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Euclidean action plays a fundamental role in physics. There is a method to

compute it by using the “universality” property of the Riemann zeta-function

[1]. But we will try to apply some different approach which is based on

geometric zeta-functions. We will use geometric zeta-function to find infor-

mation about Euclidean action, not calculating it, but finding distribution of

geometric zeta poles. First, we will create a fractal string with scaling factors

rj which will generate fieldsφ(n) at lattice pointsn. Secondly, we will

take scaling factors to geometric zeta-function and investigate its distribution

of poles (spectrum) by defining a suitable test functionϕ (in our case we

will use some analogy with partition functions). This method is indirect, and

the information we get is much more complicated, but it is a powerful tool

extending Euclidean action to new horizons.

We begin with some definitions. Let, as usual,R, Z, N and C denote

the sets of all real numbers, integer numbers, positive integer numbers and

complex numbers, respectively.
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A fractal stringL is a bounded open subset ofR, which consists of coun-

tably many open intervals, the lengths of which are denoted byl1 ≥ l2 ≥ . . .

> 0, andl−1
j ∈ N, j = 1, 2, . . . .

The dimensionD = DL of the fractal stringL is defined by

DL = inf

{
σ > 0:

∞∑

j=1

lσj < ∞
}

.

Let s = σ + it be a complex variable. Thegeometric zeta-functionζL(s)

of the fractal stringL is given by

ζL(s) =
∞∑

j=1

lsj .

Thescreen S is the contour

S(t) = r(t) + it, t ∈ R, i =
√
−1,

with some continuous functionr : R → [−∞, DL].

The set

W =
{
s ∈ C : σ ≥ r(t)

}
,

is called thewindow. We assume that the functionζL(s) has a meromorphic

continuation to a neighborhood ofW with set of poles

DL(W ) =
{
ω ∈ C : ζL(s) has a pole atω

}
,

called thevisible complex dimensions of the fractal stringL.

The total lengthL∗ of the fractal stringL is

L∗ = ζL(1) =
∞∑

j=1

lj .

Note thatL∗ is a finite number and equals to the Lebesgue measure ofL [2].

Let N ≥ 2, and let given positive numbersr1, r2, ..., rN satisfyr1 ≥ r2 ≥
... ≥ rN . Assume that

R :=
N∑

j=1

rj < 1.
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Thenr1, r2, ..., rN are calledscaling factors.

Given an open interval of lengthL∗ we construct aself-similar string L

with scaling factorsr1, r2, ..., rN by procedure reminiscent of the construc-

tion of the Cantor string. Subdivide an intervalI into intervals of length

r1L, r2L, ..., rNL. The remaining peace of lengthL(1−R) is the first member

of the string. Repeat this process with the remaining intervals.

Theorem 1. Let L be a self-similar string, constructed as above with scaling

factors r1, r2, ..., rN . Then the geometric zeta-function of this string has a

meromorphic continuation to the whole complex plane given by

ζL(s) =

(
L(1 − R)

)s

1 −∑N
j=1 rs

j

, s ∈ C.

Proof can be found in [2].

Now we will define the Euclidean action and relate it with geometric zeta-

function. The Euclidean action on a lattice of step sizea, for a finite time

interval(0, L∗), is given by

S(φ) =
1

2a

ν−1∑

v=1

(
φ(xv)−φ(xv+1)

)2
+

m2a

2

ν∑

v=1

φ2(xv)+ a
ν∑

v=1

V
(
φ(xv)

)
,

where ν = L∗/a is a number of lattice points.φ(x) is a physical field

(set of continuous real functions),φ(xv) is its value at thev-th lattice point

xv = va, v = 1, 2, .., ν. HereV is a continuous real function, andm denotes

the mass. Assume that a set of fields defines a (functional) fractal string

LS = φ(x1), φ(x2), ..., φ(xν) which lengths are continuous real functions.

We can create a set of fractal stringsLΣ = {L1, L2, ...} which are generated

by scaling factors{r̂j}M
j=1. LΣ consists of fractal string lengths

{
{l1j}∞j=1,

{l2j}∞j=1, . . .
}

. Then for every functionφ(xv), v = 1, 2, ..., ν and ǫ > 0

we can find|LΣ(xv) − φ(xv)| < ǫ, whereLΣ(xv) means that we are taking

fractal string lengthlvj . Perform this operation for all the functionsφ(xv) at

all the pointsxv. Finally, we will get a set of fractal strings which were used,

so we will obtain scaling factors{r̂j}N
j=1, N ≤ M , which were applied to

approximateφ(xv).
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Denotingr̂ = (r̂1, r̂2, ..., r̂N ) we can write thescaled Euclidean action

S(r̂) = c1

N−1∑

j=1

(r̂j − r̂j−1)
2 + c2

N∑

j=1

r̂2
j + c3

N∑

j=1

V (r̂j)

= c1R1 + c2R2 + c3f(r̂),

where we can interpretc1R1, c2R2 andc3f(r̂) := c3R3 as new scaling factors.

We can normalize this sum by choosing constantsc1, c2 andc3 such that

3∑

k=1

ckRk < 1.

The latter condition is not necessary. Then we can write geometric zeta-

function for Euclidean action

ζL(s) =
1

1 −∑3
k=1(ckRk)s

.

From now we turn from the direct Euclidean action investigation to the in-

direct investigation through the zeta-function. We will examine the complex

dimensions ofζL(s). Complex dimensions of the geometric zeta-function with

scaling factorsckRk, k = 1, 2, 3), is the set of solutions of the equation

3∑

k=1

(ckRk)
ω = 1, ω ∈ C.

The next logical step is to study the distribution of these complex dimensions.

To do that we will extend previously analyzed geometric partition function [2]

defining two new partition functions.

The geometric partition functionθL(τ) of an ordinary fractal string

L = (lj)
∞
j=1 is

θL(τ) =
∞∑

j=1

e−τl−1

j , for τ > 0.

Let

p(x) =
eπ
√

2x/3

4
√

3x
, (1)

q(x) =
eπ
√

x/3

4 · 31/4x3/4
. (2)
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Defineq andp geometric partition functions of an ordinary fractal stringL

θL,p(τ) =
∞∑

j=1

p(l−1
j )e−τl−1

j , τ > 0,

θL,q(τ) =
∞∑

j=1

q(l−1
j )e−τl−1

j , τ > 0,

Note thatp(m) andq(m), m ∈ N, are the main terms of partition functions

of decomposition ofm. We can choosep partition function when repetition of

elements is important, andq when repetition must be ignored.

To investigate the distribution of poles of geometric zeta-function we must

generalize a concept of a fractal string and geometric zeta-function.

Given a complex measureη there exists a positive measure denoted|η|
which measures the total variation ofη

|η|(J) = sup
∑

i

∣∣η(Ji)
∣∣,

where the supremum is taken over all partitions∪Ji of J into measurable

subsetsJi. The measure|η| is called thetotal variation measure associated

with η. Recall that|η| = η if η is positive.

A local positive measure is just a standart positive Borel measure on(0,∞)

which satisfies the following local boundedness condition:

η(J) < ∞, for all bounded subintervalsJ of (0,∞).

More generally, we will say, that a set functionη on (0,∞) is a local

complex measure on (0,∞) if, the following conditions are satisfied: (i)η(A)

is well defined for any Borel subsetA of [a, b], and (ii) the restriction ofη

to the Borel subsets of[a, b] is a complex measure on[a, b] in the traditional

sense. We will use the following notions.

1. A generalized fractal string is either a local complex or a local positive

measureη on (0,∞) such that

|η|(0, x0) = 0

for some positive numberx0.
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2. The dimension ofη, denotedD = Dη, is

D = Dη = inf

{
σ ∈ R :

∞∫

0

x−σ|η|(dx) < ∞
}

.

3. The geometric zeta-functionζη(s) of η is given, forσ > Dη, by

ζη(s) =

∞∫

0

x−sη(dx).

To introduce the generalized geometricp andq partition functions for a

generalized fractal stringη , we need some notation.

Let us denote byN [k]
η the k-th primitive (or k-th antiderivative) ofNη

vanishing at 0. Thus

N [k]
η (x) =

x∫

0

(x − y)k−1

(k − 1)!
η(dy),

for x > 0 andk = 1, 2, .... In particular,N [0]
η = η. The distributional formula

describesη as a distribution. On a test functionϕ, η acts by

〈η, ϕ〉 =

∞∫

0

ϕ(x) η(dx).

The k-th primitive of this distribution will be denoted byP [k]η. More pre-

cisely,P [k]η is the distribution given for all test functionsϕ by

〈P [k]η, ϕ〉 = (−1)k〈η, P [k]ϕ〉 = (−1)k+µ〈P [k+µ]η, ϕ(µ)〉,

whereϕ(µ) is theµ-th derivative, so a test functionϕ must beµ times conti-

nuously differentiable on(0,∞). We can write

〈P [k]η, ϕ〉 =

∞∫

0

∞∫

y

(x − y)k−1

(k − 1)!
ϕ(x) dx η(dy).
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For a generalized fractal stringη, geometricp andq partition functionsθη,p(t)

andθη,q(t) will be defined as

θη,p(t) =

∞∫

0

ϕt,p(x) η(dx) = 〈P [0]η, ϕt,p〉, (3)

θη,q(t) =

∞∫

0

ϕt,q(x) η(dx) = 〈P [0]η, ϕt,q〉, (4)

where, forx ∈ R, andt > 0,

ϕt,p(x) = p(x)e−tx, (5)

ϕt,q(x) = q(x)e−tx. (6)

Assume thatζη satisfies the following growth conditions [2]: there exists

real constantsκ > 0 and C > 0, and a sequence{Tn}n∈Z of real num-

bers tending to±∞ as n → ±∞, with T−n < 0 < Tn for n ≥ 1 and

limn→+∞ Tn/|T−n| = 1, such that

(H1) For alln ∈ Z and allσ ≥ r(Tn),
∣∣ζη(σ + iTn)

∣∣ ≤ C |Tn|κ;

(H2) For all t ∈ R, |t| ≥ 1,
∣∣ζη(r(t) + it)

∣∣ ≤ C |t|κ,

wherer is the Lipschitz continuous function i.e., there exists a nonnegative

real number‖r‖Lip such that
∣∣r(x) − r(y)

∣∣ ≤ ‖r‖Lip|x − y| for all x, y ∈ R,

which bounds the screenS.

Hypothesis(H1) is a polynomial growth condition along horizontal lines

(necessary avoiding the poles ofζη), while hypothesis(H2) is a polynomial

growth condition along the vertical direction of the screen.

We shall denote bỹϕ the Mellin transform of a (suitable) functionϕ on

(0,∞), it is defined by

ϕ̃(s) =

∞∫

0

ϕ(s)xs−1 dx, s ∈ C.

47



A. Javtokas

Henceforth, we denote byres
(
g(s); ω

)
the residue of a meromorphic func-

tion g = g(s) at s = ω. For k ≥ 1 we shall define the symbol(s)k by

(s)k = s(s + 1)...(s + k − 1).

Assume thata, b are complex numbers independent on the variablez. Then

the differential equation

z(1 − z)
d2u

dz2
+
(
b − (a + 1)z

)du

dz
− au = 0

is called ahypergeometric equation.

If b 6= −m, m ∈ N ∪ 0 , then the function

u =
∞∑

m=0

Γ(a + m)Γ(b)

Γ(a)Γ(b + m)m!
zm

def
= 1F1(a; b; z)

is a regular solution of the hypergeometric equation at the pointz = 0, and the

function 1F1(a; b; z) is called thehypergeometric function with parametersa,

b.

Now we can state a modified version of Theorem 4.20 which will be useful

for our aim.

Theorem 2. Let η be a generalized fractal string satisfying (H1) and (H2).

Let k ∈ Z, and let µ ∈ N be such that k + µ ≥ κ + 1. Further, let ϕ be a

test function µ times continuously differentiable on (0,∞). Then the action of

P [k]η on a test function ϕ is given by

〈P [k]η, ϕ〉 =
∑

ω∈Dη(W )

res

(
ζη(s)ϕ̃(s + k)

(s)k
; ω

)

+
1

(k − 1)!

k−1∑

j=0
−j∈W\Dη

(
k − 1

j

)
(−1)jζη(−j)ϕ̃(k − j)

+
∑

α∈W\Dη

α/∈{0,...,k−1}

res

(
ζη(s)ϕ̃(s + k)

(s)k
; α

)
+ 〈R[k]

η , ϕ〉,

where R
[k]
η is the distribution given by

〈R[k]
η , ϕ〉 =

1

2πi

∫

S

ζη(s)ϕ̃(s + k)
ds

(s)k
.
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Proof is analogous that of Theorems 4.12 and 4.20 from [2].

After stating this theorem we can formulate two new theorems, where

we will find explicit formulas forp andq geometric partition functions (for

a generalized fractal stringη), (3) and (4). These results can be considered as

an extension of results given in [2] for geometric partition function. They give

the distributions
〈
P [0]η, q(x)e−τx

〉
and

〈
P [0]η, p(x)e−τx

〉
of an actionP [0]η,

on test functionsϕτ,q andϕτ,p

We begin with the following statement.

Theorem 3. Let η be a generalized fractal string satisfying (H1) and (H2)

and let ϕτ,q be a test function given by (6). Then q geometric partition function

θη,q(τ) is given by

θη,q(τ) =
∑

ω∈Dη(W )

res
(
ζη(s)ϕ̃τ,q(s); ω

)

+
1

4 · 31/4

∞∑

k=1
3/4−k∈W\Dη

(−1)kτk

k!
ζη

(
3

4
− k

)
1F1

(
−k;

1

2
;

π2

12τ

)

+
π

4 · 33/4

∞∑

l=1
1/4−l∈W\Dη

(−1)lτ l

l!
ζη

(
1

4
− l

)
1F1

(
−l;

3

2
;

π2

12τ

)

+ 〈R[0]
η , ϕτ,q〉,

(7)

where, for τ > 0,

ϕ̃τ,q(s) =
τ1/4−s

4 · 31/4

{
√

τ Γ

(
s − 3

4

)
1F1

(
s − 3

4
;
1

2
;

π2

12τ

)

+
π√
3

Γ

(
s − 1

4

)
1F1

(
s − 1

4
;
3

2
;

π2

12τ

)} (8)

and

〈R[0]
η , ϕτ,q〉 =

1

2πi

∫

S

ζη(s)ϕ̃τ,q(s) ds.

Proof. Let us begin with the first term of (7). By Theorem 2 we must calculate

the Mellin transform of our test functionϕτ,q , and sum over residues of poles
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of zeta-function. To obtain the second and the third terms in (7) we will use (4)

and Theorem 2. First we calculate the Mellin transform of the functionϕτ,q

ϕ̃τ,q(s) =

∞∫

0

ϕτ,q(x)xs−1 dx.

For this purpose we will take expression ofq(x) given by (1) and insert it into

(5), so we need to calculate such an integral

ϕ̃τ,q(s) =
1

4 · 31/4

∞∫

0

eπ
√

x/3−τxxs−7/4 dx.

After integration we obtain the expression (8) with conditionsσ > 3/4, τ > 0.

By Theorem 2 we must calculate residues of that function, but we must take

only those poles which are not dimensions of zeta-function. It is easily seen

that the first term in (8) has poles at3/4 − 1, 3/4 − 2, ... and the second at

1/4 − 1, 1/4 − 2, . . . . It is well known that gamma function has poles with

residues, form ∈ N ∪ {0},

Res
s=−m

Γ(s) = Res
s=3/4−m

Γ

(
s − 3

4

)

= Res
s=1/4−m

Γ

(
s − 1

4

)
=

(−1)m

m!
.

Now we can decompose (8) into two terms and calculate residues for each

of them. After that we just sum the residues and obtain the second and the

third terms in (7). The last term is the same form as in Theorem 2. This term

is called the error term, and for it the growth conditions(H1) and(H2) are

required, because only then we can choose such a windowW , for which the

error term is absolutely convergent.

Theorem 4. Let η be a generalized fractal string satisfying (H1) and (H2)

and let ϕτ,p be a test function given by (5). Then p geometric partition function
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θη,p(τ) is given by

θη,p(τ) =
∑

ω∈Dη(W )

res
(
ζη(s)ϕ̃τ,p(s); ω

)

+
1

4
√

3

∞∑

k=1
1−k∈W\Dη

(−1)kτk

k!
ζη(1 − k)1F1

(
−k;

1

2
;
π2

6τ

)

+
π

2
√

6

∞∑

l=1
1/2−l∈W\Dη

(−1)lτ l

l!
ζη

(
1

2
− l

)
1F1

(
−l;

3

2
;
π2

6τ

)

+〈R[0]
η , ϕτ,p〉,

(9)

where, for τ > 0,

ϕ̃t,p(s) =
τ1/2−s

4
√

3

{
√

t Γ(s − 1)1F1

(
s − 1;

1

2
;
π2

6t

)

+

√
2

3
π Γ

(
s − 1

2

)
1F1

(
s − 1

2
;
3

2
;
π2

6τ

)}

and

〈R[0]
η , ϕτ,p〉 =

1

2πi

∫

S

ζη(s)ϕ̃τ,p(s) ds.

Proof. The proof is similar to the previous theorem. We must calculate the

integral

ϕ̃t,p(s) =
1

4
√

3

∞∫

0

eπ
√

2x/3−txxs−2 dx.

and repeat the same steps as in the proof of Theorem 3 we obtain a result.

The last unanswered question is can we relate obtained distributions for

different test functions. The answer is positive, and now we will find these

relationships.
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Theorem 5. Let η be a generalized fractal string. Let τ > 0 and k ∈ N, then

there exist the following relations between test functions ϕτ (x), ϕτ,q(x) and

ϕτ,p(x):

1◦
〈
P [k]η, ϕτ,q(x)

〉
=

1

4 · 31/4

〈
P [k]η, ϕτ (x)eπ

√
x/3
〉
;

2◦
〈
P [k]η, ϕτ,p(x)

〉
=

1

4
√

3

〈
P [k]η, ϕτ (x)eπ

√
2x/3

〉
;

3◦
〈
P [k]η, ϕτ,q(x)

〉
=
〈
P [k]η, ϕτ,p(x)(3x)1/4eπ

√
x/3(1−

√
2)
〉
;

4◦
〈
P [k]η, ϕτ,p(x)

〉
=
〈
P [k]η, ϕτ,q(x)(3x)−1/4e−π

√
x/3(1−

√
2)
〉
.

Proof. First of all we will find relations between test functions, and later we

will fit it to the distribution formulas.

We have thatϕτ (x) = e−τx. First two equalities are trivial, so we will

give details for the third and the fourth, only.

From (5) we find

lnϕτ,p(x) = ln

(
eπ
√

2x/3−τx

4
√

3x

)
= π

√
2x

3
− τx − ln

(
4
√

3x
)

= π

√
2x

3
− τx − ln 4 − 1

2
ln 3 − lnx.

Similarly, from (6) we find

lnϕτ,q(x) = ln

(
eπ
√

x/3−τx

4 · 31/4x3/4

)
= π

√
x

3
− τx − ln 4 − 1

4
ln 3 − 3

4
lnx

=

(
π

√
2x

3
− τx − ln 4 − 1

2
ln 3 − lnx

)

− π

√
2x

3
+ π

√
x

3
+

1

4
ln 3 +

1

4
lnx

= lnϕτ,p + π

√
x

3

(
1 −

√
2
)

+ ln(3x)1/4.

Finally, we can relateϕτ,q(x) andϕτ,p(x) test functions

ϕτ,q(x) = ϕτ,p(x)(3x)1/4eπ
√

x/3(1−
√

2).
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Analogically

lnϕτ,p(x) =

(
π

√
x

3
− τx − ln 4 − 1

4
ln 3 − 3

4
lnx

)

− π

√
x

3
+ π

√
2x

3
− 1

4
ln 3 − 1

4
lnx

= lnϕτ,q − π

√
x

3

(
1 −

√
2
)
− ln(3x)1/4,

after what we get

ϕτ,p(x) = ϕτ,q(x)(3x)−1/4e−π
√

x/3(1−
√

2).

This completes the proof.

Alternatively we can define modifiedp andq geometric partition functions

θ∗L,q =
∞∑

j=1

e−τq(l−1

j
), τ > 0,

θ∗L,p =
∞∑

j=1

e−τp(l−1

j
), τ > 0,

and investigate its distribution of poles, but in this case calculations are be-

coming more and more tricky, as we must calculate integral on(0,∞) of the

function

xs−1 exp

(
− τ

4
√

3x
exp

(
π
√

2x/3
))

.

We will leave it to the future.
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