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Abstract. This paper extends the memristive neural networks (MNNs) to quaternion field, a new
class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then
established, and the problem of drive-response global synchronization of this type of networks is
investigated in this paper. Two cases are taken into consideration: one is with the conventional
differential inclusion assumption, the other without. Criteria for the global synchronization of
these two cases are achieved respectively by appropriately choosing the Lyapunov functional and
applying some inequality techniques. Finally, corresponding simulation examples are presented to
demonstrate the correctness of the proposed results derived in this paper.

Keywords: memristor, exponential synchronization, drive-response systems, quaternion, time
delays.

1 Introduction

The memristor is considered to be the fourth fundamental circuit element, except resistor,
capacitor, and inductor. The concept of memristor is predicted by Chua in 1971 [10].
However, the first practical appliance was invented by HP company until 2008 [33].
Except for the properties of resistors, memristor also possesses lots of other superiority
like low power, high density, and good scalability. Thus, widely possible applications
of memristor have appeared in different areas [11, 27, 34]. Compared with conventional
resistors, memristors has a special characteristic that it can remember its recent value
between the period that the voltage is turned off and the next time it turned on. Due to
this wonderful character, memristor can be applied to act as the synapses in neurons to
better modify human brain. Furthermore, it has the potential to improve the application of
associative memory and data processing [4, 28].
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In the past few decades, the study of memristors has become an important topic among
various research areas. By introducing memristor into the connection weights of conven-
tional neural networks, the memristive neural networks (MNNs) is then constructed. It is
worth noting that MNNs are a particular type of switching nonlinear system dependent
on the state value. Recently, the investigation of its dynamical behavior has become a hot
topic, and numerous interesting results have been presented [2, 5, 6, 25, 40, 45]. However,
all the above-mentioned problems are mainly discussed in the real- or complex-valued
fields, the relevant study in quaternion field are relatively few till now.

Quaternion is a special case of Clifford algebra invented by British mathematician
Hamilton in 1843 [1]. Compared with real number and complex number, some basic
operation rules like commutativity of multiplication are not suitable for quaternion yet.
Due to this reason, the quaternion has not receive much research attention for the last few
decades. In recent years, the study of quaternion-valued systems has draw much interests
due to its broadly potential applications in various fields like attitude control [36], com-
puter graphics [49], image processing [41], and prediction of 3D wind processing [29].

With the introduction of quaternion value into NNs, the quaternion-valued neural
networks (QVNNs) was realized. As the extension of complex-valued memristive neural
networks (CVNNs), the states, connection weights, and activation functions of QVNNs
are all in quaternion field. Compared with RVNNs and CVNNs, the QVNNs possess the
superiority of low dimension and high efficiency in handling the multidimensional infor-
mation. For example, in image compression [31], it takes three real- or complex-valued
neurons to transmit one color signal. However, for QVNNs, it only takes one quaternion
neuron to transmit one color via 3 channels i, j, k, thus bring about a significant de-
crease in the scale of system and to an improvement in computation speed. Moreover,
some optimization and estimation problem solved by RVNNs or CVNNs [26, 32] can be
dealt with the QVNNs with better performance. Recently, as the rapid development of
QVNNs, some interesting results were reported [7–9, 12, 23, 30, 37, 38, 42, 43, 48], such
as global stability [7], multi-stability [43], robust stability [38], µstability [8], passivity
analysis [42], state estimation [9]. For instance, the global stability problem of QVNNs
is considered in [23] with the technique of quaternion-valued LMI, criterion of global
µstability are derived for the considered QVNNs. The multi-stability problem for delayed
QVNNs were studied in [43], some essential dynamical characteristics of the delayed
QVNNs are investigated by using the decomposition of the state space. [37] addresses
the problem of stability for continuous version and discrete version QVNNs with linear
threshold neurons. Via the plural decomposition method of quaternion, some criteria are
established. To the best of our knowledge, the study of dynamical behavior of QVNNs
mainly concentrate on the stability issue, the investigation of synchronization problem of
QVNNs is still quite few, let alone the memristive QVNNs. Recently, some researchers
introduced the memristive connection weights into CVNNs to construct a new model,
which bring about some interesting results [39,46]. However, as far as we considered, the
works combining the memristor with QVNNs is still very few [24], which is a new and
challenging topic. This gives the motivation for our current study.

An unavoidable phenomenon in various practical systems is time delay, which is
generated by infinite switching ratio of amplifiers or data transmission. Unfortunately,
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it may cause oscillation, instability, and other poor performance [3, 22, 39, 46–48]. The
influence of time delay on the dynamic systems has become a fundamental problem in
the research of natural science and engineering technology [13–21, 35, 44]. Thus, it is
meaningful to take time delays into the study of dynamical behavior of QVMNNs.

Considering the above-mentioned discussion, the main objective of this work is to in-
vestigate the global exponential synchronization of QVMNNs in drive-response scheme.
The main contributions of this thesis are presented as follows.

(i) In this work, the model of QVMNNs is established, which is a challenging model
with characteristics of both MNNs and QVNNs. Thus, our research is the generaliza-
tion and improvement for previous literature, more complicated dynamical behavior of
nonlinear system are coped with in this work.

(ii) It is the first time that synchronization problems for QVMNNs are investigated.
Two cases about the differential inclusion are considered here, several synchronization
criteria for QVMNNs are derived with different feedback controllers, which are easy to
verify.

(iii) In many previous literature, QVNNs are usually decomposed into four RVNNs or
two CVNNs for analysis. Different from that, our work directly investigate QVNNs as an
entirety without any decomposition, thus the property of quaternion is fully utilized and
the computation complexity can be reduced effectively.

The frame of this paper is arranged as follows. In Section 2, the model is formulated,
and some useful preliminaries are introduced. Main results are presented in Section 3. In
Section 4, two simulation examples are proposed to verity the correctness of our theorem
results. Finally, conclusions are achieved in Section 5.

Notations. In this paper, let R, C, and Q stand for the real field, complex field, and
quaternion field, respectively. C(1)([−τ, 0],Rn) denotes the family of continuous func-
tions from [−τ, 0] to Rn. co{F1, F2} denotes closure of the convex hull of Q produced
by quaternion values F1, F2.

2 Preliminaries and model formulation

The quaternion is a set of supercomplex number composed of one real part and three
imaginary parts. A quaternion q ∈ Q can be described in the form

q = qR + qI i+ qJj + qKk,

where qR, qI , qJ , qK ∈ R, the imaginary parts i, j, k obey the Hamilton rule:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Remark 1. Different from real number and complex number, the commutativity does not
hold for quaternion multiplication, i.e., for any x, y ∈ Q, it can not be guaranteed that
xy = yx. Due to this reason, some good properties in real field and complex field does
not hold for quaternion field. Thus, previous method dealing with RVNNs or CVNNs can
not be directly applied to QVNNs, which lead to the need to develop new techniques and
theories to cope with QVNNs.
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The conjugate of q is denoted by q̄ = qR − qI i − qJj − qKk. The modulus of q is
defined as

|q| =
√
q̄q =

√(
qR
)2

+
(
qI
)2

+
(
qJ
)2

+
(
qK
)2
.

For two quaternions h = hR + hI i + hJj + hKk and q = qR + qI i + qJj + qKk, the
addition between them is defined as

h+ q = hR + qR +
(
hI + qI

)
i+
(
hJ + qJ

)
j +

(
hK + qK

)
k.

By Hamilton rule, the product between them is defined as

hq =
(
hRqR − hIqI − hJqJ − hKqK

)
+
(
hRqI + hIqR + hJqK − hKqJ

)
i

+
(
hRqJ + hJqR + hKqI − hIqK

)
j +

(
hRqK + hKqR + hIqJ − hJqI

)
k.

With the introduction of memristive connection weights into QVNNs, the model of qua-
ternion-valued memristive neural networks is introduced as follows:

dxp(t)

dt
= −dpxp(t) +

n∑
q=1

apq
(
xp(t)

)
fq
(
xq(t)

)
−

n∑
q=1

bpq
(
xp(t)

)
fq
(
xq
(
t− τ(t)

))
, t > 0, (1)

where p = 1, 2, . . . , n; x(t) = (x1(t), . . . , xn(t))T ∈ Qn. xp(t) ∈ Q denotes the state
vector of the pth neuron at time t. dp > 0 is the self-feedback coefficient; f(x(·)) =
(f1(x1(·)), . . . , fn(xn(·)))T denotes the activation function. apq(xp(t)) and bpq(xp(t))
stand for the quaternion-valued memristive connection weights. τ(t) is the time delay
satisfying τ̇(t) 6 µ < 1 and 0 6 τ(t) < τ , where µ and τ are positive constants. The
initial condition of system (1) is taken as x(s) = φ(s), −τ 6 s 6 0, where φ(s) =
(φ1(s), . . . , φn(s))T ∈ C(1)([−τ, 0],Qn). The memristor connection weights can be
defined by

apq
(
xp(t)

)
=
Wapq(xq(t)) sgnpq

Cp
bpq
(
xp(t)

)
=
Wbpq(xq(t)) sgnpq

Cp

sgnpq =

{
1, p = q,

−1, p 6= q,

where Wapq(xq(t)) and Wbpq(xq(t)) stand for the memductances of memristors Mapq

and Mbpq , respectively. Cp is the capacitor. Mapq denotes the memristor between the ac-
tivation function fp(xp(t)) and xp(t). Similarly, Mbpq represents the memristor between
xp(t) and fp(xp(t − τ(t))). Based on the current-voltage characteristics and nature of
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memristor, the memristive weights can be defined as the state-dependent switching case:

aRpq
(
xRp (t)

)
=

{
âRpq, |xRp (t)| 6 Tp,

ǎRpq, |xRp (t)| > Tp,
aIpq
(
xIp(t)

)
=

{
âIpq, |xIp(t)| 6 Tp,

ǎIpq, |xIp(t)| > Tp,

aJpq
(
xJp (t)

)
=

{
âJpq, |xJp (t)| 6 Tp,

ǎJpq, |xJp (t)| > Tp,
aKpq
(
xKp (t)

)
=

{
âKpq, |xKp (t)| 6 Tp,

ǎKpq, |xKp (t)| > Tp,

bRpq
(
xRp (t)

)
=

{
b̂Rpq, |xRp (t)| 6 Tp,

b̌Rpq, |xRp (t)| > Tp,
bIpq
(
xIp(t)

)
=

{
b̂Ipq, |xIp(t)| 6 Tp,

b̌Ipq, |xIp(t)| > Tp,

bJpq
(
xJp (t)

)
=

{
b̂Jpq, |xJp (t)| 6 Tp,

b̌Jpq, |xJp (t)| > Tp,
bKpq
(
xKp (t)

)
=

{
b̂Kpq, |xKp (t)| 6 Tp,

b̌Kpq, |xKp (t)| > Tp,

where the switching jump Tp > 0, âlpq , ǎ
l
pq , b̂

l
pq , b̌

l
pq are known constants with respect to

memristances.

Remark 2. For the QVMNNs model proposed in [24], the switching rules are dependent
on the modulus of quaternion-valued state, so there are 2n possible switching conditions.
Different from that, in our work, each imaginary part of the quaternion connection weights
is determined by corresponding part of state value. Thus, there are 24n possible conditions
for the connection weights, which arouse more complex dynamical behaviors.

Definition 1. For âpq , ǎpq , b̂pq , b̌pq ∈ Q, the following definition is given:

max{âpq, ǎpq} = max
{
âRpq, ǎ

R
pq

}
+ imax

{
âIpq, ǎ

I
pq

}
+ jmax

{
âJpq, ǎ

J
pq

}
+ kmax

{
âKpq, ǎ

K
pq

}
,

min{âpq, ǎpq} = min
{
âRpq, ǎ

R
pq

}
+ imin

{
âIpq, ǎ

I
pq

}
+ jmin

{
âJpq, ǎ

J
pq

}
+ kmin

{
âKpq, ǎ

K
pq

}
,

max{b̂pq, b̌pq} = max
{
b̂Rpq, b̌

R
pq

}
+ imax

{
b̂Ipq, b̌

I
pq

}
+ jmax

{
âJpq, ǎ

J
pq

}
+ kmax

{
âKpq, ǎ

K
pq

}
,

min{b̂pq, b̌pq} = min
{
b̂Rpq, b̌

R
pq

}
+ imin

{
b̂Ipq, b̌

I
pq

}
+ jmin

{
âJpq, ǎ

J
pq

}
+ kmin

{
âKpq, ǎ

K
pq

}
,

ápq = max
{∣∣âRpq∣∣, ∣∣ǎRpq∣∣}

+ imax
{∣∣âIpq∣∣, ∣∣ǎIpq∣∣}+ jmax

{∣∣âJpq∣∣, ∣∣ǎJpq∣∣}+ kmax
{∣∣âKpq∣∣, ∣∣ǎKpq∣∣},

b́pq = max
{∣∣b̂Rpq∣∣, ∣∣b̌Rpq∣∣}

+ imax
{∣∣b̂Ipq∣∣, ∣∣b̌Ipq∣∣}+ jmax

{∣∣b̂Jpq∣∣, ∣∣b̌Jpq∣∣}+ kmax
{∣∣b̂Kpq∣∣, ∣∣b̌Kpq∣∣},

a+pq = max{âpq, ǎpq}, a−pq = min{âpq, ǎpq},

b+pq = max{b̂pq, b̌pq}, b−pq = min{b̂pq, b̌pq}.
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Since the connection weights apq(xp(t)) and bpq(xp(t)) are discontinuous, solutions
of (1) are in Filippovs sense. Based on the theory of set valued map and the principal of
differential inclusion [8], it yields from (1) that

dxp(t)

dt
∈ −dpxp(t) +

n∑
q=1

co
{
a−pq, a

+
pq

}
fq
(
xq(t)

)
+

n∑
q=1

co
{
b−pq, b

+
pq

}
fq
(
xq
(
t− τ(t)

))
,

or equivalently, there exists a′pq ∈ co{a−pq, a+pq}, b′pq ∈ co{b−pq, b+pq} such that

dxp(t)

dt
= −dpxp(t) +

n∑
q=1

a′pqfq
(
xq(t)

)
+

n∑
q=1

b′pqfq
(
xq
(
t− τ(t)

))
.

Consider system (1) as the drive system, then choose the response system as below:

dx∗p(t)

dt
= −dpx∗p(t) +

n∑
q=1

apq
(
x∗p(t)

)
fq
(
x∗q(t)

)
+

n∑
q=1

bpq
(
x∗p(t)

)
fq
(
x∗q
(
t− τ(t)

))
+ up(t), (2)

or equivalently, there exists a′′pq ∈ co{a−pq, a+pq}, b′′pq ∈ co{b−pq, b+pq} such that

dx∗p(t)

dt
= −dpx∗p(t) +

n∑
q=1

a′′pqfq
(
x∗q(t)

)
+

n∑
q=1

b′′pqfq
(
x∗q
(
t− τ(t)

))
+ up(t),

where up(t) is the controller to be designed later to realize the synchronization objec-
tive. Choose the initial state of system (2) as x∗(s) = ϕ(s) = (ϕ1(s), . . . , ϕn(s))T ∈
C(1)([−τ, 0], Qn),−τ 6 s 6 0. Then let e(t) = (e1(t), . . . , en(t)) be the synchroniza-
tion error, where ep(t) = xp(t)− x∗p(t). Thus, the following error system is achieved

dep(t)

dt
= −dpep(t) +

n∑
q=1

a′pqfq
(
xq(t)

)
−

n∑
q=1

a′′pqfq
(
x∗q(t)

)
+

n∑
q=1

b′pqfq
(
xq
(
t− τ(t)

))
−

n∑
q=1

b′′pqfq
(
x∗q
(
t− τ(t)

))
− up(t)

with initial condition ψ(s) = φ(s)− ϕ(s), −τ 6 s 6 0.

Definition 2. Under a properly designed control input, for any initial conditions φ and ϕ,
if there exists constants M > 1 and ε > 0 such that

n∑
p=1

ēp(t)ep(t) 6M
∥∥ψ(s)

∥∥e−εt,

where ‖ψ(s)‖ =
∑n
p=1 sup−τ6s60{ψ̄p(s)ψp(s)}, then the global exponential synchro-

nization is achieved between the drive system (1) and response system (2).
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Lemma 1. For all x, y ∈ Q, the following properties hold:

(i) x+ y = x̄+ ȳ;

(ii) xy = ȳx̄.

Lemma 2. For any x, y ∈ Q, ε ∈ R+, the following inequality holds:

xy + ȳx̄ 6 εx̄x+
1

ε
yȳ.

Assumption 1. For all x, y ∈ Q, there exists positive constants lp, p = 1, . . . , n, such
that (

fp(x)− fp(y)
)(
fp(x)− fp(y)

)
6 l2p(x− y)(x− y).

3 Main results

In this part, we focus on the drive-response global exponential synchronization of mem-
ristive QVNNs. The synchronization problem are considered in two cases.

Case 1. Based on the theory of differential inclusion, the following assumption is
introduced.

Assumption 2. (See [25].) Suppose that the following conditions hold for (1) and (2):

co
{
a−pq, a

+
pq

}
fq
(
xq(t)

)
− co

{
a−pq, a

+
pq

}
fq
(
x∗q(t)

)
⊆ co

{
a−pq, a

+
pq

}[
fq
(
xq(t)

)
− fq

(
x∗q(t)

)]
,

co
{
b−pq, b

+
pq

}
fq
(
xq(t)

)
− co

{
b−pq, b

+
pq

}
fq
(
x∗q(t)

)
⊆ co

{
b−pq, b

+
pq

}[
fq
(
xq(t)

)
− fq

(
x∗q(t)

)]
,

where x(t) = (x1(t), . . . , xn(t))T, x∗(t) = (x∗1(t), . . . , x∗n(t))T are two solutions of
systems (1) and (2) with initial values φ(s) = (φ1(s), . . . , φn(s))T, ϕ(s) = (ϕ1(s), . . . ,
ϕn(s))T, respectively.

Remark 3. Assumption 2 is a conventional assumption frequently used in many previous
literature on MNNs, which solves the effect of parameter mismatch of memristive con-
nection weights, thus effectively simplify the analysis process of synchronization problem
of memristive neural networks.

Now, the state feed-back controller is designed as

up(t) = kp
(
xp(t)− x∗p(t)

)
, kp > 0. (3)

Thus, the following error system is achieved:

dep(t)

dt
∈ −dpep(t) +

n∑
q=1

co
{
a−pq, a

+
pq

}
Fq
(
eq(t)

)
+

n∑
q=1

co
{
b−pq, b

+
pq

}
Fq
(
eq
(
t− τ(t)

))
− kpep(t)
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with the initial value ψ(s) = φ(s)− ϕ(s), −τ 6 s 6 0, where Fq(eq(t)) = fq(xq(t))−
fq(x

∗
q(t)), Fq(eq(t−τ(t))) = fq(xq(t−τ(t)))−fq(x∗q(t−τ(t))). Or equivalently, there

exists ãpq ∈ co{a−pq, a+pq}, b̃pq ∈ co{b−pq, b+pq} such that

dep(t)

dt
= −dpep(t) +

n∑
q=1

ãpqFq
(
eq(t)

)
+

n∑
q=1

b̃pqFq
(
eq
(
t− τ(t)

))
− kpep(t). (4)

Based on above discussion, the following criteria for global synchronization of master-
slave QVMNNs can be derived.

Theorem 1. Under Assumptions 1 and 2, if there exists positive constants kp, α, ε1, ε2
such that the following condition holds

α− 2dp − 2kp + ε1

n∑
q=1

ápq ¯́apq + ε2

n∑
q=1

b́pq
¯́
bpq +

1

ε1
nl2p +

nl2p
ε2(1− µ)

eατ 6 0 (5)

for p = 1, . . . , n, then the drive system (1) and response system (2) can reach global expo-
nential synchronization with convergence rateα under control input (3), i.e.,

∑n
p=1 ēp(t)×

ep(t) 6M‖ψ‖e−αt, M > 1.

Proof. Considering the Lyapunov functional as

V (t) = eαt
n∑
p=1

ēp(t)ep(t) +

n∑
p=1

γ

1− µ

t∫
t−τ(t)

eα(s+τ)F̄p
(
ep(s)

)
Fp
(
ep(s)

)
ds,

where α > 0 is the adjustable number, which act as the convergence rate, γ > 0 is the
known constant to be determined later in the proof.

Calculating the derivative of V (t) along the trajectory (4) yields

dV (t)

dt
6 αeαt

n∑
p=1

ēp(t)ep(t) + eαt
n∑
p=1

{
˙̄ep(t)ep(t) + ēp(t)ėp(t)

}
+

n∑
p=1

γeα(t+τ)

1− µ
F̄p
(
ep(t)

)
Fp
(
ep(t)

)
−

n∑
p=1

γeαtF̄p
(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))
6 αeαt

n∑
p=1

ēp(t)ep(t) + eαt
n∑
p=1

[
−dpēp(t) +

n∑
q=1

F̄q
(
eq(t)

)
¯̃apq

+

n∑
q=1

F̄q
(
eq
(
t− τ(t)

))¯̃
bpq − kpēp(t)

]
ep(t)
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+ eαt
n∑
p=1

ēp(t)

[
−dpep(t) +

n∑
q=1

ãpqFq
(
eq(t)

)
+

n∑
q=1

b̃pqFq
(
eq
(
t− τ(t)

))
− kpep(t)

]
+

n∑
p=1

γeα(t+τ)

1− µ
F̄p
(
ep(t)

)
Fp
(
ep(t)

)
−

n∑
p=1

γeαtF̄p
(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))
.

Immediately, one has

V (t) 6 eαt
n∑
p=1

(α− 2dp − 2kp)ēp(t)ep(t) + eαt
n∑
p=1

n∑
q=1

F̄q
(
eq(t)

)
¯̃apqep(t) + eαt

n∑
p=1

n∑
q=1

ēp(t)ãpqFq
(
eq(t)

)
+ eαt

n∑
p=1

n∑
q=1

F̄q
(
eq
(
t− τ(t)

))¯̃
bpqep(t)

+ eαt
n∑
p=1

n∑
q=1

ēp(t)b̃pqFq
(
eq
(
t− τ(t)

))
+

n∑
p=1

γeα(t+τ)

1− µ
F̄p
(
ep(t)

)
Fp
(
ep(t)

)
−

n∑
p=1

γeαtF̄p
(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))
.

According to Lemma 2 and Definition 1, there exists constants ε1, ε2 > 0 such that

dV (t)

dt
6 eαt

n∑
p=1

{
(α− 2dp − 2kp)ēp(t)ep(t) + ε1

n∑
q=1

ēp(t)ápq ¯́apqep(t)

+
1

ε1

n∑
q=1

F̄q
(
eq(t)

)
Fq
(
eq(t)

)
+ ε2

n∑
q=1

ēp(t)b́pq
¯́
bpqep(t)

+
1

ε2

n∑
q=1

F̄q
(
eq
(
t− τ(t)

))
Fq(eq

(
t− τ(t)

)}

+ eαt
n∑
p=1

{
γeατ

1− µ
F̄p
(
ep(t)

)
Fp
(
ep(t)

)
− γF̄p

(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))}
= eαt

n∑
p=1

(
α− 2dp − 2kp + ε1

n∑
q=1

ápq ¯́apq

+ ε2

n∑
q=1

b́pq
¯́
bpq +

1

ε1
nl2p +

γl2p
1− µ

eατ

)
ēp(t)ep(t)
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+ eαt
n∑
p=1

{
1

ε2
nF̄p

(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))
− γF̄p

(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))}
.

Choosing γ = n/ε2, it follows that

dV (t)

dt
6 eαt

n∑
p=1

(
α− 2dp − 2kp + ε1

n∑
q=1

ápq ¯́apq + ε2

n∑
q=1

b́pq
¯́
bpq

+
1

ε1
nl2p +

nl2p
ε2(1− µ)

eατ

)
ēp(t)ep(t).

Due to (5), we have dV (t)/dt 6 0. Hence,

V (t) 6 V (0) 6

(
1 +

γ

1− µ
τl2pe

ατ

)
‖ψ‖.

Let M = 1 + (γ/(1 − µ))τ l2pe
ατ , which implies that

∑n
p=1 ēp(t)ep(t) 6 M‖ψ‖e−αt.

Therefore, according to Definition 2, the drive system (1) and response system (2) can
reach exponential synchronization under control input (3).

Remark 4. Different from the technique adopted in [7, 26, 43], where the QVNNs are
decomposed into four RVNNs or two equivalent CVNNs. In this work, we directly discuss
the QVMNNs as an entirety without any decomposition, the advantage of our results is
that it can be applied to the case where activation functions cannot be expressed explic-
itly by real-imaginary parts. To solve the difficulty caused by the non-commutativity of
quaternion multiplication, the property xx̄ = x̄x = |x|2 ∈ R and Lemma 2 are fully
utilized. Thus, some interesting and satisfying results are obtained in this work.

Remark 5. For the first time, the memistive connection weights are brought into QVNNs.
As the extension of memristive RVNNs and CVNNs, the weight connections aRpq(xp(t)),
aIpq(xp(t)), aJpq(xp(t)), and aKpq(xp(t)) are decided by the corresponding imaginary unit
of state vector xp(t). Thus, the character of both MNNs and QVNNs are combined in
this new model, which lead to more complex dynamical behavior in nonlinear systems.
Hence, our work serves as the supplement for the previous results and enrich the theory
of QVNNs.

Theorem 1 is based on the Assumption 2, which is a conventional assumption adopted
in many previous literature. Though it can simplify the designing process of the feedback
controller effectively. However, this assumption is rather conservative and not suitable for
many practical situations. Due to this reason, in the following, we focus on the case that
Assumption 2 is not valid.
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Case 2. In this condition, the error system is achieved as

dep(t)

dt
= −dpep(t) +

n∑
q=1

a′pqFq
(
eq(t)

)
+

n∑
q=1

(a′pq − a′′pq)fq
(
x∗q(t)

)
+

n∑
q=1

b′pqFq
(
eq
(
t− τ(t)

))
+

n∑
q=1

(b′pq − b′′pq)fq
(
x∗q
(
t− τ(t)

))
− up(t), (6)

where a′pq , a
′′
pq ∈ co{a−pq, a+pq}, b′pq , b′′pq ∈ co{b−pq, b+pq}. For convenience of the proof,

the following assumption is given.

Assumption 3. There exists positive constants Mp > 0 such that

f̄p(·)fp(·) 6Mp, p = 1, 2, . . . , n.

The state feedback control law is designed as

up(t) = kpep(t) + λp
ep(t)

ēp(t)ep(t)
, (7)

where kp, λp are positive parameters to be designed later.

Theorem 2. Under Assumptions 1 and 3, if there exists positive constants kp, λp, α, ε1,
ε2, ε3, ε4 such that

−2kp + α− 2dp + ε1

n∑
q=1

ápq ¯́apq + ε2

n∑
q=1

b́pq
¯́
bpq +

nl2p
ε1

+
nl2p

ε2(1− µ)
eατ

+ ε3

n∑
q=1

(âpq − ǎpq)(¯̂apq − ¯̌apq) + ε4

n∑
q=1

(b̂pq − b̌pq)(¯̂bpq − ¯̌bpq) 6 0, (8)

−2λp +

(
1

ε3
+

1

ε4

)
nMp 6 0,

then global exponential synchronization can be reached between drive system (1) and
response system (2) under control input (7).

Proof. Constructing the Lyapunov functional as

V (t) = eαt
n∑
p=1

ēp(t)ep(t) +

n∑
p=1

γ

1− µ

t∫
t−τ(t)

eα(s+τ)F̄p
(
ep(s)

)
Fp
(
ep(s)

)
ds.
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Computing the derivative of V (t) along the trajectory (6), we have

dV (t)

dt
= αeαt

n∑
p=1

ēp(t)ep(t) + eαt
n∑
p=1

˙̄ep(t)ep(t) + eαt
n∑
p=1

ēp(t)ėp(t)

+

n∑
p=1

γ

1− µ
eα(t+τ)F̄p

(
ep(t)

)
Fp
(
ep(t)

)
−

n∑
p=1

γeαtF̄p
(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))
6 αeαt

n∑
p=1

ēp(t)ep(t) + eαt
n∑
p=1

[
−dpēp(t) +

n∑
q=1

F̄q
(
eq(t)

)
ā′pq

+

n∑
q=1

f̄q
(
x∗q(t)

)
(ā′pq − ā′′pq) +

n∑
q=1

F̄q
(
eq
(
t− τ(t)

))
b̄′pq

+

n∑
q=1

f̄q(x
∗
q

(
t− τ(t)

)
(b̄′pq − b̄′′pq)− ūp(t)

]
ep(t)

+ eαt
n∑
p=1

ēp(t)

[
−dpep(t) +

n∑
q=1

a′pqFq
(
eq(t)

)
+

n∑
q=1

(a′pq − a′′pq)fq
(
x∗q(t)

)
+

n∑
q=1

b′pqFq
(
eq
(
t− τ(t)

))
+

n∑
q=1

(b′pq − b′′pq)fq
(
x∗q
(
t− τ(t)

))
− up(t)

]

+ γeαt
n∑
p=1

{
eατ

1− µ
F̄p
(
ep(t)

)
Fp
(
ep(t)

)
− F̄p

(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))}
. (9)

According to Lemma 2 and Definition 1, there exists constants ε1, ε2, ε3, ε4 > 0 such that
the following inequalities hold:

F̄q
(
eq(t)

)
ā′pqep(t) + ēp(t)a

′
pqFq

(
eq(t)

)
6 ε1ēp(t)a

′
pqā
′
pqep(t) +

1

ε1
F̄q
(
eq(t)

)
Fq
(
eq(t)

)
6 ε1ēp(t)ápq ¯́apqep(t) +

1

ε1
F̄q
(
eq(t)

)
Fq
(
eq(t)

)
, (10)

F̄q
(
eq
(
t− τ(t)

))
b̄′pqep(t) + ēp(t)b

′
pqFq

(
eq
(
t− τ(t)

))
6 ε2ēp(t)b

′
pq b̄
′
pqep(t) +

1

ε2
F̄q
(
eq
(
t− τ(t)

))
Fq
(
eq
(
t− τ(t)

))
6 ε2ēp(t)b́pq

¯́
bpqep(t) +

1

ε2
F̄q
(
eq
(
t− τ(t)

))
Fq
(
eq
(
t− τ(t)

))
, (11)
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f̄q
(
x∗q(t)

)
(ā′pq − ā′′pq)ep(t) + ēp(t)(a

′
pq − a′′pq)fq

(
x∗q(t)

)
6 ε3ēp(t)(a

′
pq − a′′pq)(ā′pq − ā′′pq)ep(t) +

1

ε3
f̄q
(
x∗q(t)

)
fq
(
x∗q(t)

)
6 ε3ēp(t)(âpq − ǎpq)(¯̂apq − ¯̌apq)ep(t) +

1

ε3
Mq, (12)

f̄q
(
x∗q
(
t− τ(t)

))
(b̄′pq − b̄′′pq)ep(t) + ēp(t)(b

′
pq − b′′pq)fq

(
x∗q
(
t− τ(t)

))
6 ε4ēp(t)(b

′
pq − b′′pq)(b̄′pq − b̄′′pq)ep(t) +

1

ε4
f̄q
(
x∗q
(
t− τ(t)

))
fq
(
x∗q
(
t− τ(t)

))
6 ε4ēp(t)(b̂pq − b̌pq)(¯̂bpq − ¯̌bpq)ep(t) +

1

ε4
Mq. (13)

Combining (9)–(13), we have

dV (t)

dt
6 eαt

n∑
p=1

{
(α− 2dp) + ε1

n∑
q=1

ápq ¯́apq + ε2

n∑
q=1

b́pq
¯́
bpq +

nl2p
ε1

+
γl2p

1− µ
eατ

+ ε3

n∑
q=1

(âpq − ǎpq)(¯̂apq − ¯̌apq) + ε4

n∑
q=1

(b̂pq − b̌pq)(¯̂bpq − ¯̌bpq)

}

× ēp(t)ep(t) + eαt
n∑
p=1

{(
1

ε3
+

1

ε4

)
nMp

}

+ eαt
n∑
p=1

(
n

ε2
− γ
)
F̄p
(
ep
(
t− τ(t)

))
Fp
(
ep
(
t− τ(t)

))
+

n∑
p=1

eαtēp(t)

(
−2kpep(t)− 2λp

ep(t)

ēp(t)ep(t)

)
.

Choose γ = n/ε2, it follows

dV (t)

dt
6 eαt

n∑
p=1

{
(α− 2dp) + ε1

n∑
q=1

ápq ¯́apq + ε2

n∑
q=1

b́pq
¯́
bpq +

nl2p
ε1

+
nl2p

ε2(1− µ)
eατ

+ ε3

n∑
q=1

(âpq − ǎpq)(¯̂apq − ¯̌apq) + ε4

n∑
j=1

(b̂pq − b̌pq)(¯̂bpq − ¯̌bpq)− 2kp

}

× ēp(t)ep(t) + eαt
n∑
p=1

{(
1

ε3
+

1

ε4

)
nMp − 2λp

}
.

Due to condition (8), we have dV (t)/dt 6 0. With the same discussion in Theorem 1, it
follows

∑n
p=1 ēp(t)ep(t) 6M‖ψ‖e−αt,M = 1+(γ/(1−µ))τ l2pe

ατ , which implies that
the drive-response system (1) and (2) can reach exponential synchronization with control
input (7).
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Remark 6. The synchronization is an extremely important issue to a control system, and
it is essential for plenty of applications of neural networks. Recently, the synchronization
problem of RVNNs and CVNNs have been considered widely [2, 5, 6, 25, 45]. However,
the publications focused on the synchronization problem of QVNNs are still rare, let
alone the QVMNNs. Moreover, the QVNNs have better performance compared with
CVNNs and RVNNs in dealing with high dimensional data, thus leading to great potential
application in practical. Therefore, it is meaningful to investigate the global exponential
synchronization of QVMNNs.

Remark 7. The QVMNNs model formulated in our work can be regarded as the exten-
sion of traditional RVMNNs and CVMNNs. Thus, the result in this paper can be seen
as the generalization of many previous publications on MNNs [6, 40, 45]. Furthermore,
the combination of quaternion and memristor reveals more complex dynamical behavior
in neural networks, which remains to be challenging topic in future. The quaternion
Lyapunov method utilized in this work is efficient and convenient compared with previous
publications [7, 26, 32], and our results are easy to be verified by numerical example.

4 Numerical examples

In order to show the effectiveness of our theoretical results, some numerical examples are
given in this section.

First, we try to verify the Theorem 1.

Example 1. Consider the memristive QVNNs with 2 neurons as below:

dxp(t)

dt
= −dpxp(t) +

2∑
q=1

apq
(
xp(t)

)
fq
(
xq(t)

)
+

2∑
q=1

bpq
(
xp(t)

)
fq
(
xq
(
t− τ(t)

))
, p = 1, 2, (14)

where d1 = 1, d2 = 2, and the memristive connection weights are given as below. For
convenience, xlp(t) is simplified to xlp, l = R, I, J,K.

aR11
(
xR1
)

=

{
−1, |xR1 | 6 1,

1, |xR1 | > 1,
aR12
(
xR1
)

=

{
1, |xR1 | 6 1,

−1, |xR1 | > 1,

aR21
(
xR2
)

=

{
−1, |xR2 | 6 1,

1, |xR2 | > 1,
aR22
(
xR2
)

=

{
1, |xR2 | 6 1,

−1, |xR2 | > 1,

aI11
(
xI1
)

=

{
−1, |xI1| 6 1,

1, |xI1| > 1,
aI12
(
xI1
)

=

{
1, |xI1| 6 1,

−1, |xI1| > 1,

aI21
(
xI2
)

=

{
−1, |xI2| 6 1,

2, |xI2| > 1,
aI22
(
xI2
)

=

{
1, |xI2| 6 1,

−1, |xI2| > 1,
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aJ11
(
xJ1
)

=

{
2, |xJ1 | 6 1,

1, |xJ1 | > 1,
aJ12
(
xJ1
)

=

{
1, |xJ1 | 6 1,

−1, |xJ1 | > 1,

aJ21
(
xJ2
)

=

{
−1, |xJ2 | 6 1,

2, |xJ2 | > 1,
aJ22
(
xJ2
)

=

{
1, |xJ2 | 6 1,

−1, |xJ2 | > 1,

aK11
(
xK1
)

=

{
2, |xK1 | 6 1,

1, |xK1 | > 1,
aK12
(
xK1
)

=

{
1, |xK1 | 6 1,

−1, |xK1 | > 1,

aK21
(
xK2
)

=

{
−1, |xK2 | 6 1,

1, |xK2 | > 1,
aK22
(
xK2
)

=

{
1, |xK2 | 6 1,

−1, |xK2 | > 1,

bR11
(
xR1
)

=

{
2, |xR1 | 6 1,

1, |xR1 | > 1,
bR12
(
xR1
)

=

{
1, |xR1 | 6 1,

−1, |xR1 | > 1,

bR21
(
xR2
)

=

{
−1, |xR2 | 6 1,

2, |xR2 | > 1,
bR22
(
xR2
)

=

{
1, |xR2 | 6 1,

−1, |xR2 | > 1,

bI11
(
xI1
)

=

{
2, |xI1| 6 1,

1, |xI1| > 1,
bI12
(
xI1
)

=

{
1, |xI1| 6 1,

−1, |xI1| > 1,

bI21
(
xI2
)

=

{
−1, |xI2| 6 1,

2, |xI2| > 1,
bI22
(
xI2
)

=

{
1, |xI2| 6 1,

−1, |xI2| > 1,

bJ11
(
xJ1
)

=

{
−1, |xJ1 | 6 1,

1, |xJ1 | > 1,
bJ12
(
xJ1
)

=

{
1, |xJ1 | 6 1,

−1, |xJ1 | > 1,

bJ21
(
xJ2
)

=

{
−1, |xJ2 | 6 1,

1, |xJ2 | > 1,
bJ22
(
xJ2
)

=

{
1, |xJ2 | 6 1,

−1, |xJ2 | > 1,

bK11
(
xK1
)

=

{
−1, |xK1 | 6 1,

1, |xK1 | > 1,
bK12
(
xK1
)

=

{
1, |xK1 | 6 1,

−1, |xK1 | > 1,

bK21
(
xK2
)

=

{
−1, |xK2 | 6 1,

1, |xK2 | > 1,
bK22
(
xK2
)

=

{
1, |xK2 | 6 1,

−1, |xK2 | > 1,

the response system is given as

dx∗p(t)

dt
= −dpx∗p(t) +

2∑
q=1

apq
(
x∗p(t)

)
fq
(
x∗q(t)

)
+

2∑
q=1

bpq
(
x∗p(t)

)
fq
(
x∗q
(
t− τ(t)

))
+ kp

(
xp(t)− x∗p(t)

)
, p = 1, 2, (15)
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Figure 1. The trajectory of errors eR1 (t), eR2 (t), eI1(t), e
I
2(t) with no controller.

Figure 2. The trajectory of errors eJ1 (t), e
J
2 (t), e

K
1 (t), eK2 (t) with no controller.

where the transmission delay is τ(t) = 0.2 + 0.5 sin t, thus τ = 0.7, τ̇(t) 6 µ = 0.5 6 1.
The activation function is considered as

fi
(
xi(t)

)
= xRi (t) + xIi (t)i+ xJi (t)j + xKi (t)k.

It is easy to achieve that l1 = l2 = 1. Firstly, Figs. 1, 2 shows the synchronization errors
eR1 , eI1, eJ1 , eK1 , eR2 , eI2, eJ2 , eK2 between drive system (14) and response system (15) without
control input. Obviously, the drive-response system can not achieve synchronization
without external control input. Choose α = 1, ε1 = ε2 = ε3 = 1, k1 = k2 = 21,
it can be checked that the condition of Theorem 1 holds. Choosing 20 initial random
conditions in [−0.3, 0.3], Figs. 3, 4 describes the synchronization errors eR1 , eI1, eJ1 , eK1 ,
eR2 , eI2, eJ2 , eK2 between drive system (14) and response system (15) with control input
(3), respectively. From the simulation results, the error between drive system (14) and
response system (15) tends to be 0 under the designed controller (3), which verify the
results of Theorem 1.

Next, we provide a numerical example to demonstrate the effectiveness of Theorem 2
in this work.
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Figure 3. The trajectory of errors eR1 (t), eR2 (t), eI1(t), e
I
2(t) with controller (3).

Figure 4. The trajectory of errors eJ1 (t), e
J
2 (t), e

K
1 (t), eK2 (t) with controller (3).

Example 2. Consider the QVMNNs (14) as the drive system and the response system
with control input (7):

dx∗p(t)

dt
= −dix∗p(t) +

2∑
q=1

apq(x
∗
p(t))fq

(
x∗q(t)

)
+

2∑
q=1

bpq(x
∗
p(t))fq

(
x∗q
(
t− τ(t)

))
+ kpep(t) + λp

ep(t)

ēp(t)ep(t)
, p = 1, 2, (16)

where the memristive connection weights share the same value of Example 1, choose the
activation function as

fp
(
xp(t)

)
=

1

1 + ex
R
p (t)

+
1

1 + ex
I
p(t)

i+
1

1 + ex
J
p (t)

j +
1

1 + ex
K
p (t)

k, i = 1, 2.

Hence, l1 = l2 = 1, M1 = M2 = 4. Choose parameters α = 1, ε1 = ε2 = ε3 = ε4 = 1,
control gains k1 = 47, k2 = 62, λ1 = λ2 = 4, which means that the condition of
Theorem 2 is hold. Figures 5, 6 depicts the synchronization errors eR1 , eI1, eJ1 , eK1 , eR2 ,
eI2, eJ2 , eK2 with 20 initial conditions in [−0.4, 0.4]. From the simulation results, we can
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Figure 5. The trajectory of errors eR1 (t), eR2 (t), eI1(t), e
I
2(t) with controller (7).

Figure 6. The trajectory of errors eJ1 (t), e
J
2 (t), e

K
1 (t), eK2 (t) with controller (7).

see that the drive-response systems (14) and (16) are synchronized under controller (7),
which verify the results of Theorem 2.

5 Conclusion

In this paper, we introduced the memristive connection weights into QVNNs to construct
the QVMNNs, which is a new class of network model with the character of both MNNs
and QVNNs. Then, according to different assumptions of the memristive connection
weights, the global synchronization problem of this type of networks are considered in
two cases. Applying the theory of set-valued map, differential inclusion and Lyapunov
functional technique, several criterias for global exponential synchronization of drive-
response memristive QVNNs are obtained. Finally, simulation examples are given to
verify the correctness of our theorem.

Our future research will concentrate on two aspects: (i) The dynamics of quaternion-
valued memristive neural networks with stochastic case. (ii) Investigating the dynamical
behavior of coupled memristive quaternion-valued neural networks with imperfect com-
munication, such as packet dropout and quantization.
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