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Abstract. A class of tests for testing a changed segment in a binomial sequence
is proposed and an asymptotic behavior is established. A consistent procedure
of estimating the length of a changed segment is proposed. The performance
of two tests from the given class is compared by Monte-Carlo simulations. The
results are applied for the non-coding deoxyribonucleic acid (DNA) sequence
analysis.
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1 Introduction

Let X1, . . . , Xn be independent binomial random variables with

P(Xi = 1) = µi, P(Xi = 0) = 1 − µi,

0 < µi < 1, i = 1, . . . , n.

We want to test the null hypothesis of a constant occurrence probability

H0 : µ1 = · · · = µn = µ0,

against the following so called epidemic (or changed segment) alternative

HA : there exist integersk∗ andm∗, 0 ≤ k∗ < m∗ ≤ n, such that

P(Xi = 1) =

{
µ1, i ∈ {k∗ + 1, . . . , m∗},
µ0, i ∈ {1, . . . , n} \ {k∗ + 1, . . . , m∗}.

(1)
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Herek∗ stands for the beginning,m∗ for the end andl∗ = m∗ − k∗ for the length

of epidemic. The quantitys = |µ1 − µ0| is referred to the size of epidemic. If H0
is rejected, next step is to estimatel∗, k∗, m∗, µ0 andµ1. (Note that the problem

of epidemic change in occurrence probability can also be reformulated in terms

of epidemic change in the mean, becauseEXi = P(Xi = 1) = µi.)

The problem of testing H0 against the epidemic type alternative and then

locating an epidemic has applications in the non-coding deoxyribonucleic acid

(DNA) sequence analysis (for details see Avery and Henderson [1,2]) among other

applications. Most of the DNA consists of the non-coding DNA. But it is believed

that non-coding DNA still has some functional importance. So it is of great value

to find locations in the non-coding DNA which may contain some information.

One way of approach to this problem is analysis of occurrence probabilities of the

four main nucleic acids (marked by A, C, G, T), separately for every acid. The

acid which is analyzed is marked by 1 and the other three by 0. Thus the original

sequence of nucleic acids is replaced by a binomial sequence. The problem is to

answer whether there is a change in an occurrence probability of that base and then

to locate the segment where this probability has changed. Different methodsare

used to tackle this problem. The most common tools are the maximum likelihood

method and those based on cumulative sums.

For a short survey of epidemic change problem we refer to Csörgő and Hor-

váth [3], where mainly the cumulative sum type test statistics for testing the

epidemic change in the mean of random variables are discussed. Also refer to [4],

where different type statistics are analyzed in the case of normally distributed

observations. The problem of a changed segment in a binomial sequencewas

considered by Curnow and Fu [5]. They assumed thatµ0, µ1 and the length of

epidemic are known, what is too restrictive for the most practical applications.

Avery and Henderson [1] introduced a test for zero-one observations and obtained

the limit distribution for test statistic under null hypothesis. They also applied

the test to the DNA sequence analysis. Another type of cumulative sum tests was

introduced by Rǎckauskas and Suquet [6,7] for the sequences of random elements

with values in abstract measurable spaces.

In this paper (Section 2), following Račkauskas and Suquet [6, 7], a class of

tests that are identified by a certain weight functionρ is proposed for the problem
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of a changed segment in occurrence probability of binomial sequence. It is then

argued that the test introduced by Avery and Henderson [1] can be regarded as

a particular case of the latter class of tests. For the introduced class of testswe

establish asymptotic behavior under null hypothesis and prove their consistency

under epidemic alternative. We propose the estimate of the epidemic length and

establish its consistency in probability as well as almost surely. All proofs are

collected in the Appendix. We chose two tests from the given class and run a

number of Monte-Carlo simulations to compare their performance. In Section

3 we investigate performance of the test statistics under H0. In Section 4 we

compare empirical power of the test statistics. In Section 5 we present results for

the tests when locating the changed segment and estimating epidemic mean. In

Section 6 we then perform an analysis of the nucleotide acids’ sequence of the

human glucagon gene’s introns 2, 3 and 4 (the same as in Avery and Henderson

[1]). We end up with conclusions.

2 Cumulative sum type tests

Cumulative sum type statistics are based on differences between the mean of

observations in a certain sliding window and that of the whole sample,X. For

a random binomial sequenceX1, . . . , Xn of lengthn, denote

S(k, m) =
m∑

i=k+1

(Xi − X), 0 ≤ k < m ≤ n, (2)

wherek can be regarded as the beginning of the sliding window andl = m − k

as its length. Now for every length0 < l < n set

Vρ(l) =
1

%(l/n)
max

0≤k≤n−l

∣∣S(k, k + l)
∣∣, (3)

where%(h) = ρ
(
h(1 − h)

)
andρ(h), 0 < h ≤ 1, is a certain weight function

to be defined later. Following Račkauskas and Suquet [6], we consider a class of

statistics

UI(n, ρ) =
max0<l<n Vρ(l)√

(S(0, n)/n)(n − S(0, n))
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to test for a changed segment in a sequence of binomial variables. In the special

caseρ ≡ 1, we have the test statistic UI(n, 1), which was considered by Avery

and Henderson [1]. To be precise they proposed the following test statistic

K∗
n = max

i<j

∣∣∣∣
i∑

k1=1

j∑

k2=i+1

sgn(Xk1
−Xk2

)+
n∑

k1=j+1

j∑

k2=i+1

sgn(Xk1
−Xk2

)

∣∣∣∣, (4)

and normalized it by
√

nS(0, n)
(
n − S(0, n)

)
. In (4) sgn(x) is a sign function.

In a binomial casesgn(x) = x andK∗
n can be simplified to

K∗
n = n max

0≤i<j≤n

∣∣S(i, j)
∣∣ = n max

0<l<n
max

0≤k≤n−l

∣∣S(k, k + l)
∣∣

= n
(

max
0<i<n

S(0, i) − min
0<i<n

S(0, i)
)
.

We see that UI(n, 1) = K∗
n/

√
nS(0, n)

(
n − S(0, n)

)
.

To obtain the limiting behavior of UI(n, ρ) we need to determine an admissi-

ble class of weightsρ (see [6] for more details).

Definition 1. By R =
{
ρ : [0, 1] 7→ R+

}
denote the class of non-decreasing

functions satisfying:

(i) ρ(h) = hαL(1/h), 0 < h ≤ 1 for someα ∈ (0, 1/2] and positive on[1,∞),

normalized, slowly varying at infinity functionL;

(ii) θ(t) = t1/2ρ(1/t) is continuously differentiable on[1,∞);

(iii) θ(t) log−β(t) is non-decreasing on[a,∞) for someβ > 1/2 anda > 0.

FunctionL is normalized, slowly varying at infinity if and only if for every

δ > 0 tδL(t) is ultimately increasing andt−δL(t) is ultimately decreasing. In the

special case whereL(h) = logβ(γ/h),

ρ(h) = ρ(h, α, β, γ) = hα logβ(γ/h), (5)

which belongs toR if either α ∈ (0, 1/2) andβ ∈ R, or α = 1/2 andβ > 1/2.

Parameterγ = γ(α, β) > 0 is chosen properly in such a way, that the weight

function is non-decreasing on[0, 1].
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Let (W (t), t ∈ [0, 1]) be a standard Wiener process and(B(t), t ∈ [0, 1]) the

corresponding Brownian bridge,B(t) = W (t) − tW (1), t ∈ [0, 1]. Denote by
D−−−→

n→∞
the convergence in distribution. Let

UI(ρ) = sup
0<h<1

1

%(h)
sup

0≤t≤1−h

∣∣B(t + h) − B(t)
∣∣, (6)

which in the caseρ ≡ 1 reduces to

UI(1) = sup
0<t<1

B(t) − inf
0<t<1

B(t). (7)

Under the null hypothesis Theorem 1 (presented below) establishes the conver-

gence in distribution of the test statistics UI(n, ρ), when eitherρ ∈ R or ρ ≡ 1.

In the caseρ ∈ R Theorem 1 is a special case of a more general result proved

in Rǎckauskas and Suquet [6] for any independent identically distributed random

variables. Using the Donsker-Prokhorov invariance principle, Slutsky’s lemma

and continuous mapping theorem, one can easily obtain the result whenρ ≡ 1.

Theorem 1. AssumeH0 holds and eitherρ ∈ R or ρ ≡ 1. Then

UI(n, ρ)
D−−−→

n→∞
UI(ρ). (8)

In general case the explicit form of distribution function of UI(ρ) is not

known. Thus we use Monte-Carlo simulations to get approximate critical values.

In the caseρ ≡ 1 one can use approximation as pointed out in [1], namely the first

member,2(4x2 − 1) exp(−2x2), of the following series

P
(
UI(n, 1) ≥ x

)
' 2

∞∑

i=1

(
4i2x2 − 1

)
exp

(
−2i2x2

)
. (9)

When HA holds, we consider cases wherel∗/n → 0 or l∗/n → 1. If

l∗/n → θ ∈ (0, 1), weight functionρ has no influence on the power of UI(n, ρ)

and problem of a changed segment can be solved by existing tests for multiple

change points. Next assume thatl∗ andn− l∗ tend to infinity asn → ∞. Denote

by
P−−−→

n→∞
the convergence in probability.
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Theorem 2. Suppose thatHA holds and eitherρ ∈ R or ρ ≡ 1. Moreover, let

lim
n→∞

n1/2hns

ρ(hn)
= ∞, (10)

wherehn = (l∗/n)(1 − l∗/n). ThenUI(n, ρ)
P−−−→

n→∞
∞.

The proof is given in the Appendix.

Remark 1. Note that for binomial observations,UI(n, ρ) has the same value, if

Xi is replaced byYi = (Xi − X)2 andX byY . This means that, no matter what

problem we solve, epidemic change in the mean or epidemic change in variance,

for binomial observations test stays invariant.

The motivation for using weight function is the following. Assume for a

moment thatl∗/n → 0 and s is fixed. If ρ ≡ 1, condition (10) reduces to

l∗/n1/2 → ∞, that is the epidemic length should tend to infinity faster than

n1/2 to ensure the consistency of the test. Similarly, whenα < 1/2, β = 0,

l∗ should be larger thann(1−2α)/(2−2α). For example, takingα = 1/4, the

length of epidemic should be such thatn1/3 = o(l∗). However, the problem with

using the parametric weight functions is that there is no strict rule for assigning

certain values to parameters. It therefore remains interesting and open theoretical

question of data driven choice of parameters.

To estimate the length and the beginning of a changed segment we use the

procedure proposed by Račkauskas and Suquet [7]. Using (3) we estimate the

length of epidemic by

l̂∗ = min
{
j : Vρ(j) = max

0<l<n
Vρ(l)

}
. (11)

To estimatek∗, we go back through differences
∣∣S(k, k + l̂∗)

∣∣ and find such index

k, which corresponds to the maximal one. So we define

k̂∗ = min
{
i :

∣∣S(i, i + l̂∗)
∣∣ = max

0≤k≤n−l̂∗

∣∣S(k, k + l̂∗)
∣∣},

wherel̂∗ is given by (11). To estimate the end of epidemic we takem̂∗ = k̂∗ + l̂∗.

Next we estimateµ1 as sample mean over the integer set{k̂∗ + 1, . . . , m̂∗}, and

µ0 as sample mean of observations with indices{1, . . . , k̂∗, m̂∗ + 1, . . . , n}.
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Avery and Henderson [1] suggest the following estimates fork∗ andm∗,

k̂∗ = min
{
k1, k2 : S(0, k1) = max

0<i<n
S(0, i), S(0, k2) = min

0<i<n
S(0, i)

}
,

m̂∗ = max
{
k1, k2 : S(0, k1) = max

0<i<n
S(0, i), S(0, k2) = min

0<i<n
S(0, i)

}
.

One can see that these estimates coincide with those defined above in the special

caseρ ≡ 1.

Next we investigate the rate of convergencel̂∗/l∗
P−−−→

n→∞
1 and give the

conditions for almost sure convergence whenρ(h) = hα. Throughout we assume

thats is such that

l∗s2/ log(n) → ∞. (12)

Denote by
a.s.−−−→

n→∞
the almost sure convergence.

Theorem 3. Assume thatHA and (12) hold, ρ(h) = hα, α ∈ (0, 1/2) and

l∗ → ∞ as n → ∞.

(i) If l∗/n → 0 and

l∗(l∗/n)1−2αs2 → ∞, (13)

then l̂∗/l∗
P−−−→

n→∞
1.

(ii) If l∗/n → 0 and for eachε > 0

∞∑

n=1

exp
(
−εl∗(l∗/n)1−2αs2

)
< ∞, (14)

then l̂∗/l∗
a.s.−−−→

n→∞
1.

We present the proof of this theorem in the Appendix.

Remark 2. Whenl∗/n → 1, the consistency can be proved similarly but now

variablesXi with i ∈ {1, . . . , n} \ {k∗ + 1, . . . , k∗ + l∗} should be viewed as

variables having epidemic probabilityµ1. Epidemic length in this case isn − l∗

and all the conditions in Theorem3 should be rewritten in such a way thatl∗ is

replaced byn − l∗ andl∗/n by1 − l∗/n.
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The rest of the paper is intended to compare the performance of two test

statistics. Namely, we consider

T1 = UI(n, 1) and T2 = UI(n, ρ) with ρ(h) = h1/4. (15)

We will write UI(1) and UI(ρ) for the limiting statistics ofT1 andT2 respectively.

The motivation of such parameter choice in (15) is the following. Recall that

for the weight function of the parametric form as in (5), parameterα ∈ [0, 1/2)

(we chooseβ = 0). In the problem under investigation statistics UI(n, ρ) with

ρ(h) = hα andα close to0 behave quite similarly to UI(n, 1). On the other

hand, whenα is close to1/2, the behavior of test statistic strongly depends on the

distribution of observations. Therefore we choseT2 as a representative of the set

UI(n, ρ) with ρ(h) = hα andα separated from0 and1/2.

3 The performance under the null hypothesis

In this section we investigate statisticsT1 andT2 under H0 and perform thep-

value analysis. First we find approximations of critical values associated with

the certain significance levelαs. We randomly generateN = 10000 values of the

limiting statistics UI(1) (using (7)) and UI(ρ) (according to (6)) and take empirical

quantiles as an approximation for the critical values1. Brownian bridge in each

replication of UI(1) and UI(ρ) is approximated by partial sum processξ(t) =

(1/
√

m)(
∑[mt]

i=1 Zi − t
∑m

i=1 Zi), t ∈ [0, 1], ξ(0) = 0. HereZi ∼ N(0, 1),

i = 1, . . . , m, m = 10000 and[·] is an integer part of the number. For UI(1) we

have also computed critical values using (9). Table 1 gives the results.

Table 1. The critical values

αs = 0.05 αs = 0.01 αs = 0.001
UI(1) using (9) 1.74726 2.00092 2.30297
UI(1) using (7) 1.73459 1.98175 2.22504

UI(ρ) 2.52019 2.86686 3.33042

We see that the critical values for UI(1) computed in two ways (we took only

first member of the series in (9)) differ in the second digit after the point, except for
1In further considerations and conclusions we use critical values computed this way.
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αs = 0.001. Considering not large replication number to estimate0.999 quantile

we can say that both approximations agree well.

For any statisticY , assuming only non-negative values, thep-value isp =

1 − F0(Y ), whereF0 is the null distribution function of the statistic. In our case

F0 is not known therefore we use empirical approximationF̂0. When H0 holds,

we computeR realizations of both statisticsT1 andT2 (we will denoteYj for the

j-th realization of either of statistics) and the corresponding estimates forp-values

(denoted bŷpj)

p̂j = 1 − F̂0(Yj) =
1

N

N∑

k=1

1{Lk > Yj}, j = 1, . . . , R. (16)

HereLk, k = 1, . . . , N , stands for a sequence of the limiting statistics’ values.

The random variableF0(Y ) as well as1 − F0(Y ) = p is uniformly distributed

on [0, 1], if Y is distributed according toF0. Having the set{p̂j , j = 1, . . . , R},

we compare the empirical cumulative distribution function forp̂ with the dis-

tribution function of truep-value, Fp(x) = x. The convenient way for such

analysis isp-value discrepancy plot (Davidson and MacKinnon [8]), representing

the differenceF̂p̂(x) − Fp(x) on y-axis (we will denoted(x)) againstx on x-

axis. For six different parameter setsR = 6000 realizations ofp-value estimates

were computed. In Fig. 1 the results are provided forN = 10000, x ∈ [0, 0.2],

µ0 = 0.1, µ0 = 0.2 andn = 200, 500, 1000.

For alln andµ0, both tests generally are a bit conservative (in average accept

the null hypothesis too often). This discrepancy naturally diminishes whenn

increases. In all cases thep-value differenced(x) for T1 is smaller than for

T2. Whenµ0 = 0.1, T2 behaves considerably better thanT1, but passing to

µ0 = 0.2 p-value discrepancy forT2 increases, nevertheless remaining slightly

less than forT1. ForT1, when passing fromµ0 = 0.1 to µ0 = 0.2, d(x) slightly

decreases. Concluding thep-value analysis, we might say thatd(x) for x ≤ 0.05

is acceptable in all six cases for both statistics.

4 The power analysis

In this section we present the results of simulations when comparing the powerof

test statisticsT1 andT2. For every parameter set we haveR = 1000 replications
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Fig. 1. Thep-value discrepancy plots.

of every statistic when HA holds and count how much of them are greater than

critical value associated with the certainαs. In other words, we find values of

empirical power functions of tests at the pointαs. Table 2 gives the values at

αs = 0.05 for several values ofn, l∗, µ0 andµ1.

Fix n, µ0, µ1 and letl∗ increase. From Table 2 we see that in all cases the

power increases quite rapidly for both statistics. Fixl∗ and letn increase. For

l∗ = 20 and50 the power of both tests gradually decrease except whenµ0 = 0.1,

µ1 = 0.2, l∗ = 50 in theT2 case. Whenl∗ = 100, both tests reach maximum

power forn = 500. For fixedn and l∗ increase|µ1 − µ0|. We see that power

increases and again very quickly. Now letn and l∗ increase but the ratiol∗/n

keep constant. In this case again the power of both tests increase. For both tests we

observe rather interesting effect, which was mentioned in Avery and Henderson

[1]. Namely, that shifting bothµ0 andµ1 but not changing|µ1 − µ0| decreases

the power. This effect can be explained by the fact that, on average, this shift in

probabilities has no impact on statistics themselves. But it alters sample variance

X − (X)2 and so the value of statistic. So if bothµ0 andµ1 increase by some

a > 0 to µ0 + a andµ1 + a, sample variance also increases (only for some values
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Table 2. Empirical power at the significance levelαs

T1 T2

αs = 0.05 n\l∗ 20 50 100 20 50 100

µ0 = 0.1, µ1 = 0.2 200 0.066 0.158 0.241 0.089 0.206 0.264
500 0.054 0.149 0.372 0.073 0.222 0.445

1000 0.040 0.101 0.242 0.058 0.154 0.370

µ0 = 0.1, µ1 = 0.3 200 0.154 0.590 0.764 0.271 0.648 0.763
500 0.103 0.450 0.912 0.186 0.646 0.950

1000 0.078 0.296 0.832 0.126 0.529 0.944

µ0 = 0.2, µ1 = 0.4 200 0.100 0.398 0.640 0.142 0.438 0.623
500 0.067 0.305 0.760 0.092 0.421 0.826

1000 0.066 0.185 0.616 0.078 0.306 0.794

of a) thus diminishing the value of statistic. But statistic, which under HA more

often assumes smaller values compared to some critical value, has less powerthan

the statistic which more often assumes larger values.

Comparing the power ofT1 to T2, from Table 2 we see thatT2 in all cases

gains more power except when|µ1 − µ0| = 0.2 for l∗ = 100 andn = 200.

Whenl∗ = 20, both tests have very little power reaching the biggest value0.271.

TheT2 test shows its advantage forl∗ = 50, especially when|µ1 −µ0| = 0.2 and

n = 500, 1000. For example whenµ0 = 0.1, µ1 = 0.3 andn = 1000 it rejects H0

(when HA is true) 529 times out of 1000 compared to 296 forT1. This case gives

the biggest difference. Forl∗ = 100 this difference diminishes and whenn = 200

both tests behave very alike. Whenn = 1000, T2 significantly outperformsT1

and forn = 500 the difference is smaller but again in the favor ofT2.

For a more detailed inspection we present the so called size-power curveson

a correct size-adjusted (not nominal size) basis (Davidson and MacKinnon [8]).

For every parameter set we compute 1000 replications of both statistics and corre-

spondingp-value estimates: first for the sample with no changed segment then for

the same sample except for epidemic segment with indexes{k∗+1, . . . , m∗}. We

plot the empirical cumulative distribution function forp-values under HA (which

is the empirical power function) but onx-axis we have the values of empirical

distribution function forp-values under H0 instead of nominal sizeαs. That is we

adjust power to true size. In Fig. 2 results are forn = 500, 1000, l∗ = 50, 100

and all three pairsµ0, µ1. We excludel∗ = 20 cases because of very low power
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andn = 200 cases because the difference in the performance of tests is small.

It is clearly seen from Fig. 2 how for true size values from[0, 0.2] both tests

rapidly increase their power when increasingl∗ or |µ1 − µ0|, slightly decrease it

increasingn or increasingµ0, µ1, but keeping|µ1−µ0| constant. We can conclude

thatT2 displays its advantage for small values of ratiol∗/n (1/20 or 1/10) and

the biggest difference being when this ratio is the smallest. Forl∗/n = 1/5 the

advantage ofT2 is minor.
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Fig. 2. The adjusted size-power curve plots.

5 Estimating parameters

In this section we investigate the estimates of the beginning, the length and the

size of epidemic for both tests. We will rest upon the procedures described in

Section 2. For every parameter set we have computedR = 1000 replications

of estimates. For a sequence of realizationsẐ = {Ẑ1, . . . , ẐR} of any estimate

denoteMẐ =
∑R

i=1 Ẑi/R, pw0.05 the empirical test power value for significance
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levelαs = 0.05 and

SEl̂∗ = M
( l̂∗

l∗
− 1

)2
, SEk̂∗ = M

( k̂∗ − k∗

l∗

)2
, SEµ̂1 = M(µ̂1 − µ1)

2.

In Tables 3 to 5 we present results (we tookk∗ = 90, 240, 490 for sample sizes

respectivelyn = 200, 500, 1000).

Table 3. The estimates fork∗, l∗ andµ1 whenµ0 = 0.1 andµ1 = 0.2

l∗ n pw
0.05

Mk̂∗ SEk̂∗ Ml̂∗ SEl̂∗ Mµ̂1 SEµ̂1

T1 50 200 0.158 70.99 0.56 74.55 0.58 0.207 0.0080
500 0.149 165.25 5.29 185.17 9.85 0.155 0.0063

1000 0.101 315.05 25.38 386.26 55.91 0.129 0.0072
100 200 0.241 78.46 0.16 84.39 0.10 0.220 0.0098

500 0.372 190.48 0.82 170.85 0.98 0.192 0.0037
1000 0.242 351.09 4.57 339.17 8.11 0.153 0.0048

T2 50 200 0.206 82.50 0.56 52.94 0.53 0.315 0.0517
500 0.222 197.46 4.45 123.09 6.29 0.245 0.0287

1000 0.154 372.25 20.84 257.05 36.25 0.199 0.0171
100 200 0.264 90.03 0.19 66.24 0.25 0.296 0.0422

500 0.445 216.19 0.60 128.96 0.69 0.240 0.0130
1000 0.370 412.00 3.16 227.35 4.93 0.205 0.0097

Table 4. The estimates fork∗, l∗ andµ1 whenµ0 = 0.1 andµ1 = 0.3

l∗ n pw
0.05

Mk̂∗ SEk̂∗ Ml̂∗ SEl̂∗ Mµ̂1 SEµ̂1

T1 50 200 0.590 79.90 0.25 65.22 0.30 0.301 0.0083
500 0.450 187.50 2.89 143.98 5.39 0.225 0.0124

1000 0.296 345.99 18.23 320.68 39.20 0.168 0.0212
100 200 0.764 88.93 0.07 89.56 0.04 0.316 0.0077

500 0.912 222.04 0.18 133.86 0.31 0.288 0.0037
1000 0.832 421.49 1.55 234.83 3.26 0.238 0.0085

T2 50 200 0.648 86.72 0.20 53.97 0.25 0.348 0.0166
500 0.646 217.23 1.46 89.29 2.39 0.304 0.0121

1000 0.529 432.36 8.03 156.56 15.41 0.280 0.0140
100 200 0.763 90.62 0.09 83.90 0.07 0.328 0.0112

500 0.950 234.47 0.09 109.74 0.15 0.315 0.0041
1000 0.944 476.40 0.24 132.18 0.62 0.303 0.0045
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Table 5. The estimates fork∗, l∗ andµ1 whenµ0 = 0.2 andµ1 = 0.4

l∗ n pw
0.05

Mk̂∗ SEk̂∗ Ml̂∗ SEl̂∗ Mµ̂1 SEµ̂1

T1 50 200 0.398 75.16 0.38 73.16 0.48 0.390 0.0110
500 0.305 171.59 4.27 171.02 8.19 0.307 0.0172

1000 0.185 326.68 21.52 352.80 46.64 0.258 0.0247
100 200 0.640 81.50 0.11 90.62 0.04 0.401 0.0123

500 0.760 208.46 0.38 152.40 0.56 0.377 0.0056
1000 0.616 386.29 2.75 288.32 5.26 0.317 0.0120

T2 50 200 0.438 83.13 0.32 60.51 0.39 0.434 0.0196
500 0.421 200.84 2.68 116.81 4.90 0.385 0.0178

1000 0.306 398.46 13.83 219.69 26.55 0.339 0.0192
100 200 0.623 83.88 0.13 83.83 0.08 0.410 0.0177

500 0.826 223.69 0.24 125.86 0.33 0.407 0.0062
1000 0.794 448.41 1.15 180.30 2.14 0.381 0.0073

From results presented in Tables 3 to 5 we can draw several conclusions.

• For every fixedl∗ and all three pairs ofµ0 andµ1, letn decrease. We observe

that the sample meansMl̂∗ approach true valuesl∗ except forT2 with µ0 =

0.1, µ1 = 0.3 andl∗ = 100. The sample means of squared errorsSEk̂∗ and

SEl̂∗ rapidly approach zero.

• For every fixedn and all pairsµ0, µ1, let l∗ increase. We see that for both

testsMk̂∗ approach their true valuesk∗, SEk̂∗ andSEl̂∗ decrease.

• In two above cases no explicit conclusion can be drawn aboutMµ̂1 andSEµ̂1,

except that they behave very alike, which means that, whenSEµ̂1 decreases,

Mµ̂1 gets closer to the true valueµ1.

• Fix l∗/n but let l∗ andn increase. For all pairsµ0, µ1, the means of squared

errors decrease for all three parameters under investigationk∗, l∗ andµ1.

• Let |µ1−µ0| increase. In all casesMk̂∗, SEk̂∗, Ml̂∗, SEl̂∗ improve. We mean

that the empirical means approach their true values and the means of squared

errors decrease.
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• Now fix |µ1 −µ0| but letµ0 andµ1 increase. Similarly as for the behavior of

the power of both tests explained in Section 4, the results for all parameters

get worse both in mean and mean square error sense.

Comparing the results of both tests, we see that when estimating the beginning

of the epidemic,Mk̂∗ for T2 are closer to their true valuesk∗ in all cases. Also

for T2, Ml̂∗ are closer tol∗, SEk̂∗ andSEl̂∗ are smaller in all cases except for

l∗ = 100 andn = 200 and for allµ0, µ1. Forn = 200 andl∗ = 50, 100, Mµ̂1

is closer toµ1 andSEµ̂1 is smaller forT1 test. Forn = 1000 and bothl∗, these

values are in the favor ofT2 test. The rest of the cases are difficult to classified.

The results in this analysis somewhat agree with the results of the power analysis.

6 An application to human glucagon gene data

In this Section we investigate human glucagon gene (GCG), located on chromo-

some 2, as a sequence of four main bases A, C, G, T. This gene consists of 6 exons

and 5 introns and we deal with the introns 2, 3, and 4. We refer to National Cen-

ter’s for Biotechnology Information internet page2 for more information about this

gene and the sequence itself. Every base was analyzed separately. Wetransformed

the initial sequence to that of one’s and zero’s: the base under analysiswas marked

by 1 and the other three by 0. Using both tests,T1 andT2, we have first tested the

null hypothesis of no epidemic against epidemic alternative and computedp-value

estimates according to (16). Then we have estimated the unknown parametersof

epidemic (also in the cases where the H0 was not rejected for smallαs values).

The same procedure was done for all three introns. We present the results in

Table 6.

In Table 6,T stands for either of statistics, first forT1 and in the next line for

T2. Blank positions inT2 case means that the values are the same as forT1 in a

line above.

For both statistics thep-value estimates are quite similar except for the in-

tron 2 bases T and A, and intron 4 base C. Both tests significantly reject H0 for

intron 3 and all bases, also for intron 4 base A, intron 2 base G, and withαs = 0.1

2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt
=Graphics&list_uids=2641
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Table 6. The results of analysis for GCG introns 2, 3 and 4 (sample sizes are
n = 1572, 1675 and1369 respectively)

Intron Base S(0, n) T p̂ l̂∗ k̂∗ m̂∗ µ̂0 µ̂1

2 T 566 1.503 0.167 701 473 1174 0.327 0.401
2.131 0.226

A 516 1.405 0.254 689 473 1162 0.358 0.290
1.994 0.343

C 263 1.620 0.094 562 709 1271 0.144 0.210
2.379 0.090 293 842 1135 0.150 0.242

G 227 2.003 0.008 1059 227 1286 0.199 0.118
2.925 0.008

3 T 455 2.366 0.000 501 654 1155 0.308 0.186
3.587 0.000 312 654 966 0.302 0.141

A 530 2.166 0.002 723 318 1041 0.273 0.373
3.107 0.003 319 666 985 0.289 0.433

C 333 2.630 0.000 699 403 1102 0.243 0.137
3.745 0.000

G 357 2.966 0.000 691 481 1172 0.163 0.285
4.231 0.000 609 563 1172 0.167 0.294

4 T 446 1.405 0.254 437 253 690 0.352 0.270
2.057 0.283

A 506 2.025 0.007 638 342 980 0.320 0.426
2.868 0.010

C 206 1.243 0.451 316 981 1297 0.135 0.203
2.254 0.148 126 1171 1297 0.138 0.278

G 211 1.250 0.442 342 372 714 0.170 0.105
1.901 0.439

intron 2 base C. In the cases where both tests do not reject H0, with small values of

αs, the estimates for the parameters of epidemic are the same for both tests except

the case of intron 4 base C. In this caseT2 gives quite smaller̂p (nearly indicating

significant change), shorter the length and bigger the size|µ̂1−µ̂0|. When the tests

significantly reject HA but give different results, againT2 indicates shorter and

bigger epidemics. For̂p smaller than0.1 the estimated lengths of epidemics might

seem quite big,̂l∗/n ranging approximately from1/5 (corresponding intron 2

base C and intron 3 bases T and A, all in the case ofT2 test) to1/2 (intron 4

base A; the case of intron 2 base G may be regarded as the epidemic of length

n − l̂∗ = 513). But on the other hand the values of|µ̂1 − µ̂0| are quite small.

Minimum value0.066 is in the case of intron 2 base C for testT2 and maximum
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0.161 for testT1 in the case of intron 3 base T. Thus bigger length somewhat must

compensate for smaller size to detect epidemic (see condition (10)).

7 Conclusions

When the means of squared errors (SE) are big, the results of both procedures

T1 andT2 should be qualified with care. On the other hand, when the power is

small, the results are of little value even if the means of squared errors are small.

Thus only when the power reaches high levels and the SE are small we might

be able to get reliable estimates fork∗, l∗ or µ1 and see the true picture of the

behavior of both tests. These cases might be when|µ1 − µ0| = 0.2, l∗ = 100 and

all values ofn in the Tables 4 and 5. These cases strengthen the notion that for

big values ofl∗/n (1/2), T1 test performs slightly better, for smallerl∗/n (1/5)

moderate advantage is forT2, and for smalll∗/n (1/10), testT2 shows its biggest

advantage.

The example of human glucagon gene demonstrates two alternative (as a test

statistic usingT1 or T2) ways to analyze the nucleotide sequences. It shows that,

when both tests strongly indicate the presence of an epidemic, oftenT2 test esti-

mates shorter epidemic with bigger change in proportion of a certain nucleotide

base. This example can be regarded as a template for further applications of

methods presented for search and location of epidemic. Not only one certain

nucleotide base can be under investigation, but also any codon or amino acid.

Appendix

For the proofs of Theorem 1 and Theorem 2 consider a sequence of i.i.d. random

binomial variablesX ′
1, . . . , X

′
n characterized byP(X ′

i =1) = µ0, i∈{1, . . . , n}.

Also for independent but not identically distributed variablesX1, . . . , Xn assume

P(Xi = 1) = µ1, i ∈ I1, I1 = {k∗ + 1, . . . , m∗} andXi = X ′
i wheni ∈ I0,

I0 = {1, . . . , n} \ I1.

Proof of Theorem 2.DenoteMn = n1/2hns/ρ(hn). Next expand

S(k∗, k∗+ l∗) =

(
1− l∗

n

) ∑

i∈I1

Xi−
l∗

n

∑

i∈I0

X ′
i = l∗

(
1− l∗

n

)
(µ1−µ0)+Rn,
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Rn =

(
1 − l∗

n

) ∑

i∈I1

(Xi − µ1) −
l∗

n

∑

i∈I0

(
X ′

i − µ0

)
.

Noting that(X(1 − X))1/2 < 1, we find the lower bound LB for UI(n, ρ):

UI(n, ρ) > n−1/2 max
0<l<n

Vρ(l) ≥
n−1/2

ρ(hn)

∣∣S(k∗, k∗ + l∗)
∣∣

≥ Mn

(
1 − |Rn|

nhns

)
=: LB.

(A.1)

Since bothµ0 − µ2
0 andµ1 − µ2

1 are less or equal1/4 < 1, we have

E

( |Rn|
nhns

)2

≤
(

1− l∗

n

)2 l∗(µ1 − µ2
1)

n2h2
ns2

+

(
l∗

n

)2 (n − l∗)(µ0 − µ2
0)

n2h2
ns2

≤ 1

nhns2
,

which tends to0, providedn1/2h
1/2
n s = Mnρ(hn)/h

1/2
n → ∞. But the latter

follows from the divergence ofMn. Indeed, ifhn → 0 (when l∗/n → 0 or

l∗/n → 1), ρ(hn)/h
1/2
n → ∞. Thus the random element1 − |Rn|/nhns is

OP(1) and the lower bound in (A.1) tends to infinity providedMn → ∞.

Next proof requires more notations. For anyk andl, 0 ≤ k < k + l ≤ n

Ikl = {k + 1, . . . , k + l}, Akl = Ikl ∩ I1, |Akl| = #Akl.

Note that|Akl| ≤ l ∧ l∗. UseX = X ′ + (1/n)
∑

i∈I1
(Xi − X ′

i) and (2) to get

S(k, k + l) =
∑

i∈Ikl

X ′
i +

∑

i∈Ikl

(
Xi − X ′

i

)
− lX ′ − l

n

∑

i∈I1

(
Xi − X ′

i

)

= S′(k, k + l) + Zkl − (l/n)Z1

+
(
|Akl| − ll∗/n

)
(µ1 − µ0),

(A.2)

whereS′(k, k + l) =
∑

i∈Ikl
(X ′

i − X ′) and

Zkl =
∑

i∈Akl

ηi, Z1 =
∑

i∈I1

ηi, ηi = (Xi − EXi) −
(
X ′

i − EX ′
i

)
.

If i ∈ I0, thenηi ≡ 0. WhenIkl = I1, we see thatZkl = Z1, |Akl| = l∗ and

S(k∗, k∗+ l∗) = S′(k∗, k∗+ l∗)+(1− l∗/n)Z1 +(1− l∗/n)l∗(µ1−µ0). (A.3)
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Proof of Theorem 3. We follow the proofs of Theorem 4 and Proposition 13

in Rǎckauskas and Suquet [7]. Event{|l̂∗/l∗ − 1| ≥ ε} is equivalent to{l̂∗ ≤
(1 − ε)l∗ ∪ l̂∗ ≥ (1 + ε)l∗}. On this event we have

{
max

0<l≤(1−ε)l∗
Vρ(l) = max

0<l≤l∗
Vρ(l) ∪ max

l∗≤l<n
Vρ(l) = max

(1+ε)l∗≤l<n
Vρ(l)

}
.

Hence for any upper bounds UB1 and UB2 of max0<l≤(1−ε)l∗ Vρ(l) and

maxl∗≤l<n Vρ(l) and for lower bounds LB1 and LB2 of max0<l≤l∗ Vρ(l) and

max(1+ε)l∗≤l<n Vρ(l) we have

P
(
|l̂∗/l∗ − 1| ≥ ε

)
≤ P

(
UB1 ≥ LB1 ∪ UB2 ≥ LB2

)

≤ P(UB1 ≥ LB1) + P(UB2 ≥ LB2).
(A.4)

We will find upper and lower bounds such that (A.4) converges to zero.

Recall that by assumptionl∗/n → 0. This allows us to replace%(h) =(
h(1 − h)

)α
by ρ(h) = hα in the rest of the proof. For shortness we will use the

following notations

E1 = max
0<l<n

1

(l/n)α
max

0≤k≤n−l

∣∣S′(k, k + l)
∣∣, E3 =

|Z1|
(l∗/n)α

,

E2I = max
l∈I

1

(l/n)α
max

0≤k≤n−l
|Zkl|, I ⊂ {1, . . . , n}.

(A.5)

From (3) and (A.3) we get

max
0<l≤l∗

Vρ(l) ≥
|S(k∗, k∗ + l∗)|

(l∗/n)α
≥ (1 − l∗/n)l∗s

(l∗/n)α
−E1−(1−l∗/n)E3 := LB1.

For l ≤ l∗ we can use|Akl| ≤ l and so||Akl| − l(l∗/n)| ≤ max{l(l∗/n), l(1 −
l∗/n)} ≤ l(1 − l∗/n) for large n. Using (A.2) and the fact thatl/(l/n)α is

increasing inl, we find an upper bound

max
0<l≤(1−ε)l∗

Vρ(l) ≤
(1 − l∗/n)(1 − ε)l∗s(

(1 − ε)l∗/n
)α +E1+E2(0, l∗]+(l∗/n)E3 =: UB1.

So we have that

P(UB1 ≥ LB1) ≤ P
(
2E1 + E2(0, l∗] + E3 ≥ λ1

)
, (A.6)
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where

λ1 =
(1 − l∗/n)l∗δ1(ε)s

(l∗/n)α
, δ1(ε) = 1 − (1 − ε)1−α.

Similarly we look for upper and lower bounds UB2 and LB2. First,

max
l∗≤l<n

Vρ(l) ≥
(1 − l∗/n)l∗s

(l∗/n)α
− E1 − E3 =: LB2.

To find an upper bound we analyze two cases. In the case where|Akl|−ll∗/n ≥ 0,

we use|Akl| ≤ l∗ to obtain||Akl|−ll∗/n| ≤ l∗(1−l/n). When|Akl|−ll∗/n ≤ 0,

||Akl| − ll∗/n| ≤ ll∗/n. Then the upper bound is

max
(1+ε)l∗≤l<n

Vρ(l) ≤
{(

1 − (1 + ε)l∗/n
)
l∗

((1 + ε)l∗/n)α
∨ l∗

}
s + E1 + E2[l

∗, n) + E3

≤ (1 − (1 + ε)l∗/n)l∗s

((1 + ε)l∗/n)α
+ E1 + E2[l

∗, n) + E3 := UB2

(we use|Z1| ≤ |Z1|/(l∗/n)α). Similarly to (A.6), we can now write

P(UB2 ≥ LB2) ≤ P
(
2E1 + E2[l

∗, n) + 2E3 ≥ λ2

)
, (A.7)

where, ifδ2(ε) = 1 − (1 + ε)−α, then

(1 − l∗/n)l∗s

(l∗/n)α

(
1 − 1 − (1 + ε)l∗/n

(1 − l∗/n)(1 + ε)α

)
≥ (1 − l∗/n)l∗δ2(ε)s

(l∗/n)α
=: λ2.

Our next step is to obtain the convergence to zero of the probabilities on the

right hand sides of (A.6) and (A.7). For eitherλ1 or λ2 we will write λ, andc(ε)

denotes a constant (may be different in different parts of the proof) depending on

ε and such thatc(ε) → 0 asε → 0.

First we analyzeP(E1 ≥ cλ) for some constantc > 0. We have

E1≤ max
0<l<n

1

(l/n)α
max

0≤k≤n−l

∣∣∣
∑

i∈Ikl

(
X ′

i−EX ′
i

)∣∣∣

+ max
0<l<n

l/n

(l/n)α

∣∣∣
n∑

i=1

(
X ′

i−EX ′
i

)∣∣∣≤2 max
0<l<n

1

(l/n)α
max

0≤k≤n−l
|Sk+l−Sk|,

whereSi = X ′
1 − EX ′

1 + · · · + X ′
i − EX ′

i, i = 1, . . . , n. Defining the integer

Jn by 2Jn ≤ n < 2Jn+1 and using the same technique of dyadic splitting of the
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l’s andk’s indexation ranges as in the proof of Proposition 13 in Račkauskas and

Suquet [7], we obtain for some constantc > 0

P(E1 ≥ cλ) ≤ 8

Jn+1∑

j=1

2j−1 exp(−2jab) ≤ 8

Jn+1∑

j=1

∫ 2j

2j−1

exp(−xab)dx

≤ 8

∫ ∞

1
exp(−xab)dx = 8(1/a)(1/b)1/aΓ(1/a, b).

(A.8)

HereΓ(1/a, b) is the incomplete gamma function and

a = 1 − 2α, b = bn(ε) = c(ε)l∗(l∗/n)as2. (A.9)

We finally have thatP(E1 ≥ cλ) → 0 provided that condition (13) holds.

Next we analyzeE2(0, l∗] andE2[l
∗, n) (see (A.5)). For both cases

P

(
max

l

1

(l/n)α
max

0≤k≤n−l
|Zkl| ≥ cλ

)
≤

∑

l

∑

0≤k≤n−l

P

( |Zkl|
(l/n)α

≥ cλ

)

for some constantc > 0. Using Hoeffding’s inequality we estimate

P

( |Zkl|
(l/n)α

≥ cλ

)
≤ 2 exp

(
−c(ε)(l∗)2s2(l/l∗)2α

|Akl|

)
≤ 2 exp

(
−c(ε)l∗s2

)
.

When0 < l ≤ l∗, there are at most2l∗ indexesk for whichAkl is not empty and

soZkl is a proper sum with non-empty summation index set. Whenl∗ ≤ l < n,

we can find at most(n + l∗)/2 such indexesk. Thus
∑

0<l≤l∗

∑

0≤k≤n−l

P
(
|Zkl| ≥cλ1(l/n)α

)
≤ 2l∗

∑

0<l≤l∗

2 exp
(
−c(ε)l∗s2

)

≤ 4 exp
(
−c(ε)l∗s2+2 log(l∗)

)
, (A.10)

∑

l∗≤l<n

∑

0≤k≤n−l

P
(
|Zkl| ≥cλ2(l/n)α

)
≤ n + l∗

2

∑

l∗≤l<n

2 exp
(
−c(ε)l∗s2

)

≤ exp
(
−c(ε)l∗s2+2 log(n)

)
. (A.11)

If condition (12) holds, (A.11) converges to zero; (A.10) approaches zero when

l∗s2/ log(l∗) → ∞. But the latter follows from the same condition (12).

ForE3 and some constantc > 0 we get

P(E3 ≥ cλ) = P
(
|Z1| ≥ cλ(l∗/n)α

)
≤ 2 exp

(
−c(ε)l∗s2

)
, (A.12)
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which tends to zero whenl∗s2 → ∞. This condition follows again from (12).

Consequently the convergence in probability is proved.

To provel̂∗/l∗ → 1 almost surely we show that for allε > 0

∞∑

n=1

P
(∣∣l̂∗/l∗ − 1

∣∣ ≥ ε
)

< ∞.

Using estimates (A.8), (A.10), (A.11) and (A.12) this reduces in proving the

convergence of the following three series

∞∑

n=1

1

a

(
1

bn(ε)

)1/a

Γ
(
1/a, bn(ε)

)
,

∞∑

n=1

exp
(
−εl∗s2 + c log(n)

)
,

∞∑

n=1

exp
(
−εl∗s2

)
,

wherea and bn(ε) are as in (A.9). The convergence of these series follows

straightforwardly by conditions (12) and (14).
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