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Abstract. In this paper, we consider the global well-posedness of solutions for the initial-boundary
value problems of the epitaxy growth model. We first construct the local smooth solution, then by
combining some a priori estimates, continuity argument, the local smooth solutions are extended
step by step to all t > 0, provided that the initial datums sufficiently small and the smooth nonlinear
functions satisfy certain local growth conditions.
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1 Introduction

Recently, there have been several experimental studies exhibiting a novel type of the epi-
taxial growth of nanoscale thin films. A major reason for this interest is that compositions
like YBa2Cu3O7−δ (YBCO) are expected to be high-temperature superconducting and
could be used in the design of semiconductors [10]. Due to stringent tolerances of filter
characteristics, the YBCO films must be highly uniform in thickness and texture [17].
The process of growing a thin film layer may be extremely complex and the development
of experimental and mathematical tools for their study remains a focal point of physical
research.

We begin by sketching the lines along which the epitaxial thin film growth model
is derived. Due to Zangwill [24], for a spatial variable x = (x1, x2) in the domain
Ω = [0, L]2, the function u(x, t) denotes the height of a film in epitaxial growth obeys
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a conservation law,

∂tu(x, t) = −div J
(
∇u(x, t)

)
+ η(x, t), (1)

where J(∇h) comprises all processes, which move atoms along the surface, and η denotes
some Gaussian noise. On a purely phenomenological basis, we may write

J(∇u) = A1∇u+A2∇
(
∇2i

)
+A3|∇u|2∇u+A4∇|∇u|2, (2)

with constantsA1,A2,A3,A4 in the growth law (1). It is easy to see that the surface mass
current has been expanded in a power series involving the surface slope ∇u and various
power and derivatives thereof.

Combining (1) and (2) together, dropping the noise term η(x, t), we obtain the fol-
lowing fourth-order nonlinear evolution equation:

∂tu+A1∆u+A2∆2u+A3∇ ·
(
|∇u|2∇u

)
+A4∆|∇u|2 = 0. (3)

The spatial derivatives in (3) have the following physical interpretations:

• A1∆u: diffusion due to evaporation-condensation [3, 16],
• A2∆2u: capillarity-driven surface diffusion [8, 16],
• A3∇ · (|∇u|2∇u): (upward) hopping of atoms [10, 20],
• A4∆|∇u|2: equilibration of the inhomogeneous concentration of the diffusing parti-

cles on the surface (known as the coarsening process) [1, 18].

Combining the resulting nonlinear terms with the second-order diffusion term yields

∂tu+A2∆2u+A1∇ ·
(
A3

A1
|∇u|2 + 1

)
∇u+A4∆|∇u|2 = 0,

and it turns out that the case A1 > 0 and A3 < 0 is the one of interest [10, 17]. After
relabeling of constants, we obtain the equation with positive coefficients α, β, γ, κ,

∂tu+ α∆2u− β∇ ·
(
|∇u|2∇u

)
+ γ∆u+ κ∆|∇u|2 = 0. (4)

It would be specially mentioned that Ortiz et al. [17] modified (4) in several respects.
In particular, the authors showed that A4 = 0 if Onsager’s reciprocity relations hold.
Hence, (4) becomes

∂tu+ α∆2u− β∇ ·
(
|∇u|2∇u

)
+ γ∆u = 0.

In addition, from a mathematical point of view, King, Stein and Winkler [10] general-
ized the term involving second-order diffusion, considered the existence, uniqueness and
regularity of solutions for following fourth-order evolution equation in Ω ⊂ RN :

∂tu+ α∆2u− β∇ ·
(
f(∇u)

)
= 0, (5)

together with some assumptions on the nonlinear function f(s). The authors also charac-
terized the existence of nontrivial equilibria in terms of the size of the underlying domain.
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Latterly, the problems of stability, long time behavior and other properties of solutions
for the initial boundary value problem of (5) have been studied by various authors (see
e.g. Liu [15], Zhao, Zhang and Liu [27], Kohn and Yan [11], Li and Liu [12], Zhang
and Zhu [25], Li, Yin and Jin [14], Zhao and Liu [26]). It is particularly important to
note that the global well-posedness for the Cauchy problem of Eq. (5) has caused wide
public concern over the recent years. Li, Qiao and Tang [13] proved the global well-
posedness when the initial datum u0 ∈ H

N
2 (RN ), where f(s) = |s|2s − s and N 6 3.

Fan and Zhou [2] considered the global well-posedness when u0 ∈ H4(R4). For the case
N > 5, Fan, Alsaedi, Hayat and Zhou [4] also established some regularity criteria of
strong solutions.

Remark 1. Although it will not be used in the proofs of the main results of this paper,
one would like to point out that Eq. (5) can be represented as the gradient flow of the
following energy functional

E(u) =

∫
Ω

(
1

2
|∆u|2 − F (∇u)

)
dx,

which means

∂tu = −δE
δu

= −∇ ·
(
∇∆u− f(∇u)

)
,

where F (s) =
∫ s
0
f(y)dy. This fact was employed in [2, 10, 23] to study the thin film

equation.

In 2015, Sandjo, Moutari and Gningue [19] studied the well-posedness of Eq. (5)
together with Neumann boundary value condition. Applying Kato’s method, the authors
established the existence, uniqueness and regularity of solutions in space C0([0, T ];

L
Nα
2−α (Ω)), provided that f(s) = |s|αs, 1 < α < 2, the L

Nα
2−α (Ω)-norm of initial data is

sufficiently small and the dimensional N > 2. The authors pointed out that if u(x, t) is
a smooth solution to Eq. (5) in RN , then for each λ > 0,

uλ(x, t) = λ
2
α−1u

(
λx, λ4t

)
also solves (5) unless we consider the initial condition and the following scaling identity:∥∥∇kuλ(·, t)

∥∥
Lp(RN )

= λ
2
α+k−1−Np

∥∥∇ku(·, λ4t)∥∥
Lp(RN )

.

Hence, p is the critical exponent if it satisfies

N

p
=

2

α
+ k − 1. (6)

Sandjo et al. [19] focus on the case k = 0 with p = αN
2−α . In order to make p meaningful,

the authors supposed that 1 < α < 2 and N > 2. By analyzing Sandjo et al.’s results,
we find that there are two interesting problem need to be investigated: Can we drop the
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restriction 1 < α < 2? Can we consider the global well-posedness without the restrict
on the dimensional? Our answer is “Yes”. We can establish the small initial data global
well-posedness result for any α > 2

N .
The purpose of this paper is to solve the above problems. We consider the small initial

data global existence and uniqueness of solutions for the following initial-boundary value
problem:

∂tu+ ∆2u−∇ ·
(
|∇u|α∇u

)
= 0,

∂νu|∂Ω = ∂ν∆u|∂Ω = 0,

u(x, 0) = ϕ(x).

(7)

where x ∈ Ω, andΩ ⊂ RN is a bounded smooth domain, ∂Ω denotes the boundary ofΩ,
ν denotes the unit outer vector normal to Ω and the positive constant α > 2

N . Let k = 1

in (6), we easily obtain p = Nα
2 , and the space Ẇ 1,Nα2 is the critical space to Eq. (7)1.

Therefore, we can consider the small initial data global well-posedness for problem (7) in
Ẇ 1,Nα2 . The only restrictive condition we need is Nα

2 > 1, that is α > 2
N .

Remark 2. Let k ∈ N and p ∈ [1,∞]. The Sobolev space Ẇ k,p(Ω) is defined as

Ẇ k,p(Ω) =
{
u: Dku ∈ Lp(Ω)

}
with the norm

‖u‖Ẇk,p(Ω) :=

(∫
Ω

∣∣Dku
∣∣p dx

) 1
p

,

which can be seen as the seminorm of ‖u‖Wk,p(Ω). In addition, Ḣk(Ω) := Ẇ k,2(Ω).

We are now able to state the main results established in this paper.

Theorem 1. Suppose that Nα > 2, Ω ⊂ RN be a bounded domain with C4 boundary
and u(0) = ϕ(x) ∈ Ẇ 1,Nα2 (Ω). Then, for problem (7), the following statements hold
true:

(i) There exists a T > 0 and a unique mild solution u ∈ C0([0, T ]; Ẇ 1,Nα2 (Ω))
such that

sup
06t6T

{∥∥u(t)
∥∥
Ẇ 1, Nα

2
+ t

1
2(α+1)

∥∥u(t)
∥∥
Ẇ 1,

Nα(α+1)
2
} <∞.

(ii) If ‖ϕ‖
Ẇ 1, Nα

2
is sufficiently small, the solution can be extended to a global one:

u(t) ∈ C0
(
[0,∞); Ẇ 1,Nα2 (Ω)

)
.

Remark 3. The main purpose of this paper is to study the global well-posedness of
solutions for problem (7). The stability condition in theoretical way for problem (7) can
be found in [26, 27] and the reference therein.
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The main idea to prove Theorems 1 is to treat problem (7) as semilinear evolution
equations of the following form:

ut +Au = F (u), u(0) = ϕ,

where the operator A := ∆2, and

F (u) := ∇ ·
(
|∇u|α∇u

)
.

Then, problem (7) can be studied via the corresponding integral equation

u(t) = e−tAϕ+

t∫
0

e−(t−s)AF (u) ds. (8)

Following Kato et al. [5,9], Wiegner [22], Giga et al. [6,7] and Sandjo et al. [19], we con-
struct a solution in C0([0, T ), Ẇ 1,Nα2 (Ω)) to problem (8) by successive approximations.
This approximation is such that the sequence {Rj} defined by

Rj := K1
j +K2

j = sup
06t6T

{∥∥uj(t)∥∥
Ẇ 1, Nα

2
+ t

1
2(α+1)

∥∥uj(t)∥∥
Ẇ 1,

Nα(α+1)
2

}
for problem (7) is bounded. In order to establish the later result, we show that Rj satisfy
the recursive relation

Rj+1 6 R0 + CRα+1
j .

Thus, if u(0) = ϕ has small Ẇ 1,Nα2 -norm, then this recursive relation is uniformly
bounded, i.e. there exists a R > 0 such that for all j > 0, Rj 6 R. This estimate
enables us to use a standard argument to show that there exists a unfirmly converging
sequence {uj} whose limit is a solution to problem (7) in Ẇ 1,Nα2 (Ω).

The remaining parts of the present papers are organized as follows. We begin by
giving some notations and introduce some preliminary results. Then, in Section 3, we
establish the global well-posedness result for problem (7), provided that ‖u0‖

Ẇ 1, Nα
2

is sufficiently small. Finally, the last section illustrates the qualitative behavior of the
constructed approximate solution to problem (7) through some numerical simulations.

2 Preliminaries

We denote A . B, the estimate A 6 cB, where c > 0 is an absolute constant.
The following auxiliary lemma can be proved by induction.

Lemma 1. (See [19].) Suppose that α, λ > 0 and {bm} is a nonnegative sequence such
that for all m ∈ N,

bm 6 b0 + λb1+αm−1.

Let 2λ(2b0)α < 1. Then, for all m ∈ N, we have

bm 6
b0

1− λ(2b0)α
.
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The well-know Weierstrass M-test result gives us the uniform convergence of the
aforementioned sequence (uj).

Lemma 2. (See [19].) Suppose that X is a Banach space equipped with the norm ‖·‖X .
Assume that (uj)j∈N is a sequence of continuous functions from [0, T ] in X and (Mj)j∈N
is a sequence of nonnegative real numbers for which

∑∞
j=0Mj <∞, and for each j ∈ N,∥∥uj(t)∥∥X 6Mj ∀t ∈ [0, T ],

where 0 < T 6∞. Therefore, we have
∞∑
j=0

uj ∈ C0
(
[0, T ];X

)
,

that is, (uj) converges uniformly on [0, T ].

The following lemma is the generalized result of Lemma A.2 of [19]. Since the proof
is similar to the proof of Lemma A.2 of [19], we omit it here.

Lemma 3. (See [19].) Suppose that T (t)t>0 is a C0-semigroup defined in a Banach
space X . Assume that for all t > 0, we have ‖T (t)‖ 6 L, L > 0. Let 0 < h < t2. Give
a sequence (ψj)j∈N defined by ψj : s ∈ R+ 7−→ ψj(s) ∈ X locally integrable, we have

∀j ∈ N, lim
h→0+

t2−h∫
0

∥∥(T (h)− 1
)
ψj(s)

∥∥
X

ds = 0,

where 1 denotes the identity operator on X .

The following remark can be found in [19].

Remark 4. (See [19].) Let T > 0 and 0 < t+ 1 < t2 < T . Given δ ∈ (0, 1), we have

lim
|t2−t1|→0+

t2∫
t1

(t2 − s)−
δ
2 s−1+

δ
2 ds = 0.

Weisler [21] established the following result, which contains an abstract statement
needed for the proof of our existence result.

Lemma 4. Suppose thatΩ is a bounded domain of RN with sufficiently smooth boundary
∂Ω. Let A be a infinitesimal generator of a C0 semigroup on Ω with domain D(A)
continuously embedding in Wm,p(Ω) and codomain Lq(Ω). Assume that A generates
an analytic semigroup e−tA. Then the semigroup e−tA : Lp(Ω) → Lq(Ω) is a bounded
linear operator whenever 1 < p 6 q < ∞ and t > 0. In addition, for any T > 0,
there exists a positive constant C, which depending only on p and q, such that for any
nonnegative integer j < 6,∥∥∇je−tA∥∥L(Lp,Lq) 6 C(p, q)t−

N
m ( 1

p−
1
q )−

j
m ∀t ∈ (0, T ].
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3 Proof of Theorem 1

In this section, we first use the method of successive approximation to prove the existence
and uniqueness of local solutions for problem (7).

For system (7), we choose A := ∆2. The solution to the integral equation

u(t) = e−tAu0 +

t∫
0

e−(t−s)A∇ ·
(
|∇u|α∇u

)
ds (9)

can be given by
uj+1(t) = u0(t) +G(uj)(t), t > 0, j > 0,

together with
u0(t) = e−tAϕ

and

G(u)(t) =

t∫
0

e−(t−s)A∇ ·
(
|∇u|α∇u

)
(s) ds,

where u0 ∈ Ẇ 1,Nα2 (Ω). Let T > 0 and

K1
j := sup

0<t6T

∥∥uj(t)∥∥
Ẇ 1, Nα

2
, K2

j := sup
0<t6T

t
1

2(α+1)
∥∥uj(t)∥∥

Ẇ 1,
Nα(α+1)

2
,

Rj := K1
j +K2

j .

The a priori estimates for K1
j , K2

j and Rj can be derived as

Lemma 5. For every j ∈ N, the following inequalities hold:

K1
j+1 . K1

0 +
(
K2
j

)α+1
, K2

j+1 . K1
0 +

(
K2
j

)α+1
.

Moreover, we also have the following recursive inequality:

Rj+1 . R0 +Rα+1
j , R0 . ‖u0‖

Ẇ 1, Nα
2
.

Proof. It follows from the integral equation (9) and Hölder’s inequality that∥∥uj+1(t)
∥∥
Ẇ 1, Nα

2

6 ‖u0‖
Ẇ 1, Nα

2
+

t∫
0

‖e−(t−s)A∇ ·
(
|∇uj |α∇uj

)∥∥
Ẇ 1, Nα

2
ds

6 K1
0 +

t∫
0

∥∥D2e−(t−s)A|∇uj |α∇uj
∥∥
L
Nα
2

ds

6 K1
0 +

t∫
0

(t− s)− 1
2 ‖∇uj‖α+1

L
Nα(α+1)

2

ds
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. K1
0 +

t∫
0

(t− s)− 1
2 s−

1
2

(
s

1
2(α+1) ‖∇uj‖

L
N(α+1)α

2

)α+1
ds

. K1
0 +

(
K2
j

)α+1

and

t
1

2(α+1) ‖uj+1‖
Ẇ 1,

Nα(α+1)
2

6 t
1

2(α+1)
∥∥∇u0(t)

∥∥
L
Nα(α+1)

2
+ t

1
2(α+1)

×
t∫

0

∥∥e−(t−s)A∇∇ ·
(
|∇uj |2∇uj

)∥∥
L
Nα(α+1)

2
ds

6 K2
0 + t

1
2(α+1)

t∫
0

(t− s)−
1
2−

N
4 ( 2

Nα−
2

Nα(α+1)
)‖∇uj‖α+1

L
N(α+1)α

2

ds

. K2
0 + t

1
2(α+1)

t∫
0

(t− s)−
1
2−

1
2(α+1) s−

1
2

(
s

1
2(α+1) ‖∇uj‖

L
N(α+1)α

2
)α+1 ds

. K1
0 +

(
K2
j

)α+1
.

Combining the above two inequalities together gives Rj+1 6 R0 + cRα+1
j . It remains to

prove that R0 . ‖u0‖
Ẇ 1, Nα

2
. Let 0 < t 6 T , then

t
1

2(α+1)
∥∥∇u0(t)

∥∥
L
Nα(α+1)

2
. t

1
2(α+1)

−N4 ( 2
Nα−

2
Nα(α+1)

)‖∇u0‖
L
Nα
2

. ‖u0‖
Ẇ 1, Nα

2
.

Hence, the proof is completed.

Based on Lemma 5, we immediately obtain the a priori estimate for the approximat-
ing sequence. Now, choosing the norm ‖u0‖

Ẇ 1, Nα
2

sufficiently small, we deduce the
following result.

Lemma 6. Assume that ‖u0‖
Ẇ 1, Nα

2
6 ε, where ε is a positive constant. Then

Rj 6 2R0 ∀j > 1.

Proof. Applying Lemmas 1 and 5, if 2c(2R0)α < 1, we derive that

Rj 6
R0

1− c(2R0)α
.

But the latter inequality is satisfied if we choose ‖u0‖
Ẇ 1, Nα

2
6 ε, where ε is a sufficiently

small positive number. Then the proof is completed.
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To construct the contraction mapping, we introduce the sequences

$j(t) = uj(t)− uj−1(t), $0 = u0

and the corresponding quantities

K̃1
j := sup

0<t6T
‖$j(t)‖

Ẇ 1, Nα
2
, K̃2

j := sup
0<t6T

t
1

2(α+1) ‖∇$j(t)‖
Ẇ 1,

Nα(α+1)
2

.

Define
R̃j := K̃1

j + K̃2
j .

Direct calculations show that

$j+1(t) = G(vj)(t)−G(vj−1)(t)

=

t∫
0

e−(t−s)A∇ ·
(
|∇uj |α∇uj − |∇uj−1|α∇uj−1

)
ds.

Hence, we obtain the following lemma.

Lemma 7. There exists a positive constant c such that if ‖u0‖
Ẇ 1, Nα

2
6 ε, we have

R̃j+1 6 cR̃jR
α
0 6 c

(
Rα0
)j ∀j ∈ N. (10)

Proof. We derive the a priori estimates for K̃1
j and K̃2

j . Note that

K̃1
j+1 6 ‖

t∫
0

D2e−(t−s)A
[
|∇uj |α∇uj − |∇uj−1|α∇uj−1

]
ds‖

L
Nα
2

.

t∫
0

(t− s)−1/2‖∇$j‖
L
Nα(α+1)

2

(
‖∇uj‖α

L
Nα(α+1)

2

+ ‖∇uj−1‖α
L
Nα(α+1)

2

)
ds

.

t∫
0

(t− s)−1/2s−1/2
(
s

1
2(α+1) ‖∇$j‖

L
Nα(α+1)

2

)
×
[
s

α
2(α+1) (‖∇uj‖α

L
Nα(α+1)

2

+ ‖∇uj−1‖α
L
Nα(α+1)

2

)
]

ds

. K̃2
j (K2

j )α . K̃2
jR

α
0 .

In addition, we also have

K̃2
j+1 6 t

1
2(α+1)

∥∥∥∥∥
t∫

0

D2e−(t−s)A
[
|∇uj |α∇uj − |∇uj−1|α∇uj−1

]
ds

∥∥∥∥∥
L
Nα(α+1)

2

. t
1

2(α+1)

t∫
0

(t− s)−
1
2−

1
2 (

2
Nα−

2
Nα(α+1)

)‖∇$j‖
L
Nα(α+1)

2

×
(
‖∇uj‖α

L
Nα(α+1)

2

+ ‖∇uj−1‖α
L
Nα(α+1)

2

)
ds
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. t
1

2(α+1)

t∫
0

(t− s)−
1
2−

1
2(α+1) s−1/2

(
s

1
2(α+1) ‖∇$j‖

L
Nα(α+1)

2

)
×
[
s

α
2(α+1)

(
‖∇uj‖α

L
Nα(α+1)

2

+ ‖∇uj−1‖α
L
Nα(α+1)

2

)]
ds

. K̃2
j (K2

j )α . K̃2
jR

α
0 .

Combining the above two inequalities together gives

R̃j+1 . R̃jR
α
0 .

Then we obtain (10) and complete the proof.

The above lemma means that the sequence R̃j is summable, provided that R0 suf-
ficiently small. It is easy to see that uj = u0 +

∑j
k=1$k is a Cauchy sequence in

C0([0, T ]; Ẇ 1,Nα2 (Ω)) and converges to some solution u ∈ C0([0, T ]; Ẇ 1,Nα2 (Ω)) of
the integral equation (9). In the following, we state the conditions under which the se-
quence {uj} converges.

Lemma 8. There exists a positive constant ε, and if

R0 = max
{

sup
0<t6T

‖u0‖
Ẇ 1, Nα

2
+ t

1
2(α+1) ‖u0‖

Ẇ 1,
Nα(α+1)

2

}
< ε,

then the sequence (uj) ⊂ C0([0, T ]; Ẇ 1,Nα2 (Ω)) converges uniformly.

Proof. We need to verify that the assumptions of Weierstrass M-Test are satisfied.
As [19], we prove that uj(t) is continuous on (0, T ]. Suppose that T (t) = e−(t−s)A,

t1, t2 ∈ (0, T ] and u0 ∈ Ẇ 1,Nα2 (Ω). Observe that

uj(t2)− uj(t1)

= T (t1)
[
T (t2 − t1)− 1

]
u0 +

t2∫
t1

T (t2 − s)∇ ·
(∣∣∇uj−1(s)

∣∣2∇uj−1(s)
)

ds

+

t1∫
0

[
T (t2 − s)− T (t1 − s)

]
∇ ·
(∣∣∇uj−1(s)

∣∣α∇uj−1(s)
)

ds

= T (t1)
[
T (t2 − t1)− 1

]
u0

+

t1∫
0

T (t1 − s)
[
T (t2 − t1)− 1

]
∇ ·
(∣∣∇uj−1(s)

∣∣α∇uj−1(s)
)

ds

+

t2∫
t1

T (t2 − s)∇ ·
(∣∣∇uj−1(s)

∣∣α∇uj−1(s)
)

ds

=: J1 + J2 + J3,
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where 1 denotes the identity operator on Ẇ 1,Nα2 (Ω). In addition, let ‖T (t)‖Ḣ1 6 L on
[0, T ], L > 0. We obtain∥∥T (t1)

[
T (t2 − t1)− 1

]
u0
∥∥
Ẇ 1, Nα

2
6 L

∥∥(T (t2 − t1)− 1
)
u0‖

Ẇ 1, Nα
2
.

Applying the strong continuity of the semigroup T (t) = etA on Ẇ 1,Nα2 (Ω), we obtain
that the limit of this term vanishes as |t2 − t1| → 0+. For J2, we have∥∥∥∥∥

t1∫
0

T (t1 − s)
[
T (t2 − t1)− 1

]
∇ ·
(∣∣∇uj−1(s)

∣∣α∇uj−1(s)
)

ds

∥∥∥∥∥
Ẇ 1, Nα

2

6 L

t1∫
0

∥∥[T (t2 − t1)− 1
]
∇ ·
(∣∣∇uj−1(s)

∣∣α∇uj−1(s)
)∥∥
Ẇ 1, Nα

2
ds.

Set h = t2 − t1 and ψj(s) = ∇ · (|∇uj−1(s)|α∇uj−1(s)), then∥∥[T (t2 − t1)− 1
]
∇ ·
(∣∣∇uj−1(s)

∣∣2∇uj−1(s)
)∥∥
Ẇ 1, Nα

2
ds

=

t2−h∫
0

∥∥(T (h)− 1p
)
ψj(s)

∥∥
Ẇ 1, Nα

2
ds.

By Lemma 3 we obtain that the limit of J2 vanishes as |t2− t1| → 0+. Moreover, for J3,
we have

t2∫
t1

∥∥T (t2 − s)∇ ·
(∣∣∇uj−1(s)

∣∣α∇uj−1(s)
)∥∥
W 1, Nα

2
ds

6 cM

t2∫
t1

(t2 − s)−1/2s−1/2 ds, M = t
1

2(α+1) ‖∇uj‖α
Ẇ 1,

Nα(α+1)
2

.

On the basis of Remark 4, the limit of J3 vanishes as |t2 − t1| → 0+.
Continuity up to t = 0 follows from the fact∥∥u(t)− u(0)

∥∥
Ẇ 1, Nα

2

6
∥∥e−tA − 1

∥∥
L∞
‖u0‖

Ẇ 1, Nα
2

+

t∫
0

∥∥T (t− s)∇ ·
(
|∇u|2∇u

)∥∥
Ẇ 1, Nα

2
ds

6
∥∥e−tA − 1

∥∥
L∞
‖u0‖

Ẇ 1, Nα
2

+ cM

t∫
0

(t− s)−1/2s−1/2 ds.

Hence, uj ∈ C([0, T ]; Ẇ 1,Nα2 (Ω)).

Nonlinear Anal. Model. Control, 26(4):565–580, 2021

https://doi.org/10.15388/namc.2021.26.23936


576 N. Duan et al.

Secondly, we prove the boundedness of uj(t) for 0 < t 6 T . As we observe before,
uj(t) =

∑j
k=0$k(t). Then

∥∥uj(t)∥∥
Ẇ 1, Nα

2
6

j∑
k=0

Mk, Mk = sup
0<t6T

‖$k‖
Ẇ 1, Nα

2
,

and the assumption of the proposition ensures that the sequence Mk is summable. Hence,
we can use Weierstrass M-Test and complete the proof.

After obtain Lemmas 5–8, we are now able to sketch the proof of the global well-
posedness of problem (7).

Proof of Theorem 1. First, we prove part (i) of Theorem 1 on the local well-posedness of
solutions. There are three steps for us to carry out the proof.

Step 1 (Well-definition of vj). The a priori estimates of Lemma 5 show that uj(t) is
well-defined for j > 0 as element of Ẇ 1,Nα2 (Ω).

Step 2 (Existence). By using Weierstrass M-Test and Lemma 7, since
∑j
k=1(Rα0 )k

is a convergent geometric series, we obtain that if R0 is sufficiently small, the sequence
K̃1
j is summable. Applying Lemma 8, uj = u0 +

∑j
k=1$k is a Cauchy sequence in

C0([0, T ]; Ẇ 1,Nα2 (Ω)) and converges to some solution u ∈ C0([0, T ]; Ẇ 1,Nα2 (Ω)) of
the integral equation

u(t) = e−tAϕ+

t∫
0

e−(t−s)A∇ ·
(
|∇u|α∇u

)
ds.

The continuity in time for t ∈ [0, T ] follows from standard results of Lemma 8.
Step 3 (Uniqueness). The uniqueness of the solution follows straightforward from the

fact that (uj) is a Cauchy sequence in the Banach space C0([0, T ]; Ẇ 1,Nα2 (Ω)).
Second, we prove that this unique local solution can be extended to the unique global

one. On the basis of Lemma 2, we know that Lemma 8 is still holds even if T = ∞.
In fact, Lemma 6 implies that ‖uj(t)‖

Ẇ 1, Nα
2

is bounded in j, provided that ‖u0‖
Ẇ 1, Nα

2

sufficiently small for all t ∈ (0, T ) even if T =∞. Then the unique local solution can be
extended to a unique global one.

4 Numerical experiments

We give some numerical simulations to illustrate the dynamics of the height of thin film
described by (7) for some sample initial conditions.

Firstly, we find u(x, t) ∈ Ω × (0, T ) such that

∂tu+ ∂xxxxu = ∂x
(
f(∂xu)

)
,

∂xu|∂Ω = ∂xxxu|∂Ω = 0,

u(x, 0) = sinx,

(11)
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Figure 1. Approximation solution for problem (11).

where Ω = [0, 2π], f(s) = |s|3s. By using the finite difference method and Matlab
the space subdivision step size is 2π/20, and the time subdivision step size is 1/10000,
respectively, the evolution of the film height u(x, t) at different time points, namely, at the
initial stage, i.e. t = 0.1 second, t = 10 second, t = 100 second and t = 1000 second,
are depicted in Fig. 1.

Secondly, we find u(x, y, t) ∈ Ω × (0, T ) such that

∂tu+ ∆2u−∇ ·
(
|∇u|2∇u

)
= 0,

∂νu|∂Ω = ∂ν∆u|∂Ω = 0,

u(x, 0) = sinx sin y,

(12)

whereΩ = [0, 2π]2. Applying the finite difference method and Matlab, the space subdivi-
sion step size and the time subdivision step size are also 2π/20 and 1/10000, respectively.
The evolution of the film height u(x, y, t) at different time points, namely, at the initial
stage, i.e. t = 0 second, t = 10 second, t = 100 second and t = 1000 second, are
depicted in Fig. 2.

The numerical solutions describe well some experimentally observed phenomena,
which characterize the growth of thin film such as rapid grain coarsening process,
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Figure 2. Approximation solution for problem (12).

a medium term island growth process and eventually a thickness growth process. Those
figures illustrate the qualitative behavior of the approximate solutions of (11) and (12).
On the basis of the above figures, we find out that the solutions to problems (11) and
(12) tend to be stable as long as the time goes on, which means that the results on global
existence of solutions for the epitaxy thin film growth model are reasonable.

5 Conclusion

We study a continuum model of YBCO film growth, which accounts for nucleation and
the transition to island growth, as well as for the subsequent roughening and coarsening
of the surface profile. This model is phenomenological in nature and is based on a formal
expansion of the surface mass current in a power series involving the surface slope ∇u
and various powers and derivatives. This continuum model is known to simulate experi-
mentally observed dynamics very well. In this paper, we prove the local well-posedness
of solutions for problem (7) and study the global well-posedness under the condition
that ‖ϕ‖

Ẇ 1, Nα
2

is sufficiently small. This can be seen as the first step of our study on
the epitaxy thin film growth model. We will study the long time behavior and numerical
approximation of solutions for such problem in the future.
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