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Abstract

Projection pursuit is a method for �nding interesting projections of

high-dimensional multivariate data. Typically interesting projections

are found by numerical maximizing some measure of non-normality of

projected data (so-called projection index) over projection direction.

The problem is to select the index for projection pursuit. In this

article we compare performance of �ve projection indices: projection

indices based on !
2, 
2, Kolmogorov-Smirnov goodness-of-�t mea-

sures, entropy index and Friedman's index. It is supposed that ob-

served random variable satis�es a multidimensional Gaussian mixture

model.

Keywords: Gaussian mixture model, discriminant space, projec-

tion pursuit, projection index.

1 Introduction

Rather frequently data sets consist of high-dimensional observations. Pro-

jection pursuit (PP) is a method for �nding interesting projections of high-

dimensional multivariate data. The �rst research into projection pursuit is

accredited to Kruskal [6]. However, the �rst succesful implementation of

projection pursuit method was by Friedman and Tukey [3], whose also sug-

gested the name Projection pursuit. The �rst examination of the theoretical

aspects of PP was made by Huber [4].
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Usually PP procedures are used for high-dimensional distribution den-

sity and regression function estimation. However, they also yield a natural

way to estimate a discriminant space (see, e.g., Aivazyan et al [1], Rudzkis

and Radavi�cius [7, 8]) and thus are a promising alternative to the principal

component method.

The two basic elements of projection pursuit are: a PP index and a

PP algorithm. A projection index (PI) is a measure of how interesting a

projection is. Usually PI is de�ned as pseudodistance between the distri-

bution of the projected observation and some "uninteresting" distribution.

Frequently the maximum of the index over projections corresponds to

the most interesting projection. A natural "uninteresting" distribution

is a normal distribution. When applying PP to data, a sample version

(estimate) of PI based on the data is used.

In this paper we investigate the role of PI in PP procedures. Five

traditional PI are compared by their impact on discriminant space (DS)

estimating accuracy by means of computer simulation. The underlying

model is a mixture of Gaussian random vectors with equal covariance

matrices. The accuracy of DS estimate obtained via PP is evaluated by

average of squared distances of its basic vectors to the true DS.

In the next section necessary notation and de�nitions are introduced.

In Section 3 �ve PI's and their sample estimators are given. The simula-

tion results and preliminary conclusions are presented in 4 and 5 sections,

respectively.

I am grateful to prof. R.Rudzkis for the problem formulation and

stimulating discussions. I am also thankful to reviewer for constructive

remarks.

2 Notation and de�nitions

Let Yi, i = 1; 2; : : : ; q, be d-dimensional Gaussian random variables with

means Mi and covariance matrix Ri, i = 1; 2; : : : ; q. Let � be random

variable (r.v.) independent of Yi, i = 1; 2; : : : ; q, and taking on values

1; 2; : : : ; q with unknown probabilities pi > 0, i = 1; 2; : : : ; q, respectively.

We observe d-dimensional r.v. X = Y� . The distribution density (d.d.) of

r.v. X is therefore a mixture of Gaussian d.d.'s

f(x) =

qX
i=1

pi'i(x)
def
= fq(x; �); x 2 Rd; (1)
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where � = (pi;Mi; Ri; i = 1; 2; : : : ; q) is an unknown multidimensional

parameter. Probabilities pi = Pf� = ig are called a priori probabilities.

Discriminant space

Let V = cov(X;X) be the covariance matrix of r.v. X and suppose for

simplicity EX = 0. De�ne a scalar product on Rd by the equality

(u; h) = uTV �1h; u; v 2 Rd;

and denote by uH the projection of arbitrary vector u 2 R
d to a linear

subspace H � R
d.

DEFINITION. A linear subspace H � R
d satisfying the condition

Pf� = ijX = xg = Pf� = ijXH = xHg; 8x 2 Rd; i = 1; 2; : : : ; q;

(2)

and having the minimal dimension is called a discriminant space.

It is known that for Gaussian mixture densities (1) with equal covariance

matrices we have dimH < q (see Aivazyan et al [1]).

Let k = dimH and vectors u1; u2; : : : ; uk be a basis in the discriminant

space H. Denote U = (V �1u1; V
�1u2; : : : ; V

�1uk)
T . Then

Pf� = ijX = xg = Pf� = ijUX = Uxg; i = 1; 2; : : : ; q; x 2 Rd:

This means that, given a sample fX1; X2; : : : ; XNg
def
= X

N of X, the pro-

jected sample fUX1; UX2; : : : ; UXNg is a suÆcient statistics for estimating
a posteriori probabilities. The distribution density of r.v. UX is a mixture

of Gaussian d.d.'s

fH(z) =

qX
i=1

pi'
H
i (z)

def
= fHq (z; �H); z 2 Rk; (3)

here 'Hi = '(�;MH
i ; R

H
i ), is k-dimensional Gaussian d.d. with mean

MH
i = UMi and covariance matrix RH

i = UTRiU , i = 1; 2; : : : ; q, �H =

(pi;M
H
i ; R

H
i , i = 1; 2; : : : ; q) is a multidimensional parameter.

Projection pursuit algorithm

One of methods to �nd discriminant space (DS) is projection pursuit

algorithm. This is a step-by-step procedure to �nd the basic vectors of DS.
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Let F be the set of all one-dimensional Gaussian mixture distribution

functions, � = �(G;	), G;	 2 F , be some functional satisfying the follow-
ing conditions:

� (G;	) > 0; if G 6= 	; (4)

� (G;G) = 0; (5)

�

�
G

� �+ �

c

�
;	

� �+ �

c

��
= �(G;	); c > 0; � 2 R1: (6)

For arbitrary non-zero u 2 Rd de�ne a projection index Q(u) = �(Fu;�),

where Fu is the distribution function of the standardized r.v. uTX, � is

the standard Gaussian distribution function.

Let orthonormal vectors u1; u2; : : : ; uk be found step-by-step as follows:

U0 = f0g; (7)

ui = argmaxfQ(u); u 2 U?i�1; kuk = 1g; (8)

Ui = spanfu1; u2; : : : ; uig; i = 1; 2; : : : ; d; (9)

and set

k = minfl : Q(ul+1) = 0g (10)

Then, under some aditional conditions, we have H = Uk [9], i.e., the

vectors u1; u2; : : : ; uk, determined by (7)-(10) constitute a basis in the DS

H. In real calculations we use projection index estimate bQ(u) = bQ(u;XN )

based on the sample XN .

3 Projection indices

The choice of the projection index is the most critical aspect of projection

pursuit technique. In this section we de�ne the �ve PI's whose appropri-

ateness for DS estimation are to be investigated in the last section.

Let X1;X2; : : : ;XN be independent identically distributed random vec-

tors with common distribution function (d.f.) G 2 F . In the sequel g ( )

stands for the d.d. of G (respectively, 	 2 F).
Denote Yj = �(

Xj�X
S

), where � is the standard Gaussian d.f.,

X =
1

N

nX
j=1

Xj ; (11)
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and

S2 =
1

N � 1

NX
j=1

(Xj�X): (12)

The following �ve projection pursuit indices are to be compared. Let

G;	 2 F .

1. The projection index based on !2 goodness-of-�t measure (!2 PI)

�1(G;	) = N �
Z 1
�1

(G(x)�	(x))2d	(x): (13)

Statistical estimate is given by equality

b�1 = 1

12N
+

NX
j=1

�
Yj �

2j � 1

2N

�
2

: (14)

2. The projection index based on 
2 goodness-of-�t measure (
2 PI)

�2(G;	) = N �
Z 1

�1

(G(x)�	(x))2

	(x)(1 �	(x))
d	(x): (15)

Its statistical estimate is

b�2 = �N�2�
NX
j=1

�
2j � 1

2N
lnYj +

�
1� 2j � 1

2N

�
ln(1� Yj)

�
:

(16)

3. The projection index based on Kolmogorov-Smirnov goodness-of-�t

measure (KSPI):

�3(G;	) = sup
x
jG(x)�	(x)j: (17)

Its statistical estimate is

b�3 = max(D+

N ;D
�
N ); (18)

where

D+

N = max
1�j�N

�
j

N
� Yj

�
and

D�N = max
1�j�N

�
Yj �

j � 1

N

�
:
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4. The entropy index (EPI)

�4(G;	) =

Z 1
�1

ln

�
 (x)

g(x)

�
 (x)dx: (19)

To estimate �4 we use k-nearest neighbors method:

b�4 = 1

N � 2k

N�kX
j=k+1

ln

�
2k + 1

N
� 1

(Yj+k � Yj�k)

�
; (20)

where k = [
p
N ] + 1.

5. The most popular is Friedman's index (FPI)

�5(G;	) =

Z 1
�1

�
g(x)

 (x)
� 1

�
2

 (x)dx: (21)

Here for �5 estimating we use another form of �5:

�5(G;	) =

Z 1
�1

g2(x)

 (x)
dx�1: (22)

Statistical estimate b�5 of �5 is based on the kernel method

b�5 = 2

(N � 1)Nh

NX
j=1

NX
l=j+1

�(Yj; Yl)�W
�
Yl � Yj

h

�
�1; (23)

where h = 1p
N
,

�(Yj ; Yl) =

8>>>>><
>>>>>:

1; when Yj � h and 1� Yl � h;

1

1� 1

2
(1�Yj=h)2

; when Yj < h;

1

1� 1

2
(1�(1�Yl)=h)

2
; when 1� Yl < h;

and

W (t) =

�
(1� jtj); when jtj � 1;

0; when jtj > 1;
is triangle kernel:
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The �rst three indices, namely, !2 PI,
2 PI, and KSPI, are traditional

statistics to test normality. EPI and FPI are most popular indices used in

projection pursuit algorithms. The foregoing explains our choice of PI's.

The accuracy of estimated DS is measured by the following pseudodis-

tance (discrepancy):

D( bH jH) =
1

k

kX
j=1

���bu(j)��bu(j)�
H

���2; (24)

where bu(j) and u(j) are the estimated and the true basic vectors of the DS.

Thus, D( bH jH) is an average of squared distance of the basic vectors

of the estimated DS to the true DS. In fact, k � D( bH jH) is equal to

the squared Hilbert-Schmidt norm of the projection operator onto the

orthogonal complement of DS H restricted on bH. Hence the measure of

accuracy D( bH jH) is invariant with respect to aÆne transformations.

4 Simulation results

We investigated 5-dimensional Gaussian mixture models with 3 and 4 com-

ponents having di�erent means and eqaul covariance matrices. Since the

PI's and the accuracy measure D invariant with respect to aÆne trans-

formations, without loss of generality the covariances are taken to be unit

matrices. The dimension of the DS's varies from one to three.

For the �rst test, we selected 5-dimensional Gaussian mixture model

with three clusters with the means (�r;�a; 0; 0; 0), (0; 2a; 0; 0; 0), (r;�a; 0;
0; 0), where r = 3 and a is a parameter. The sample size of simulated data

is taken to be N = 100.

Let us note, that the dimension of DS is one in case a = 0 and dimension

of DS is two for the other a values. However in spite of that, we suppose that

always k = 2. For this case the results are presented in Fig.1. The curves

in Fig.1 corresponds to the PI's enumerated in the same order as in section

3. One can observe, that for all a values FPI gives better accuracy, 
2 PI,

!2 PI and KSPI accuracy is similar, while EPI is the "worst" projection

index for all a values. However, calculation of FPI is very time consuming

procedure as compared with others projection indices, e.g. �nding DS basic

vectors using KSPI, !2 PI and EPI takes approximately 4,5 time less than

using FPI.

For the second test, we selected 5-dimensional Gaussian mixture model

with four clusters with the means (�r;�a;�b; 0; 0), (0; 2a;�b; 0; 0), (r;�a;
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Figure 1: The accuracy of DS estimate vs. the parameter a (dimH = 2)

Figure 2: The accuracy of DS estimate vs. the parameter a (dimH = 3,

b = 0)
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Figure 3: The accuracy of DS estimate vs. the parameter a (dimH = 3,

b = 0; 75)

�b; 0; 0), (0; 0; 3b; 0; 0) respectively, where r = 3, a and b are parameters.

Calculation were carried out for values: b = 0; 0; 25; 0; 5; 0; 75; 1; 0; 1; 25.

Notice, that in this test the dimension of DS is one in case a = 0; b = 0,

it is two when a = 0 or b = 0, and three for other a and b values. However,

we suppose that DS dimension is three.

We present results for b = 0, b = 0; 75 and b = 1; 25. In Fig. 2 we

observe FPI advantage for small a values (a < 0; 75) as compare to other

projection indices. However, for greater a values (a � 0; 75) FPI becomes

worse, i.e. other projection index gives better accuracy. For large b values

(Fig. 3-4) accuracy of estimated DS are similar for all projection indices

(except EPI). Therefore, indices which takes less time for calculations,

KSPI, !2 PI, 
2 PI, have an advantage.

5 Conclusions

The tests performed show that the Friedman's projection index gives better

accuracy in cases where distance between clusters is close. When the

distance increases projection indeces based on Kolmogorov-Smirnov, !2, 
2

goodness-of-�t measures and Friedman's projection index yields the similar

accuracy. In general, taking into account the calculation results and time

we can conclude that projection indices based on 
2, !2 and Kolmogorov-

Smirnov goodness-of-�t measures are better than the other. However, this

is only the preliminary results and further investigations are necessary for

�nal conclusions.
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Figure 4: The accuracy of DS estimate vs. the parameter a (dimH = 3,

b = 1; 25)
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