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Abstract. In this paper, we address the problem of output feedback stabilization
for a class of uncertain dynamical systems. An asymptotically stabilizing
controller is proposed under the assumption that the nominal system is
absolutely stable.
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1 Introduction

The problem of stabilization for dynamical systems with uncertainties has been

studied by several authors; see, e.g., [1–10]. The design of a stabilizing controller

is generally based on the so called mini-max approach: a control law is in fact

designed as if there were no uncertainties, and a Lyapunov function is also given.

Then, this known Lyapunov function is employed as a Lyapunov function candi-

date for the uncertain dynamical system and a control law is then chosen such that

the Lyapunov function decreases along the trajectories of the uncertain dynamical

system.

In this paper, we consider nonlinear uncertain systems of the following form.
{

ẋ = Ax+Bu+ f(t, x, u),

y = Cx,
(1)

wheret ∈ R+, x ∈ R
n, u, y ∈ R

p, A ∈ R
n×n, B ∈ R

n×p, C ∈ R
p×n. The

pair of known matrices(A,B), defining the nominal system is assumed to be
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controllable withA Hurwitz. The pair(A,C) is assumed to be observable. The

unknown functionf : R+ × R
n × R

p → R
p models plant uncertainties in the

system. In the absence of uncertainties, the Lurie problem, described by [11–16]

and [17], consists in finding conditions onA, B andC such that the equilibrium

point x = 0 of the closed loop system withu = −ψ(t, y), whereψ satisfies a

sector condition, is globally asymptotically stable. This problem is also referred

to as the absolute stability problem since it gives sufficient conditions to prove

global asymptotic stability of the closed loop system for a whole class of feedback

nonlinearitiesψ. It was solved in [12] using two Lyapunov functions candidates:

a quadratic function and a Lurie type Lyapunov function.

Our goal is to design an output feedback controller under the assumption

that the nominal system is absolutely stable and the uncertainties are boundedin

Euclidean norm by known functions, and such that the zero state of the system

(1) is globally asymptotically stable. In most of the literature, no consideration

is given to Lyapunov functions which depend on the uncertainties bounds. Here,

as for the nominal system, we consider the problem of stabilizing the uncertain

system (1) using two Lyapunov functions. The first one is the quadratic Lyapunov

function of the nominal system, and the second one is a Lurie type Lyapunovfunc-

tion that depends on the uncertainties bound. This work extends in a simple way

the classical absolute stability circle and Popov criterion to uncertain nonlinear

systems.

2 Output feedback control

We first introduce the following definitions.

Definition 1. A nonlinearityψ : R+ × R
p → R

p is said to belong to a sector

[0,K] if

ψ(t, y)T
[

ψ(t, y) −Ky
]

≤ 0, ∀t ≥ 0, ∀y ∈ R
p

for some symmetric positive definite matrixK.

Definition 2. A (p × p) matrixZ(s) of functions of complex variables is called

positive real if
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• Z(s) has elements that are analytic forRe [s] > 0,

• Z∗(s) = Z(s∗) for Re [s] > 0, and

• ZT (s∗) + Z(s) is positive semi definite forRe [s] > 0,

where the asterisk∗ denotes complex conjugation.

The matrixZ(s) is called strictly positive real ifZ(s− ε) is positive real for

someε > 0.

The contents of this section depends on the following result known as the

Kalman-Yakubovich-Popov lemma [12].

Lemma 1. LetZ(s) = C(sI−A)−1B+D be a(p×p) transfer function matrix,

whereA is Hurwitz,(A,B) is controllable, and(A,C) is observable. ThenZ(·)
is strictly positive real if and only if there exist a symmetric positive definite matrix

P , matricesW andL, and a positive constantε such that

PA+ATP = −LTL− εP,

PB = CT − LTW,

W TW = D +DT .

As stated earlier, the problem is to design an output feedback controller which

forces the state to converge to zero. To accomplish this goal, we propose the

following controller

u(t, y) = −φ(t, y) = −ψ(t, y) − v(t, y), (2)

whereψ(t, y) is a k-Lipschitz function (i.e. ‖ψ(t, y) − ψ(t, z)‖ ≤ k‖y − z‖,

∀t ≥ 0, ∀y, ∀z) which belongs to a sector[0,K], whereK is a symmetric positive

definite matrix, andv(t, y) is an auxiliary control which will be given later. We

shall investigate asymptotic stability of the origin using two Lyapunov functions

candidates. The first one is a simple quadratic function

V (x) = xTPx, P = P T > 0

and the second one is a function of the form

V (x) = xTPx+ η

y
∫

0

φ(σ)TKdσ, P = P T > 0,
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η ≥ 0, which is known as a Lurie type Lyapunov function. In the latter case we

assume that the nonlinearityφ is time invariant and satisfies some conditions to

ensure that the integral is well defined and nonnegative.

2.1 Circle criterion design

If we dictate the condition

(A1) The(p× p) matrixZ1(s) defined by

Z1(s) = I +KC(sI −A)−1B

is strictly positive real.

Thenu = −ψ(t, y) stabilizes exponentially and globally the nominal system.

This problem is referred to as the circle criterion for absolute stability. In fact,

using Lemma 1, (see [12]) there exist a symmetric positive definite matrix

P (n× n), a matrixL(p× n) andε > 0, such that

PA+ATP = −LTL− εP, (3)

PB = CTK −
√

2LT . (4)

To achieve stabilization of the uncertain system (1) subject to the controller

(2), we suppose that assumption (A1) and the assumptions below are fulfilled.

(A2) There exists a mappingh : R+ × R
n × R

p → R
p, satisfying

f(t, x, u) = P−1CTh(t, x, u),

whereP is the positive definite matrix given by (3).

(A3) The uncertainh(t, x, u) is bounded by a known function, i.e. there exists a

nonnegative continuous functionρ(·, ·), such that

∥

∥h(t, x, u)
∥

∥ ≤ ρ(t, y).

(A4) There exists a nonnegative functionρ0(·, ·), such that

ρ(t, y) ≤ ρ0(t, y)‖y‖
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with

ρ0(t, y) <

(

2k − λmin(K)
)2

4
,

whereλmin(K) denotes the minimum eigenvalue of the matrixK andk is

the Lipschitz constant.

The proposed auxiliary controller is given by

v(t, y) = α(t, y)K−1y, (5)

whereα(t, y) is a positive function which will be chosen later. Therefore, we have

the following result.

Theorem 1. Consider the uncertain system described by(1), satisfying assump-

tions(A1)–(A4). Suppose thatk < λmin(K)
2 . Then, there exists a positive function

α(t, y) such that the closed loop system(1)–(2) with auxiliary control(5) is glo-

bally exponentially stable.

Proof. Consider the Lyapunov function

V (x) = xTPx.

The time derivative ofV along the trajectories of (1) is

V̇ = 2xTPAx+ 2xTPBu+ 2xTPf(t, x, u).

Since (A1) is satisfied, then we can use equations (3) and (4) to obtain

2xTPAx = −‖Lx‖2 − εxTPx

and

2xTPBu = 2yTKu− 2
√

2(Lx)Tu.

Hence

V̇ = −‖Lx‖2 − εxTPx+ 2yTKu− 2
√

2(Lx)Tu+ 2xTPf(t, x, u)

= −‖Lx+
√

2u‖2 − εxTPx+ 2yTKu2‖u‖2 + 2xTPf(t, x, u)
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which implies that

V̇ ≤ −εxTPx+ 2yTKu+ 2‖u‖2 + 2xTPf(t, x, u).

Now using the controller (2) and the auxiliary controller (5), we get

2yTKu+ 2‖u‖2 = 2ψT (ψ −Ky) − 2yTKv + 2‖v‖2 + 4ψT v

≤ −2yTKv + 2‖v‖2 + 4ψT v

= −2α‖y‖2 + 2α2‖K−1y‖2 + 4αψTK−1y

≤ −2α‖y‖2 + 2α2‖K−1‖2‖y‖2 + 4kα‖K−1‖‖y‖2

=
(

− 2α+ 2
α2

λ2
min(K)

+
4kα

λmin(K)

)

‖y‖2.

Moreover, from assumptions(A2), (A3) and(A4) it follows that

2xTPf(t, x, u) = 2yTh(t, x, u) ≤ 2‖y‖‖h(t, x, u)‖
≤ 2‖y‖ρ(t, y) ≤ 2ρ0(t, y)‖y‖2.

The above two inequalities in conjunction with the estimation ofV̇ yield,

V̇ ≤ −εxTPx+ 2

(

1

λ2
min(K)

α2 +
( 2k

λmin(K)
− 1

)

α+ ρ0

)

‖y‖2.

If we can choose the functionα(t, y) in such away

1

λ2
min(K)

α2 +
( 2k

λmin(K)
− 1

)

α+ ρ0 = 0, (6)

that is the equation (6) onα admits a solution, then, we obtain

V̇ ≤ −εxTPx

which achieves global exponential stability of (1).

Let us consider the quadratic equation (6). The discriminate∆ is given by

∆ =

(

2k − λmin(K)
)2

λ2
min(K)

− 4ρ0(t, y)

λ2
min(K)
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which is positive by assumption (A4). Therefore, there are two distinct real

solutions to equation (6).

α1 =
(λmin(K) − 2k

λmin(K)
−
√

∆
)λ2

min(K)

2
,

α2 =
(λmin(K) − 2k

λmin(K)
+
√

∆
)λ2

min(K)

2
.

Sincek <
λmin(K)

2
, we getα2 > 0 and so isα1. In conclusion, we can choose

α = α1 or α = α2 to guarantee global exponential stability of the closed loop

system (1)–(2).

Remark 1. In [3], output feedback stabilization of uncertain systems of the form

(1) has been investigated. The established result is different from the one given

here. In fact, in Theorem1, we are concerned not with a particular stabilizing

controller but with an entire family of controllers, sinceψ(·) can be any nonlin-

earity in the sector[0,K].

2.2 Popov criterion design

Now, consider again the system (1) subject to the controller (2) and suppose thatf

andφ are time invariant. Suppose thatψ is decentralized in the sense that eachψi

depends only onyi, and belongs to the sector[0,K] with K = diag(λ1, . . . , λn).

As in the former case, we start by giving conditions guaranteeing global asymp-

totic stability of the nominal system subject to the controlleru = −ψ(y), which

is referred to as the Popov criterion for absolute stability.

(A′

1) There existsη > 0, with − 1
η not an eigenvalue ofA, such that

Z2(s) = I + (1 + ηs)KC(sI −A)−1B

is strictly positive real.

If assumption (A′1) is satisfied, then, by Lemma 1 (see [12]), there exist a sym-

metric positive definite matrixP , matricesL andW andε > 0 such that

PA+ATP = −LTL− εP, (7)

PB = CTK + ηATCTK − LTW, (8)

2I + ηKCB + ηBTCTK = W TW. (9)
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Before stating and proving our second result, let us modify the assumptions

introduced above.

(A′

2) There exists a mappingh : R
n × R

p → R
p satisfying

f(x, u) = P−1CTh(x, u),

whereP is the positive definite matrix given by (7).

(A′

3) There exists a nonnegative continuous functionρ(·) such that

∥

∥h(x, u)
∥

∥ ≤ ρ(y).

(A′

4) There exists a positive constantρ0 such that

ρ(y) ≤ ρ0‖y‖ with ρ0 <

(

2k − λmin(K)
)2

4
,

whereλmin(K) denotes the minimum eigenvalue of the matrixK andk is

the Lipschitz constant.

We are now ready to state the following theorem.

Theorem 2. Consider system(1) subject to the controller

u(y) = −φ(y) = −ψ(y) − v(y),

whereψ(·) is a k-Lipschitz function which belongs to the sector[0,K]. Suppose

that there existsη small enough satisfying(A′

1). If assumptions(A′

2)–(A′

4) are

fulfilled and the Lipschitz constantk <
λmin(K)

2 , then there exists an auxiliary

controllerv(·) such that the closed loop system is globally asymptotically stable.

Proof. The proof consists of demonstrating that the function

V (x) = xTPx+ 2η

y
∫

0

φ(σ)TKdσ = xTPx+ 2η

y
∫

0

p
∑

i=1

φi(σi)
Tλidσi,

144



Circle and Popov Criterion for Output Feedback Stabilization

whereη ≥ 0 is to be chosen, is a Lyapunov function for the closed loop system.

We will choose a decentralized auxiliary controllerv(·). Thus,φ(·) is decentrali-

zed and the integral term is well defined and positive. Therefore, the functionV

is positive definite. Its derivative along the trajectories of the system is given by

V̇ = 2xTPẋ+ 2ηφT (y)Kẏ

= 2xTP
(

Ax+Bu+ f(x, u)
)

+ 2ηφT (y)KC
(

Ax+Bu+ f(x, u)
)

= 2xTPAx− 2xTPBφ(y) + 2xTPf(x, u) + 2ηφT (y)KCAx

− 2ηφT (y)KCBφ(y) + 2ηφT (y)KCf(x, u).

Using equations (7)–(9), it is easy to see that

V̇ = − ‖Lx−Wφ(y)‖2 − εxTPx+ 2‖φ‖2

− 2yTKφ(y) + 2xTPf(x, u) + 2ηφT (y)KCf(x, u)

≤− εxTPx+2‖φ‖2−2yTKφ(y)+2xTPf(x, u)+2ηφT (y)KCf(x, u).

Sinceφ(y) = ψ(y) + v(y) andψ is ak Lipschitz function which belongs to

the sector[0,K], it follows that

2‖φ‖2 − 2yTKφ(y) = 2ψTψ + 4ψT v + 2vT v − 2yTKψ − 2yTKv

≤ 4ψT v + 2‖v‖2 − 2yTKv

≤ 4‖ψ‖‖v‖ + 2‖v‖2 − 2yTKv

≤ 4k‖y‖‖v‖ + 2‖v‖2 − 2yTKv.

Choose a decentralizedv(·) as follows,

v(y) = αK−1y, with α > 0.

Then

2‖φ‖2 − 2yTKφ(y) ≤ 4kα‖K−1‖‖y‖2 + 2α2‖K−1‖2‖y‖2 − 2α‖y‖2

=
( 4αk

λmin(K)
+

2α2

λ2
min(K)

− 2α
)

‖y‖2.
(10)
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Moreover, under assumptions (A′

2)–(A′

4), we have

2xTPf(x, u) + 2ηφTKCf(x, u)

= 2yTh(x, u) + 2η(ψ + v)TKCP−1CTh(x, u)

≤ 2‖y‖ρ(y) + 2η‖ψ + v‖‖KCP−1CT ‖ρ(y)
≤ 2‖y‖2ρ0 + 2η‖KCP−1CT ‖ρ0(k +

α

λmin(K)
)‖y‖2

= 2
(

ρ0 + ηmρ0k +
ηmρ0

λmin(K)
α
)

‖y‖2,

(11)

wherem = ‖KCP−1CT ‖.

From (10) and (11) we obtain the following upper bound onV̇ ,

V̇ ≤ −εxTPx+ 2

(

α2

λ2
min(K)

−
(

1− 2k + ηmρ0

λmin(K)

)

α+ ρ0 + ηmρ0k

)

‖y‖2.

Following the proof of Theorem 1, we want to show that there existsα > 0 such

that

α2

λ2
min(K)

−
(

1 − 2k + ηmρ0

λmin(K)

)

α+ ρ0 + ηmρ0k = 0. (12)

First suppose thatη is small enough to satisfy

1 − 2k + ηmρ0

λmin(K)
> 0.

That is

0 < η <
λmin(K) − 2k

mρ0
:= η0.

It is possible, sinceλmin(K) > 2k. If ∆ is the discriminate of (12) then

∆ =

(

λmin(K) − 2k
)2 − 4ρ0 + (ηmρ0)

2 − 2ηmρ0λmin(K)

λ2
min(K)

.

Now consider the quadratic equation onη,

(

λmin(K) − 2k
)2 − 4ρ0 + (ηmρ0)

2 − 2ηmρ0λmin(K) = 0. (13)
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Its discriminateδ is given by

δ = 4m2ρ2
0

(

ρ0 + k(λmin(K) − k)
)

.

Hence,δ > 0, sinceλmin(K) > 2k. Consequently, there existη1 < η2 solutions

to equation (13), with

η1 =
λmin(K) − 2(ρ0 + k(λmin(K) − k))1/2

mρ0

which is positive. Ifη is small enough to satisfyη < min(η0, η1), then∆ > 0

which achieves this proof.

Remark 2. It is important to note that the Lyapunov function used to prove

Theorem2 is different from the one used to prove absolute stability of the nominal

system which has been given byV (x) = xTPx+ 2η
∫ y
0 ψ(σ)TKdσ, (see[12]).

3 Conclusion

We have investigated the problem of state trajectory control via output feedback

for a class of nonlinear uncertain dynamical systems. We proved that the sys-

tem can be globally exponentially stabilized or globally asymptotically stabilized,

provided that the controlled system without uncertainties is absolutely stable with

respect to the zero state and that the uncertainties are bounded in Euclidean norm

by known functions of the system output. An auxiliary controller is used to obtain

the stability of the system in presence of uncertainties.
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