 (right).
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Figure 3. Trend of the total population in the case of harvest and no harvest in Example 1. Resource population
(left); consumer population (right).
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Figure 4. Optimal harvesting efforts u∗
1(t) in Example 2 (left) and u∗

2(x, t) in Example 2 (right).
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Figure 5. Optimal harvesting efforts u∗
1(t) in Example 3 (left) and u∗

2(x, t) in Example 3 (right).
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Figure 6. Population density N2(x, t) in Example 3 with u2 = 0 (left); with u2 = u∗
2 (right).
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Figure 7. Trend of the total population in the case of harvest and no harvest in Example 3. Resource population
(left); consumer population (right).

to do with its initial value, and the optimal harvesting strategy for the consumer species
has nothing to do with its initial size distribution. Thus, it leads to the conclusion that
the bang-bang structure of optimal policies is much more common in optimal population
management. In this paper, we assume that the maximum harvesting efforts for the re-
source species and the consumer species are, respectively, positive constants. However,
from the numerical simulations in Example 3 it can be seen that if the maximum har-
vesting effort for the resource species is a bounded function with respect to time t, and
the maximum harvest effort for the consumer species is a bounded function with respect
to time t and individual size x, the optimal harvesting strategies for both the resource
species and the consumer species basically have a bang-bang structure. From the right
part of Figs. 1, 4 and 5 it can be seen that for consumer species, harvesting individuals
with larger sizes is conducive to obtaining more economic benefits. This has obvious
biological significance because we assume that individuals with larger size have greater
economic value.

7 Conclusion

This paper is concerned with the harvesting problem for a size-structured model of unidi-
rectional consumer–resource mutualisms in which the consumer species has both positive
and negative effects on the resource species, while the resource has only a positive ef-
fect on the consumer. In the previous sections, we have established the well-posedness
of the system by constructing a suitable solution space and equivalent norm. Then the
continuous dependence of solutions on the control variable and the adjoint system of the
state system are investigated. More important result is the existence of a unique optimal
harvesting policy, which provides a theoretical basis for practical application. As for the
structure of the optimal policy, in Theorem 4, we have presented a feedback strategy.

Let us make some comments on the difference of our results and methods with those
of closely related works. For the optimal control problems of size-structured population
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models, the authors in [15,17,18] proved that the optimization problems admit at least one
solution but paid no attention to the uniqueness. In addition, the structure of the optimal
strategy did not considered in [15].

In our paper, we show that there is a unique optimal harvesting policy, and the struc-
ture of the optimal policy is given in the form of feedback. As far as we know, most
of optimal control problems for population systems are naturally formed in an infinite
time horizon. However, in this paper, we consider the optimal harvest problem with a
fixed horizon [0, T ], where T < ∞. To our knowledge, even for the population model
of ordinary differential equations, the infinite-horizon optimal control problems are still
challenging. For example, it is difficult to establish a suitable transversality condition so
that one can choose the correct solution of adjoint system for which Pontryagin maximum
principle is applicable. For more details of the infinite-horizon optimal control (including
age-structured systems and size-structured systems), please refer to [24]. We leave these
for our future work. Moreover, as done in [20], we can investigate the existence and
stability of positive equilibrium and the existence of nontrivial periodic solution of the
system.
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