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Abstract. In this paper, we study a fixed point problem for certain rational contractions on
γ-complete metric spaces. Uniqueness of the fixed point is obtained under additional conditions.
The Ulam–Hyers–Rassias stability of the problem is investigated. Well-posedness of the problem
and the data dependence property are also explored. There is a corollary of the main result. Finally,
our fixed point theorem is applied to solve a problem of integral equation. There is no continuity
assumption on the mapping.
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1 Introduction and mathematical background

In this paper, we consider a rational contraction on metric spaces and investigate the fixed
point problem associated with it. We assume that the metric space is γ-complete, which
is a concept introduced by Kutbi and Sintunavarat in the paper [11]. The uniqueness of
the fixed point is obtained under additional conditions. Rational contractions were first
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introduced by Dass et al. [6] and have been considered in fixed point theory in recent
works like [4, 8]. Our investigation of the different aspects of the fixed point problem
is performed in a metric space without completeness property. In most of the works on
similar problems, the results are obtained by employing metric completeness. Instead, we
assume the weaker concept of γ-completeness. There is a flexibility in such assumption
since the choice of γ can be different subject to certain restrictions. This is one of the
main motivations behind our considerations of the problems discussed in this paper. We
impose an admissibility condition on the concerned mapping. The assumption of the
contractive inequality is restricted to certain pairs of points. These assumptions are in
tune with certain recent trends appearing in metric fixed point theory. Further, there are
scopes of extending our present results, which are discussed at the end of the paper.

We investigate Ulam–Hyers–Rassias stability of the fixed point problem. It is a general
type of stability, which is considered in several areas of mathematics. Introduced by Ulam
[25] through a mathematical question posed in 1940 and later elaborated by Hyers [9] and
Rassias [18], such stabilities have a very large literature today [10, 16, 19].

Well-posedness and data dependence property associated with this problem are also
investigated.

Finally, we have an application of our results to a problem of a nonlinear integral
equation.

Definition 1. (See [1].) An element s ∈ Z is called a fixed point of a mapping F : Z → Z
if s = Fs.

Several sufficient conditions have been discussed for the existence of fixed points of
F : Z → Z, where Z has a metric d defined on it. The study is a part of the subject
domain known as metric fixed point theory. The subject is widely recognized to have
been originated in the work of Banach in 1922 [1], which is known as the Banach’s
contraction mapping principle and is instrumental to the proofs of many important results.
In subsequent times, many metric fixed point results were proved and applied to different
problem arising in mathematics. Today fixed point methods are recognized as strong
mathematical methods. References [12, 13] describe this development to a considerable
extent.

Definition 2. (See [22].) A function γ : Z × Z → [0,∞), where Z is a nonempty set,
has triangular property if for a, b, c ∈ Z, γ(a, b) > 1 and γ(b, c) > 1 imply γ(a, c) > 1.

Admissibility conditions have recently been used for obtaining fixed point results.
Various admissibility criteria were introduced in the study of fixed points of mappings.
We refer the reader to [21–23] for some details on admissibility conditions.

Definition 3. (See [22].) Let Z be a nonempty set, F : Z → Z and γ : Z × Z →
[0,∞). The mapping F is called γ-admissible if γ(a, b) > 1 for a, b ∈ Z implies that
γ(Fa, Fb) > 1.

Definition 4. Let Z be a nonempty set and F : Z → Z. A function γ : Z × Z →
[0,∞) is said to have F -directed property if for every a, b ∈ Z, there exists u ∈ Z with
γ(u, Fu) > 1 such that γ(a, u) > 1, γ(b, u) > 1.
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Definition 5. (See [23].) A metric space (Z, d) is said to have regular property with
respect to a mapping γ : Z × Z → [0,∞) if for any sequence {an} in Z with limit
a ∈ Z, γ(an, an+1) > 1 implies γ(an, a) > 1 for all n.

Example 1. Let Z = (−2, 2) be equipped with usual metric. Let F : Z → Z and
γ : Z × Z → [0,∞) be respectively defined as follows:

Fx =
sin2 x

16
, x ∈ Z, and γ(x, y) =

{
ex+y if 0 6 x 6 1, 0 6 y 6 1/8,

0 otherwise.

Here (i) F is a γ-admissible mapping; (ii) γ has triangular property; (iii) Z has regular
property with respect to γ.

Recently, Kutbi and Sintunavarat coined the concept of γ-complete metric space in
the paper [11].

Definition 6. Let (Z, d) be a metric space and γ : Z × Z → [0,∞). A Cauchy sequence
{an} in Z is called a γ-Cauchy sequence if γ(an, an+1) > 1 for all n.

Definition 7. (See [11].) A metric space (Z, d) is said to be γ-complete, where γ :
Z × Z → [0,∞), if every γ-Cauchy sequence in Z converges to a point in Z.

Remark 1. If (Z, d) is a complete metric space, then Z is also a γ-complete metric space
for any γ : Z × Z → [0,∞), but the converse is not true.

Example 2. Let Z = (0,∞) be equipped with usual metric d. Let γ : Z × Z → [0,∞)
be defined as

γ(x, y) =

{
ex+y if x, y ∈ [2019, 2020],

0 otherwise;

then (Z, d) is a γ-complete metric space. Here (Z, d) is not a complete metric space.
Indeed, if {an} is a Cauchy sequence in Z such that γ(an, an+1) > 1 for all n ∈ N , then
an ∈ [2019, 2020] for all n ∈ N . As [2019, 2020] is a closed subset of R, it follows that
there exists a ∈ [2019, 2020] such that an → a as n→∞.

Definition 8. Let F : Z → Y be a mapping and γ : Z × Z → [0,∞), where (Z, ρ),
(Y, d) are two metric spaces. The mapping F is said to be γ-continuous at c ∈ Z if for
any sequence {tn} in Z, ρ(c, tn)→ 0 as n→∞ and γ(tn, tn+1) > 1 for all n imply that
d(Fc, F tn)→ 0 as n→∞.

Remark 2. The continuity of a mapping implies its γ-continuity for any γ : Z × Z →
[0,∞). In general, the converse is not true.

Problem P. Let F : Z → Z be a mapping, where (Z, d) is a metric space. Consider the
problem of finding a point s ∈ Z satisfying s = Fs.

Our paper is characterized by the following features.

1. We consider rational contractions in our theorems.
2. We prove our main result with a generalized notion of completeness assumption

of the underlying space and without the continuity assumption on the mapping.
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3. We investigate Ulam–Hyers–Rassias stability of the fixed point problem.
4. We investigate well-posedness of the problem.
5. We investigate data dependence of fixed point set and solution of the integral

equation.
6. We apply our theorem to a problem of an integral equation.

2 Main results

In this section, we establish some fixed point results and illustrate them with examples.
We discuss the uniqueness of the fixed point under some additional assumptions. We
deduce a corollary of the main result.

Let (Z, d) be a metric space and γ : Z × Z → [0,∞), F : Z → Z be two mappings.
We designate the following properties by (A1), (A2) and (A3):

(A1) Z has regular property with respect to γ;
(A2) γ has triangular property;
(A3) γ has F -directed property.

Theorem 1. Let (Z, d) be a metric space and γ : Z × Z → [0,∞) be a function such
that (Z, d) is γ-complete. Let F : Z → Z be a γ-admissible mapping and there exists
k ∈ (0, 1) such that for x, y ∈ Z with γ(x, y) > 1,

d(Fx, Fy)

6 kmax

{
d(x, y),

d(x, Fx) + d(y, Fy)

2
,
d(x, Fy) + d(y, Fx)

2
,

d(x, Fx)d(y, Fy)

1 + d(Fx, Fy)
,
d(y, Fx)d(x, Fy)

1 + d(Fx, Fy)
,
d(y, Fy)d(y, Fx)

1 + d(Fx, Fy)

}
. (1)

If there exists z0 ∈ Z such that γ(z0, Fz0) > 1 and property (A1) holds, then F has
a fixed point in Z.

Proof. Let z0 ∈ Z be such that γ(z0, Fz0) > 1. We construct a sequence {zn} in Z such
that

zn+1 = Fzn ∀n > 0. (2)

As γ(z0, F z0) = γ(z0, z1) > 1 and F is γ-admissible, we have γ(z1, z2) > 1. Since F
is γ-admissible, γ(Fz1, Fz2) = γ(z2, z3) > 1. In this manner, we have

γ(zn, zn+1) > 1 ∀n > 0. (3)

Let

δn = d(zn, zn+1) ∀n > 0. (4)

https://www.journals.vu.lt/nonlinear-analysis
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By (1)–(4) we have

d(zn+1, zn+2) = d(Fzn, F zn+1)

6 kmax

{
d(zn, zn+1),

d(zn, Fzn) + d(zn+1, Fzn+1)

2
,

d(zn, Fzn+1) + d(zn+1, F zn)

2
,
d(zn, Fzn)d(zn+1, F zn+1)

1 + d(Fzn, Fzn+1)
,

d(zn+1, F zn)d(zn, Fzn+1)

1 + d(Fzn, Fzn+1)
,
d(zn+1, F zn+1)d(zn+1, F zn)

1 + d(Fzn, Fzn+1)

}
= kmax

{
d(zn, zn+1),

d(zn, zn+1) + d(zn+1, zn+2)

2
,

d(zn, zn+2)

2
,
d(zn, zn+1)d(zn+1, zn+2)

1 + d(zn+1, zn+2)
, 0, 0

}
6 kmax

{
d(zn, zn+1),

d(zn, zn+1) + d(zn+1, zn+2)

2
,

d(zn, zn+1) + d(zn+1, zn+2)

2
, d(zn, zn+1)

}
= kmax

{
δn,

δn + δn+1

2
,
δn + δn+1

2
, δn

}
= kmax{δn, δn+1}.

Therefore,
d(zn+1, zn+2) 6 kmax{δn, δn+1}. (5)

Suppose that 0 6 δn < δn+1. From (4) and (5) we have

δn+1 = d(zn+1, zn+2) 6 kmax{δn, δn+1} = kδn+1 < δn+1,

which is a contradiction. Therefore, δn+1 6 δn for all n > 0, that is, {d(zn, zn+1)} is
a monotone decreasing sequence of nonnegative real numbers. Then from (5) we have

d(zn+1, zn+2) = δn+1 6 kδn = kd(zn, zn+1) ∀n > 0. (6)

By repeated application of (6) we have

d(zn+1, zn+2) 6 kd(zn, zn+1) 6 k
2d(zn−1, zn) 6 · · · 6 kn+1d(z0, z1). (7)

With the help of (7), we have
∞∑

n=1

d(zn, zn+1) 6
∞∑

n=1

knd(z0, z1) =
1

1− k
d(z0, z1) <∞,

which implies that {zn} is a γ-Cauchy sequence in Z. As Z is γ-complete, there exists
s ∈ Z such that

lim
n→∞

zn = s. (8)
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By (3), (8) and property (A1) we have γ(zn, s) > 1 for all n > 0. Using (2), we have

d(zn+1, Fs)

= d(Fzn, Fs)

6 kmax

{
d(zn, s),

d(zn, Fzn) + d(s, Fs)

2
,
d(zn, Fs) + d(s, Fzn)

2
,

d(zn, F zn)d(s, Fs)

1 + d(Fzn, Fs)
,
d(s, Fzn)d(zn, Fs)

1 + d(Fzn, Fs)
,
d(s, Fs)d(s, Fzn)

1 + d(Fzn, Fs)

}
= kmax

{
d(zn, s),

d(zn, zn+1) + d(s, Fs)

2
,
d(zn, Fs) + d(s, zn+1)

2
,

d(zn, zn+1)d(s, Fs)

1 + d(zn+1, Fs)
,
d(s, zn+1)d(zn, Fs)

1 + d(zn+1, Fs)
,
d(s, Fs)d(s, zn+1)

1 + d(zn+1, Fs)

}
. (9)

Taking limit as n→∞ in (9) and using (8), we have

d(s, Fs) 6 kmax

{
0,
d(s, Fs)

2
,
d(s, Fs)

2
, 0, 0, 0

}
= k

d(s, Fs)

2
,

which implies that d(s, Fs) = 0, that is, s = Fs, that is, s is a fixed point of F .

Remark 3. By Remark 1, Theorem 1 is still valid if one considers (Z, d) to be a complete
metric space instead of a γ-complete metric space.

We present the following illustrative example in support of Theorems 1.

Example 3. Using the metric space Z, mappings γ and F as in Example 1, we see that
Z = (−2, 2) is regular with respect to γ (see Example 1), that is, property (A1) holds,
and F is a γ-admissible mapping. Let k = 1/4.

Let x, y ∈ Z with γ(x, y) > 1. Then x ∈ [0, 1] and y ∈ [0, 1/8]. Therefore, it is
required to verify the inequality in Theorem 1 for x ∈ [0, 1] and y ∈ [0, 1/8]. Now,
d(x, y) = |x− y| and

d(Fx, Fy) =

∣∣∣∣ sin2 x16
− sin2 y

16

∣∣∣∣ = 1

16

∣∣ sin(x− y) sin(x+ y)
∣∣

6
1

16

∣∣ sin(x− y)∣∣ 6 |x− y|
16

=
1

4

|x− y|
4

=
1

4

d(x, y)

4

6
1

4
max

{
d(x, y),

d(x, Fx) + d(y, Fy)

2
,
d(x, Fy) + d(y, Fx)

2
,

d(x, Fx)d(y, Fy)

1 + d(Fx, Fy)
,
d(y, Fx)d(x, Fy)

1 + d(Fx, Fy)
,
d(y, Fy)d(y, Fx)

1 + d(Fx, Fy)

}
.

Hence, all the conditions of Theorem 1 are satisfied, and 0 is a fixed point of F .

Note 1. Theorem 1 is still valid if one considers the γ-continuity of F instead of taking
property (A1). Then the portion of the proof just after (8) of Theorem 1 is replaced by the
following portion:
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Using the γ-continuity assumption of F , we have

d(s, Fs) = lim
n→∞

d(zn+1, Fs) = lim
n→∞

d(Fzn, Fs) = 0.

Hence, s = Fs, that is, s is a fixed point of F .
We present the following illustrative example in view of Note 1.

Example 4. Let Z = (−2, 2) be equipped with usual metric d. Let F : Z → Z and
γ : Z × Z → [0,∞) be respectively defined as follows:

Fx =

{
x/16 if x ∈ [0, 1],

0 otherwise
and γ(x, y) =

{
1 if x, y ∈ (0, 1),

0 otherwise;

then (Z, d) is a γ-complete metric space. Here (Z, d) is not a complete metric space.
Let us consider the sequence {tn}, where tn = 1/(2n). Here tn → 0 as n → ∞, and
γ(tn, tn+1) > 1 for all n. But γ(tn, 0) = 0, and hence, Z is not regular with respect to γ.
Also, F is γ-admissible. Here the function F is not continuous but γ-continuous. Choose
k = 1/4.

Let x, y ∈ Z with γ(x, y) > 1. Then x, y ∈ (0, 1). In view of the above and Note 1,
it only remains to be verified that the inequality in Theorem 1 is valid for all x, y ∈ (0, 1).
Now, d(x, y) = |x− y| and

d(Fx, Fy) =

∣∣∣∣ x16 − y

16

∣∣∣∣ = 1

16
|x− y| = 1

4

|x− y|
4

=
1

4

d(x, y)

4

6
1

4
max

{
d(x, y),

d(x, Fx) + d(y, Fy)

2
,
d(x, Fy) + d(y, Fx)

2
,

d(x, Fx)d(y, Fy)

1 + d(Fx, Fy)
,
d(y, Fx)d(x, Fy)

1 + d(Fx, Fy)
,
d(y, Fy)d(y, Fx)

1 + d(Fx, Fy)

}
.

Here 0 is a fixed point of F .

Remark 4. By Remark 2, Theorem 1 is still valid if one considers the continuity of F
instead of taking property (A1).

Theorem 2. In addition to the hypothesis of Theorem 1, suppose that properties (A2) and
(A3) hold. Then F has a unique fixed point.

Proof. By Theorem 1 the set of fixed points of F is nonempty. If possible, let x and x∗ be
two fixed points of F . Then x = Fx and x∗ = Fx∗. Our aim is to show that x = x∗. By
property (A3) there exists u ∈ Z with γ(u, Fu) > 1 such that γ(x, u) > 1, γ(x∗, u) > 1.
Put u0 = u and let u1 = Fu0. Then γ(x, u0) > 1 and γ(u0, u1) > 1. Similarly, as in the
proof of Theorem 1, we define a sequence {un} such that

un+1 = Fun ∀n > 1.

As F is a γ-admissible mapping, we have

γ(un, un+1) > 1 ∀n > 1. (10)

Nonlinear Anal. Model. Control, 27(1):121–141, 2022
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Arguing similarly as in proof of Theorem 1, we prove that {un} is a γ-Cauchy sequence
in Z, and there exists p ∈ Z such that

lim
n→∞

un = p. (11)

We claim that

γ(x, un) > 1 ∀n > 0. (12)

As γ(x, u0) > 1 and γ(u0, u1) > 1, by property (A2) we have γ(x, u1) > 1. Therefore,
our claim is true for n = 1. We assume that γ(x, um) > 1 holds for somem > 1. By (10),
γ(um, um+1) > 1. Applying property (A2), we have γ(x, um+1) > 1, and this proves
our claim.

By (1) and (12) we have, for all n > 0,

d(x, un+1)

= d(Fx, Fun)

6 kmax

{
d(x, un),

d(x, Fx) + d(un, Fun)

2
,
d(x, Fun) + d(un, Fx)

2
,

d(x, Fx)d(un, Fun)

1 + d(Fx, Fun)
,
d(x, Fun)d(un, Fx)

1 + d(Fx, Fun)
,
d(un, Fun)d(un, Fx)

1 + d(Fx, Fun)

}
,

= kmax

{
d(x, un),

d(un, un+1)

2
,
d(x, un+1) + d(un, x)

2
, 0,

d(x, un+1)d(un, x)

1 + d(x, un+1)
,
d(un, un+1)d(un, x)

1 + d(x, un+1)

}
. (13)

Taking limit as n→∞ in (13) and using (11), we have

d(x, p) 6 kmax

{
d(x, p), 0,

d(x, p) + d(p, x)

2
, 0,

d(x, p)d(p, x)

1 + d(x, p)
, 0

}
6 kmax

{
d(x, p), 0, d(x, p), 0, d(x, p), 0

}
= kd(x, p),

which is a contradiction unless d(x, p) = 0, that is, d(x, p) = 0, that is,

x = p. (14)
Similarly, we can show that

x∗ = p. (15)

From (14) and (15) we have x = x∗. Therefore, fixed point of F is unique.

We present some special cases illustrating the applicability of Theorem 1.

Remark 5. Choosing γ(x, y) = 1 for all (x, y) ∈ Z × Z, we have a corollary.

Corollary 1. Let (Z, d) be a complete metric space. Then F : Z → Z has a unique fixed
point if for some k ∈ (0, 1) and for all x, y ∈ Z, one of the following inequalities holds:
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(i) d(Fx, Fy) 6 kd(x, y);
(ii) d(Fx, Fy) 6 (k/2)[d(x, Fx) + d(y, Fy)];

(iii) d(Fx, Fy) 6 (k/2)[d(x, Fy) + d(y, Fx)];
(iv) d(Fx, Fy) 6 kmax{d(x, y), (d(x, Fx)+d(y, Fy))/2, (d(x, Fy)+d(y, Fx))/2}.

3 Ulam–Hyers stability

In [19], one can find the following definition as well as some related notions concerning
the Ulam–Hyers stability, which is relevant to the present considerations. Let (Z, d) be
a metric space and T : Z → Z be a mapping. We say that the fixed point problem x = Tx
is Ulam–Hyers stable if there is ε > 0 such that for y ∈ Z with d(y, Ty) 6 ε, there exists
x0 ∈ Z satisfying x = Tx and d(y, x0) 6 ε.

Definition 9. (See [24].) Problem P is called Ulam–Hyers stable if there exists a function
φ : [0,∞) → [0,∞), which is monotone increasing and continuous at 0 with φ(0) = 0
such that for each ε > 0 and for each solution u∗ ∈ Z of the inequality d(x, Fx) 6 ε,
there exists a solution x∗ ∈ Z of x = Fx such that d(u∗, x∗) 6 φ(ε).

Remark 6. If φ : [0,∞) → [0,∞) is defined as φ(t) = ct for t > 0, where c > 0 is
a constant, then Definition 9 reduces to Definition in [10].

Let us consider the fixed point Problem P (x = Fx) and the following inequation:

d(x, Fx) 6 ε, ε > 0. (16)

In the next theorem, we take the following additional condition to assure the Ulam–
Hyers stablity via γ-admissible mapping.

(A4) For any solution x∗ of Problem P and any solution u∗ of (16), one has
γ(u∗, x∗) > 1.

Theorem 3. In addition to the hypothesis of Theorem 2, suppose that (A4) holds. Then
the fixed point Problem P is Ulam–Hyers stable.

Proof. By Theorem 2 there exists unique x∗ ∈ Z such that x∗ = Fx∗. So, x∗ is a solution
of Problem P. Let u∗ ∈ Z be a solution of (16). Then d(u∗, Fu∗) 6 ε. By property (A4)
we have γ(u∗, x∗) > 1. With the help of (1), we have

d(u∗, x∗)

= d(u∗, Fx∗) 6 d(u∗, Fu∗) + d(Fu∗, Fx∗)

6 kmax

{
d(u∗, x∗),

d(u∗, Fu∗) + d(x∗, Fx∗)

2
,
d(u∗, Fx∗) + d(x∗, Fu∗)

2
,

d(u∗, Fu∗)d(x∗, Fx∗)

1 + d(Fu∗, Fx∗)
,
d(x∗, Fu∗)d(u∗, Fx∗)

1 + d(Fu∗, Fx∗)
,

d(x∗, Fx∗)d(x∗, Fu∗)

1 + d(Fu∗, Fx∗)

}
+d(u∗, Fu∗)

Nonlinear Anal. Model. Control, 27(1):121–141, 2022
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6 kmax

{
d(u∗, x∗),

ε

2
,
d(u∗, x∗) + d(x∗, u∗) + d(u∗, Fu∗)

2
, 0,

d(x∗, Fu∗)d(u∗, x∗)

1 + d(x∗, Fu∗)
, 0

}
+ε

6 kmax

{
d(x∗, u∗),

ε

2
,
d(x∗, u∗) + ε+ d(u∗, x∗)

2
, 0,

d(x∗, Fu∗)d(u∗, x∗)

1 + d(x∗, Fu∗)

}
+ε

6 kmax

{
d(x∗, u∗),

ε

2
,
2d(x∗, u∗) + ε

2
, 0, d(x∗, u∗)

}
+ε

= k

[
d(x∗, u∗) +

ε

2

]
+ ε,

which implies that

d(x∗, u∗) 6
(k + 2)ε

2(1− k)
. (17)

Let φ : [0,∞)→ [0,∞) be defined by

φ(t) =
(k + 2)t

2(1− k)
, 0 < k < 1.

The function φ is monotone increasing, continuous, and φ(0) = 0. By (17) we have

d(x∗, u∗) 6
(k + 2)ε

2(1− k)
= φ(ε).

Therefore, the fixed point Problem P is Ulam–Hyers stable.

4 Well-posedness

The notion of well-posedness of a fixed point problem has evoked much interest to several
mathematicians (see, for example, [16,17]). Let (Z, d) be a metric space and T : Z → Z
be a mapping. The fixed point problem of T is said to be well-posed if T has a unique
fixed point x ∈ Z and for any sequence {xn} in Z, d(xn, Txn) → 0 as n → ∞ implies
d(xn, x)→ 0 as n→∞.

Definition 10. (See [10].) Problem P is called well-posed if (i) F has a unique fixed
point x∗, (ii) d(xn, x∗) → 0 as n → ∞, whenever {xn} is a sequence in Z with
d(xn, Fxn)→ 0 as n→∞.

In the next theorem, we take the following condition to assure the well-posedness via
γ- admissible mapping.

(A5) If x∗ is any solution of Problem P and {xn} is any sequence in Z for which
d(xn, Fxn)→ 0 as n→∞, then γ(xn, x∗) > 1 for all n.

Theorem 4. In addition to the hypothesis of Theorem 2, suppose that (A5) holds. Then
the fixed point Problem P is well-posed.
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Proof. By Theorem 2 there exists unique x∗ ∈ Z such that x∗ = Fx∗. So, x∗ is a solution
of Problem P. Let {xn} be a sequence in Z for which d(xn, Fxn) → 0 as n → ∞. As
(A5) holds, we have γ(xn, x∗) > 1 for all n. By (1) we have

d(xn, x
∗) 6 d(xn, Fxn) + d(Fxn, Fx

∗)

6 d(xn, Fxn)

+ kmax

{
d(xn, x

∗),
d(xn, Fxn) + d(x∗, Fx∗)

2
,

d(xn, Fx
∗) + d(x∗, Fxn)

2
,
d(xn, Fxn)d(x

∗, Fx∗)

1 + d(Fxn, Fx∗)
,

d(x∗, Fxn)d(xn, Fx
∗)

1 + d(Fxn, Fx∗)
,
d(x∗, Fx∗)d(x∗, Fxn)

1 + d(Fxn, Fx∗)

}
= kmax

{
d(xn, x

∗),
d(xn, Fxn)

2
,
d(xn, x

∗) + d(x∗, Fxn)

2
, 0,

d(x∗, Fxn)d(xn, x
∗)

1 + d(Fxn, x∗)
, 0

}
+d(xn, Fxn)

6 kmax

{
d(xn, x

∗),
d(xn, Fxn)

2
,
d(xn, x

∗) + d(x∗, Fxn)

2
, 0, d(xn, x

∗), 0

}
+ d(xn, Fxn)

6 kmax

{
d(xn, x

∗),
d(xn, Fxn)

2
,
d(xn, x

∗) + d(x∗, xn) + d(xn, Fxn)

2
,

0, d(xn, x
∗), 0

}
+d(xn, Fxn)

= kmax

{
d(xn, x

∗),
d(xn, Fxn)

2
,
2d(xn, x

∗) + d(xn, Fxn)

2
, d(xn, x

∗)

}
+ d(xn, Fxn)

6 k
[
d(x∗, xn) + d(xn, Fxn)

]
+ d(xn, Fxn),

which implies that

d(x∗, xn) 6
1 + k

1− k
d(xn, Fxn).

Thus, limn→∞ d(xn, x
∗) = 0, and hence, the fixed point Problem P is well-posed.

5 Data dependence result

In this section, we investigate the data dependence of fixed points.

Definition 11. Let T1, T2 : Z → Z be two mappings, where (Z, d) is a metric space
such that d(T1x, T2x) 6 η for all x ∈ Z, where η is some positive number. Then the
problem of data dependence is to estimate the distance between the fixed points of these
two mappings.
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Several research papers on data dependence have been published in the recent litera-
ture, some of which we mention in references [3, 5, 20].

Theorem 5. In addition to the hypothesis of Theorem 2, suppose that T : Z → Z be
a mapping with nonempty fixed point set. If for each fixed point u of T , γ(u, Fu) > 1 and
there exists M > 0 such that d(Fx, Tx) 6 M for all x ∈ Z, then d(s, t) 6 M/(1− k),
where s and t are fixed points of F and T , respectively.

Proof. By Theorem 2 there exists unique s ∈ Z such that s = Fs. Suppose t is a fixed
point of T . Take x0 = t. Then x0 = Tx0. Let x1 = Fx0. Then by definition of M we
have

d(x0, x1) = d(Tx0, Fx0) 6M. (18)

Applying the assumption of the theorem, we have γ(x0, x1) > 1. Let x2 = Fx1, then by
admissibility property of F we have γ(x1, x2) > 1. Inductively, arguing similarly as in
the proof of Theorem 1, we have a sequence {xn} in Z such that

xn+1 = Fxn and γ(xn, xn+1) > 1 ∀n > 0.

Arguing similarly as in proof of Theorem 1, we can prove that

• (7) is satisfied;
• {xn} is a γ-Cauchy sequence in the metric space (Z, d), and there exists u ∈ Z

such that limn→∞ xn = u;
• u is a fixed point of F , that is, u = Fu; as fixed point of F is unique, we have
u = s and Fs = s. Using triangular property, we have

d(t, s) = d(x0, u) 6
n∑

i=0

d(xi, xi+1) + d(xn+1, u)

6
n∑

i=0

δi + d(xn+1, u) 6
n∑

i=0

kiδ0 + d(xn+1, u).

Taking limit as n→∞ in the above inequality and using (18), we have

d(s, t) = d(t, s) 6
∞∑
i=0

kiδ0 =
δ0

1− k
=
d(x0, x1)

1− k
6

M

1− k
. �

6 Application

We have already mentioned in introduction that fixed point theorems in metric spaces are
widely investigated and have applications in differential and integral equations (see [2,15,
22]). In this section, we deal with a nonlinear integral equation. In the first part, we apply
Theorems 1 and 2 to prove the existence and uniqueness of solution of Fredholm-type
nonlinear integral equations. In the remaining part, we discuss three aspects of the same
integral equation, namely, Ulam–Hyers stability, well-posedness and data dependence.
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We consider the following Fredholm-type nonlinear integral equation:

x(t) = g(t) + λ

b∫
a

K(t, s)h
(
s, x(s)

)
ds ∀t ∈ [a, b], λ > 0, (19)

where the unknown function x(t) takes real values.
The space Z = C([a, b]) of all real valued continuous functions on [a, b] endowed

with the metric d(x, y) = supt∈[a,b] |x(t) − y(t)| is complete. Let this metric space be
endowed with a partial ordered relation ≺ defined as x ≺ y if and only if x(t) 6 y(t) for
all t ∈ [a, b].

Problem I. To find out a solution of the Fredholm-type integral equation

x(t) = g(t) + λ

b∫
a

K(t, s)h
(
s, x(s)

)
ds ∀t ∈ [a, b], λ > 0,

under some appropriate conditions on g, h and K.
We take the following assumptions:

(I1) g ∈ C([a, b]) and h : [a, b] × R → [0,∞), K : [a, b] × [a, b] → [0,∞) are
continuous mappings;

(I2) r1, r2 ∈ R and r1 6 r2 implies h(s, r1) 6 h(s, r2) for all s ∈ [a, b];
(I3) |h(s, r1) − h(s, r2)| 6 |r1 − r2| for all r1, r2 ∈ R with r1 6 r2 and for all

s ∈ [a, b];
(I4) |K(t, s)| 6 m, where 0 6 k = λ(b− a)m < 1;
(I5) There exists x0 ∈ C([a, b]) such that x0(t) 6 g(t)+λ

∫ b

a
K(t, s)h(s, x0(s)) ds.

(I6) For every x, y ∈ C([a, b]), there exists z ∈ C([a, b]) such that x ≺ z, y ≺ z and
z(t) 6 g(t) + λ

∫ b

a
K(t, s)h(s, z(s)) ds for all t ∈ [a, b].

Theorem 6. Let (Z, d) = (C([a, b]), d), and let g, h(s, ·),K(t, s) satisfy assump-
tions (I1)–(I5). Then nonlinear integral equation (19) has a solution in Z.

Proof. Define a mapping F : Z → Z by

F (x)(t) = g(t) + λ

b∫
a

K(t, s)h
(
s, x(s)

)
ds ∀t ∈ [a, b]. (20)

Let x, y ∈ C([a, b]) and x ≺ y. Then x(s) 6 y(s), hence, by (I2) we have

F (x)(t) = g(t) + λ

b∫
a

K(t, s)h
(
s, x(s)

)
ds

6 g(t) + λ

b∫
a

K(t, s)h
(
s, y(s)

)
ds = F (y)(t), (21)

which implies Fx ≺ Fy.
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Let x, y ∈ C([a, b]) and x ≺ y. Then x(s) 6 y(s) for all s ∈ [a, b]. Hence, by (I3)
and (I4) we have for all t ∈ [a, b],∣∣Fx(t)− Fy(t)∣∣

= λ

∣∣∣∣∣
b∫

a

K(t, s)
[
h
(
s, x(s)

)
− h
(
s, y(s)

)]
ds

∣∣∣∣∣
= λ

b∫
a

∣∣K(t, s)
∣∣∣∣[h(s, x(s))− h(s, y(s))]∣∣ds

6 λ

b∫
a

m
∣∣[h(s, x(s))− h(s, y(s))]∣∣ds

= λm

b∫
a

∣∣[h(s, x(s))− h(s, y(s))]∣∣ds 6 λm b∫
a

∣∣x(s)− y(s)∣∣ds
6 λmd(x, y)

b∫
a

ds = λm(b− a)d(x, y) 6 kM(x, y),

where k = λm(b− a) < 1. Therefore, for k = λm(b− a) < 1, we have

d(Fx, Fy)

6 kmax

{
d(x, y),

d(x, Fx) + d(y, Fy)

2
,
d(x, Fy) + d(y, Fx)

2
,

d(x, Fx)d(y, Fy)

1 + d(Fx, Fy)
,
d(y, Fx)d(x, Fy)

1 + d(Fx, Fy)
,
d(y, Fy)d(y, Fx)

1 + d(Fx, Fy)

}
. (22)

Let γ : Z × Z → [0,∞) be defined by

γ(x, y) =

{
1 if and only if x ≺ y,
0 otherwise.

Now, x ≺ y for x, y ∈ Z implies γ(x, y) = 1 for x, y ∈ Z. Thus, by (22) the contraction
condition holds for all x, y ∈ Z with γ(x, y) = 1.

By (21), for x, y ∈ X with x ≺ y, we have Fx ≺ Fy. It follows that for x, y ∈ Z,
γ(x, y) = 1 implies γ(Fx, Fy) = 1. Hence, F is γ-admissible.

Suppose that {xn} is a convergent sequence in C([a, b]) with limit x ∈ C([a, b]) and
xn ≺ xn+1 for all n. Then xn(s) 6 xn+1(s) for all n and for all s ∈ [a, b], which implies
that xn(s) 6 x(s) for all n and for all s ∈ [a, b], that is, xn ≺ x for all n. It follows that if
{xn} is a convergent sequence in C([a, b]) with limit x ∈ C([a, b]) and γ(xn, xn+1) = 1,
then γ(xn, x) = 1 for all n. Therefore, Z has γ-regular property, that is, property (A1)
holds.
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By (I5) there exists x0 ∈ Z such that

x0(t) 6 g(t) + λ

b∫
a

K(t, s)h
(
s, x0(s)

)
ds = Fx0(t) ∀t ∈ [a, b].

So, x0 ≺ Fx0. This implies that there exists x0 ∈ Z such that γ(x0, Fx0) = 1.
C([a, b]) being complete, is a γ-complete metric space (see Remark 1).
All the assumptions of Theorem 1 are satisfied. Therefore, F has a fixed point, that

is, the integral equation (19) has a solution in Z.

Example 5. Consider the integral equation

x(t) =
t

1 + t2
+

1

16

1∫
0

s cos t

36(1 + t)

|x(s)|
1 + |x(s)|

ds ∀t ∈ [0, 1]. (23)

Observe that this equation is a special case of (19) with λ = 1/16, g(t) = t/(1 + t2),
K(t, s) = s cos t/(1 + t), h(s, x(s)) = |x(s)|/(36(1 + |x(s))|) and a = 0, b = 1.

• g ∈ C([0, 1]) and h : [0, 1] × R → R, K : [0, 1] × [0, 1] → [0,∞) are continuous
mappings, and hence, assumption (I1) holds.

• Assumption (I2) holds. To check, let r1, r2 ∈ R with r1 6 r2. Then

h(s, r1) =
|r1|

36(1 + |r1|)
6

|r2|
36(1 + |r2|)

= h(s, r2) ∀s ∈ [0, 1]

since the function ψ(s) = s/(1 + s) is increasing in [0, 1].
• Assumption (I3) holds. To check, let r1, r2 ∈ R and r1 6 r2. Then for all s ∈ [0, 1],

we have∣∣h(s, r1)− h(s, r2)∣∣ = ∣∣∣∣ |r1|
36(1 + |r1|)

− |r2|
36(1 + |r2|)

∣∣∣∣ = ∣∣∣∣ |r1| − |r2|
36(1 + |r1|)(1 + |r2|)

∣∣∣∣
6

∣∣∣∣ |r1 − r2|
36(1 + |r1|)(1 + |r2|)

∣∣∣∣ 6 |r1 − r2|.
• Assumption (I4) holds. To check, let t, s ∈ [0, 1]. Then∣∣K(t, s)

∣∣ = s cos t

1 + t
6 1 = m,

where 0 6 k = (1/16)(1− 0) · 1 = 1/16 < 1.
• Assumption (I5) holds. To check, let x0(s) = 0 for all s ∈ [0, 1]. Then x0 ∈ Z

such that for all t ∈ [0, 1], 0 = x0(t) 6 t/(1 + t2) + 0 = t/(1 + t2), that is,

x0 ≺ g(t) + λ

b∫
a

K(t, s)h
(
s, x0(s)

)
ds.
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Therefore, all the assumptions of Theorem 6 are satisfied. Hence, integral equation (23)
has a solution x∗ in C([0, 1]).

Theorem 7. In addition to the hypothesis of Theorem 6, suppose that assumption (I6)
holds. Then nonlinear integral equation (19) has a unique solution.

Proof. First, we show that Z has γ-triangular property. Let x, y, z ∈ Z and γ(x, y) > 1
and γ(y, z) > 1. By definition of γ we have x ≺ y and y ≺ z, that is, x(t) 6 y(t) and
y(t) 6 z(t) for all t ∈ [a, b], which imply that x(t) 6 z(t) for all t ∈ [a, b], that is, x ≺ z,
that is, γ(x, z) > 1. Hence, Z has γ-triangular property. Therefore, property (A2) holds.

By assumption (I6), for x, y ∈ C([a, b]), there exists z ∈ C([a, b]) such that x ≺
z, y ≺ z and

z(t) 6 g(t) + λ

b∫
a

K(t, s)h
(
s, z(s)

)
ds ∀t ∈ [a, b].

Hence, z(t) ≺ Fz(t) for all t ∈ [a, b], that is, z ≺ Fz. Thus, for x, y ∈ C([a, b]), there
exists z ∈ Z with γ(z, Fz) > 1 such that γ(x, z) > 1 and γ(y, z) > 1. Therefore, γ has
F -directed property, that is, property (A3) holds.

All the assumptions of Theorem 2 are satisfied. Thus, by Theorems 2 and 6 F has
a unique fixed point, that is, the nonlinear integral equation (19) has a unique solution in
C([a, b]).

Being motivated by Definition 9, we give definitions of Ulam–Hyers stability for the
case of integral equation (19).

Definition 12. Problem I is called Ulam–Hyers stable if there exists a function φ :
[0,∞) → [0,∞), which is monotone increasing, continuous at 0 with φ(0) = 0 such
that for each ε > 0 and for each solution u∗ ∈ C([a, b]) of the inequality

sup
t∈[a,b]

∣∣∣∣∣x(t)− g(t)− λ
b∫

a

K(t, s)h
(
s, x(s)

)
ds

∣∣∣∣∣ 6 ε,
there exists a solution x∗ ∈ C([a, b]) of the integral equation (19) such that

sup
t∈[a,b]

∣∣u∗(t)− x∗(t)∣∣ 6 φ(ε).
Let us consider the following the integral inequality:∣∣∣∣∣x(t)− g(t)− λ

b∫
a

K(t, s)h
(
s, x(s)

)
ds

∣∣∣∣∣ 6 ε ∀t ∈ [a, b], ε > 0. (24)

In the following next theorem, we add a new condition to assure the Ulam–Hyers stability
of the integral equation (19):

(I7) For any solution x∗ of (19) and any solution u∗ of (24), one has x∗ ≺ u∗.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Fixed point problem in γ-complete metric spaces 137

Theorem 8. Let all the hypothesis of Theorem 7 hold. Then integral equation (19) has
a unique solution x∗. Also suppose that (I7) holds. Then Problem I is Ulam–Hyers stable,
and for given ε > 0 and for any solution u∗ of (24), we have

d(x∗, u∗) <
λ(b− a)m+ 2

2(1− λ(b− a)m)
ε = φ(ε),

where φ : [0,∞) → [0,∞) is a mapping given by φ(t) = (k + 2)t/(2(1 − k)) for all
t ∈ [0,∞) and |K(t, s)| 6 m.

Proof. By Theorem 7 the integral equation (19) has a unique solution x∗. Hence, it is
a unique fixed point of the function F : Z → Z defined by (20). Let u∗ is a solution of the
integral inequation (24), hence, u∗ is a solution of d(x, Fx) 6 ε, and by (I7), x∗ ≺ u∗. By
the definition of γ, γ(x∗, u∗) > 1, that is, property (A4) holds. By application of Theorem
3 the fixed point problem x = Fx is Ulam–Hyers stable. Therefore, the solution of the
integral equation (19) is Ulam–Hyers stable, and

d(x∗, u∗) <
(k + 2)ε

2(1− k)
=

λ(b− a)m+ 2

2(1− λ(b− a)m)
ε = φ(ε),

where φ : [0,∞) → [0,∞) is a mapping given by φ(t) = (k + 2)t/(2(1 − k)) for all
t ∈ [0,∞).

Being motivated by Definition 10, we give definitions of well-posedness for the case
of integral equation (19).

Definition 13. Problem I is called well-posed if (i) integral equation (19) has a unique
solution x∗ in C([a, b]), (ii) xn → x∗ in C([a, b]), whenever {xn} is a sequence in
C([a, b]) satisfying

sup
t∈[a,b]

∣∣∣∣∣xn(t)− g(t)− λ
b∫

a

K(t, s)h
(
s, xn(s)

)
ds

∣∣∣∣∣→ 0, n→∞.

In the following theorem, we add a new condition to assure the well-posedness for
integral equation (19).

(I8) If x∗ is a solution of the integral equation (19) and {xn} is any sequence in
C([a, b]) such that supt∈[a,b] |xn(t) − g(t) − λ

∫ b

a
K(t, s)h(s, xn(s)) ds| → 0

as n→∞, then xn ≺ x∗ for all n.

Theorem 9. Let all the hypothesis of Theorem 7 hold. Then the integral equation (19)
has a unique solution x∗. Also suppose that (I8) holds. Then Problem I is well-posed.

Proof. By Theorem 7 the integral equation (19) has a unique solution x∗. Hence, it is a
unique fixed point of the function F : Z → Z defined by (20). Let {xn} be a sequence in
C([a, b]) such that supt∈[a,b] |xn(t)−g(t)−λ

∫ b

a
K(t, s)h(s, xn(s)) ds| → 0 as n→∞.
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Then by assumption (I8) we have xn ≺ x∗ for all n. From definition of γ we have
γ(xn, x

∗) = 1 for all n, that is, property (A5) holds. By application of Theorem 4 the
fixed point Problem P, that is, the problem x = Fx, is well-posed. Therefore, Problem I
is well-posed.

Being motivated by Definition 11, we give definitions of data dependence for the case
of integral equation.

Definition 14. Let x∗ ∈ C([a, b]) be the unique solution of the integral equation (19) and
u∗ be the solution of the integral equation x(t) = p(t) + λ

∫ b

a
K1(t, s)h1(s, x(s)) ds for

all t ∈ [a, b], where p ∈ C[a, b] and h1 : [a, b]×R→ [0,∞),K1 : [a, b]× [a, b]→ [0,∞)
are continuous mappings. The problem of data dependence is to find supt∈[a,b] |x∗(t) −
u∗(t)|.

Theorem 10. Let all the hypothesis of Theorem 7 hold and x∗ be the unique solution of
the integral equation (19). Also suppose that if x be any solution of the integral equation

x(t) = p(t) + λ

b∫
a

K1(t, s)h1
(
s, x(s)

)
ds ∀t ∈ [a, b], (25)

where p ∈ C([a, b]) and h1 : [a, b] × [a, b] → [0,∞), K1 : [a, b] × [a, b] → [0,∞) are
continuous mappings, then for all t ∈ [a, b],

x(t) 6 g(t) + λ

b∫
a

K(t, s)h
(
s, x(s)

)
ds, t ∈ [a, b].

Further suppose that there exist ν, η > 0 such that

sup
t∈[a,b]

∣∣K1(t, s)h1
(
s, x(s)

)
−K(t, s)h

(
s, x(s)

)∣∣ 6 η,
and

sup
t∈[a,b]

∣∣p(t)− g(t)∣∣ 6 ν.
Then

d(x, x∗) 6
ν + λη(b− a)
1− λ(b− a)m

.

Proof. By Theorem 7 the integral equation (19) has a unique solution x∗. Let us define
a map T : Z → Z by

T (x)(t) = p(t) + λ

b∫
a

K1(t, s)h1
(
s, x(s)

)
ds, t ∈ [a, b]. (26)

Since x is a solution of (25), it is a fixed point of the mapping T defined by (26). By
the assumption of the theorem we have x(t) 6 F (x)(t), t ∈ [a, b], which implies that
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x ≺ Fx. Then γ(x, Fx) = 1. Also, for any x ∈ C([a, b]), we have∣∣F (x)(t)− T (x)(t)∣∣
6
∣∣p(t)− g(t)∣∣+ ∣∣∣∣∣λ

b∫
a

[
K(t, s)h

(
s, x(s)

)
−K1(t, s)h1

(
s, x(s)

)]
ds

∣∣∣∣∣
6
∣∣p(t)− g(t)∣∣+ λ

b∫
a

∣∣[K(t, s)h
(
s, x(s)

)
−K1(t, s)h1

(
s, x(s)

)]∣∣ds
6 ν + λ

b∫
a

η ds = ν + λη(b− a) =M (say) ∀t ∈ [a, b],

which implies that supt∈[a,b] |F (x)(t) − T (x)(t)| 6 M for all x ∈ C([a, b]). So,
d(Fx, Tx) 6M for all x ∈ Z. Thus, all the hypothesis of Theorem 5 are met. Therefore,
we have d(x, x∗) 6M/(1− k) = (ν + λη(b− a))/(1− λ(b− a)m).

7 Conclusion

The result of the Theorem 1 is also valid if we replace the constant k by a Mizoguchi–
Takahashi function [7,14]. Here we have not proceeded with it but this can be taken up in
a future work. Also the corresponding problem with multivalued mappings and possible
applications to integral inclusion problems is supposed to be of considerable interest.
One reason for it is that, in general, the fixed point sets of multivalued mappings are
mathematically complicated in their structures. This can also be taken up in future works.
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Cercet. Ştiinţ., Ser. Mat., Univ. Bacău, 16:209–214, 2006, http://pubs.ub.ro/scssm/
issues/89.pdf.

18. T.M. Rassias, On the stability of the linear mappings in Banach spaces, Proc. Am. Math. Soc.,
72:297–300, 1978, https://doi.org/10.1090/S0002-9939-1978-0507327-1.

19. I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2):
305–320, 2009.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1016/j.chaos.2020.109678
https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a84_1455.pdf
https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a84_1455.pdf
https://doi.org/10.1155/2010/876372
https://doi.org/10.1155/2010/190701
https://doi.org/10.1073/pnas.27.4.222
https://doi.org/10.1155/2014/268230
https://doi.org/10.1186/1687-1812-2015-2
https://doi.org/10.1186/1029-242X-2013-516
https://doi.org/10.1186/1029-242X-2013-516
http://www.gbspublisher.com/ijams.htm
http://www.gbspublisher.com/ijams.htm
https://doi.org/10.1016/0022-247X(89)90214-X
https://doi.org/10.1016/0022-247X(89)90214-X
http://www.jstor.org/stable/44000136
https://doi.org/10.1186/1029-242X-2014-418
https://doi.org/10.1186/1029-242X-2014-418
http://pubs.ub.ro/scssm/issues/89.pdf
http://pubs.ub.ro/scssm/issues/89.pdf
https://doi.org/10.1090/S0002-9939-1978-0507327-1
https://www.journals.vu.lt/nonlinear-analysis


Fixed point problem in γ-complete metric spaces 141
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