APPROXIMATION BY MEAN OF THE FUNCTION GIVEN BY DIRICHLET SERIES BY ABSOLUTELY CONVERGENT DIRICHLET SERIES

A. Laurinčikas
Vilnius University, Naugarduko 24, 2006 Vilnius, Lithuania

Abstract

It is proved an uniform on compact sets approximation by mean of the general Dirichlet series.

Let $s=\sigma+i t$ be a complex variable, $\left\{\lambda_{m}, m \in \mathbb{N}\right\}$ be an increasing sequence of real numbers such that $\lim _{m \rightarrow \infty} \lambda_{m}=+\infty$, and let $\left\{a_{m}, m \in \mathbb{N}\right\}$ be a sequence of complex numbers (\mathbb{N} denotes the set of all natural numbers). The series

$$
\begin{equation*}
\sum_{m=1}^{\infty} a_{m} e^{-\lambda_{m} s} \tag{1}
\end{equation*}
$$

is called a Dirichlet series with coefficients a_{m} and exponents λ_{m}. It is well known that the region of the convergence as well as of the absolute convergence of Dirichlet series is a half-plane. Suppose that the series (1) converges absolutely, for $\sigma>\sigma_{a}$ and denote its sum by $f(s)$. Then we have that $f(s)$ is a regular function on the half-plane $\sigma>\sigma_{a}$.

Suppose that the function $f(s)$ is analytically continuable to the region $\sigma>$ $\sigma_{a}-\sigma_{0}$, where $\sigma_{0}>0$. Denote by B a number (not always the same) bounded by a constant. Let, for $\sigma>\sigma_{a}-\sigma_{0}$,

$$
\begin{equation*}
f(s)=B|t|^{a}, \quad|t| \geq t_{0} \tag{2}
\end{equation*}
$$

with a certain constant $a>0$, and

$$
\begin{equation*}
\int_{0}^{T}|f(\sigma+i t)|^{2} d t=B T, \quad T \rightarrow \infty \tag{3}
\end{equation*}
$$

In the theory of Dirichlet series an approximation by mean of the function $f(s)$ by absolutely convergent Dirichlet series plays an important role. This is done,
see, for example, [1], for ordinary Dirichlet series for which $\lambda_{m}=\log m$. The aim of this note is to obtain a result of a such kind for general Dirichlet series (1).

Let $\sigma_{1}>\sigma_{0}$. We define a function

$$
l_{n}(s)=\frac{s}{\sigma_{1}} \Gamma\left(\frac{s}{\sigma_{1}}\right) e^{\lambda_{n} s}, \quad \sigma \in\left[-\sigma_{1}, \sigma_{1}\right]
$$

Here, as usual, $\Gamma(s)$ denotes the Euler gamma-function. We will consider, for $\sigma>\sigma_{a}-\sigma_{0}$, the following function

$$
f_{n}(s)=\frac{1}{2 \pi i} \int_{\sigma_{1}-i \infty}^{\sigma_{1}+i \infty} f(s+z) l_{n}(z) \frac{d z}{z}
$$

In view of the equality

$$
|\Gamma(s)|=\sqrt{2 \pi}|t|^{\sigma-1 / 2} e^{-\pi|t| / 2}\left(1+B|t|^{-1}\right), \quad|t| \geq t_{0}
$$

and of the condition (2) we have that the integral for $f_{n}(s)$ exists.
Lemma. We have

$$
f_{n}(s)=\sum_{m=1}^{\infty} a_{m} \exp \left\{-e^{\left(\lambda_{m}-\lambda_{n}\right) \sigma_{1}}\right\} e^{-\lambda_{m} s}
$$

the series being absolutely convergent for $\sigma>\sigma_{a}-\sigma_{0}$.
Proof. Since $\sigma_{1}>\sigma_{0}$, we see that $\sigma+\sigma_{1}>\sigma_{a}$. Hence the function $f(s+z)$ for Re $z=\sigma_{1}$ can be presented by the absolutely convergent Dirichlet series

$$
f(s+z)=\sum_{m=1}^{\infty} a_{m} e^{-\lambda_{m}(s+z)}
$$

Let

$$
b_{n}(m)=\frac{1}{2 \pi i} \int_{\sigma_{1}-i \infty}^{\sigma_{1}+i \infty} l_{n}(s) e^{-\lambda_{m} s} \frac{d s}{s}
$$

and consider the series

$$
\begin{equation*}
\sum_{m=1}^{\infty} a_{m} b_{n}(m) e^{-\lambda_{m} s} \tag{4}
\end{equation*}
$$

In view of the estimate

$$
b_{n}(m)=B e^{-\lambda_{m} \sigma_{1}} \int_{-\infty}^{\infty}\left|l_{n}\left(\sigma_{1}+i t\right)\right| d t=B e^{-\lambda_{m} \sigma_{1}}
$$

the series (4) absolutely converges for $\sigma>\sigma_{a}-\sigma_{0}$. Therefore we may change sum and integral in the definition of $f_{n}(s)$. This gives

$$
\begin{equation*}
f_{n}(s)=\sum_{m=1}^{\infty} a_{m} e^{-\lambda_{m} s} \frac{1}{2 \pi i} \int_{\sigma_{1}-i \infty}^{\sigma_{1}+i \infty} l_{n}(z) e^{-\lambda_{n} z} \frac{d z}{z}=\sum_{m=1}^{\infty} a_{m} b_{n}(m) e^{-\lambda_{m} s} \tag{5}
\end{equation*}
$$

For positive b and c the following formula

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \Gamma(s) b^{-s} d s=e^{-b}
$$

is true [2]. Consequently,

$$
\begin{gathered}
b_{n}(m)=\frac{1}{2 \pi i} \int_{\sigma_{1}-i \infty}^{\sigma_{1}+i \infty} \frac{s}{\sigma_{1}} \Gamma\left(\frac{s}{\sigma_{1}}\right) e^{-\left(\lambda_{m}-\lambda_{n}\right) s} \frac{d s}{s}= \\
\frac{1}{2 \pi i} \int_{\sigma_{1}-i \infty}^{\sigma_{1}+i \infty} \Gamma\left(\frac{s}{\sigma_{1}}\right) e^{\left(\lambda_{m}-\lambda_{n}\right)\left(-s / \sigma_{1}\right) \sigma_{1}} d\left(\frac{s}{\sigma_{1}}\right)= \\
\exp \left\{-e^{\left(\lambda_{m}-\lambda_{n}\right) \sigma_{1}}\right\} .
\end{gathered}
$$

This together with (5) proves the lemma.
Denote by D the half-plane $\sigma>\sigma_{a}-\sigma_{0}$.
Theorem. Let K be a compact subset of D. Then

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sup _{s \in K}\left|f(s+i \tau)-f_{n}(s+i \tau)\right| d \tau=0
$$

Proof. We begin with the change of the contour of integration in the definition of $f_{n}(s)$. Clearly, the integrand in the definition of $f_{n}(s)$ has a simple pole at the point $z=0$. Let $\varepsilon>0$ and $\sigma_{1}>0$ be such that σ belongs to $\left[\sigma_{a}-\sigma_{0}+\varepsilon, \sigma_{1}\right.$] when $s \in K$. We take

$$
\sigma_{2}=\sigma_{a}-\sigma_{0}+\frac{\varepsilon}{2}
$$

Then the residue theorem yields for $\sigma \in\left[\sigma_{a}-\sigma_{0}+\varepsilon, \sigma_{1}\right]$

$$
\begin{equation*}
f_{n}(s)=\frac{1}{2 \pi i} \int_{\sigma_{2}-\sigma-i \infty}^{\sigma_{2}-\sigma+i \infty} f(s+z) l_{n}(z) \frac{d z}{z}+f(s) \tag{6}
\end{equation*}
$$

Let L be a simple closed contour lying in D and enclosing the set K, and let δ denote the distance of L from the set K. Then by the Cauchy formula

$$
f(s+i \tau)-f_{n}(s+i \tau)=\frac{1}{2 \pi i} \int_{L} \frac{f(z+i \tau)-f_{n}(z+i \tau) d z}{z-s}
$$

where $s \in K$, we have

$$
\sup _{s \in K}\left|f(s+i \tau)-f_{n}(s+i \tau)\right| \leq \frac{1}{2 \pi \delta} \int_{L}\left|f(z+i \tau)-f_{n}(z+i \tau)\right||d z| .
$$

Therefore, for sufficiently large T, we obtain

$$
\begin{gather*}
\frac{1}{T} \int_{0}^{T} \sup _{s \in K}\left|f(s+i \tau)-f_{n}(s+i \tau)\right| d \tau= \\
\frac{B}{T \delta} \int_{L}|d z| \int_{0}^{2 T}\left|f(\operatorname{Re} z+i \tau)-f_{n}(\operatorname{Re} z+i \tau)\right| d \tau+\frac{B|L|}{T \delta}= \tag{7}\\
\frac{B|L|}{T \delta}+\frac{B|L|}{T \delta} \sup _{s \in L} \int_{0}^{2 T}\left|f(\sigma+i t)-f_{n}(\sigma+i t)\right| d t
\end{gather*}
$$

Here $|L|$ is the lenght of the contour L. Now we choose the contour L so that, for $s \in L$,

$$
\sigma \geq \sigma_{a}-\sigma_{0}+\frac{3 \varepsilon}{4}, \quad \delta \geq \frac{\varepsilon}{4}
$$

The formula (6) for such σ yields

$$
f(\sigma+i t)-f_{n}(\sigma+i t)=B \int_{-\infty}^{\infty}\left|f\left(\sigma_{2}+i t+i \tau\right)\right|\left|l_{n}\left(\sigma_{2}-\sigma+i \tau\right)\right| d \tau
$$

Hence, for the same σ, we find that

$$
\begin{gather*}
\frac{1}{T} \int_{0}^{2 T}\left|f(\sigma+i t)-f_{n}(\sigma+i t)\right| d t= \\
B \int_{-\infty}^{\infty}\left|l_{n}\left(\sigma_{2}-\sigma+i \tau\right)\right| \frac{1}{T} \int_{-|\tau|}^{|\tau|+2 T}\left|f\left(\sigma_{2}+i t\right)\right| d t d \tau . \tag{8}
\end{gather*}
$$

Taking into account the estimate (3), we obtain that

$$
\int_{-|\tau|}^{|\tau|+2 T}\left|f_{n}\left(\sigma_{n}+i t\right)\right| d t \leq\left(\int_{-|\tau|}^{|\tau|+2 T}\left|f_{2}\left(\sigma_{2}+i t\right)\right|^{2} d t\right)^{1 / 2}(2 T+2|\tau|)^{1 / 2}=B(2 T+2|\tau|)
$$

Thus, (8) implies the estimate

$$
\begin{gather*}
\frac{1}{T} \sup _{\substack{\sigma \\
s \in L}} \int_{0}^{2 T}\left|f(\sigma+i t)-f_{n}(\sigma+i t)\right| d t= \\
B \sup _{\substack{\sigma \\
s \in L}} \int_{-\infty}^{\infty}\left|l_{n}\left(\sigma_{2}-\sigma+i t\right)\right|\left(1+\frac{|t|}{T}\right) d t= \tag{9}\\
B \sup _{\sigma \in\left[-\sigma_{1},-\varepsilon / 4\right]} \int_{-\infty}^{\infty}\left|l_{n}(\sigma+i t)\right|(1+|t|) d t .
\end{gather*}
$$

However, the definition of $l_{n}(s)$ gives

$$
\lim _{n \rightarrow \infty} \sup _{\sigma \in\left[-\sigma_{1},-\varepsilon / 4\right]} \int_{-\infty}^{\infty}\left|l_{n}(\sigma+i t)\right|(1+|t|) d t=0
$$

This, (7) and (8) completes the proof of the theorem.

REFERENCES

1. A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.
2. E.C.Titchmarsh, The Theory of Functions, (in Russian), Nauka, Moscow, 1980.
