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Abstract. This paper discusses a multimodal density function estimation
problem of a random vector. A comparative accuracy analysisof some popular
non-parametric estimators is made by using the Monte-Carlomethod. The
paper demonstrates that the estimation quality increases significantly if the
sample is clustered (i.e., the multimodal density functionis approximated by
a mixture of unimodal densities), and later on, the density estimation methods
are applied separately to each cluster. In this paper, the sample is clustered using
the Gaussian distribution mixture model and the EM algorithm. The highest
efficiency in the analysed cases was reached by using the iterative procedure
proposed by Friedman for estimating a density component corresponding to
each cluster after the primary sample clustering mentioned. The Friedman
procedure is based on both the projection pursuit of multivariate observations
and transformation of the univariate projections into the standard Gaussian
random values (using the density function estimates of these projections).

Keywords: non-parametric estimation, multivariate density function, sample
clustering, projection pursuit, Monte-Carlo method.

1 Introduction

A large number of non-parametric methods designed for statistical estimation of

the density function of random vectors are used in the modern data analysis. The

kernel density estimators are the most common ones [1, 2]. Spline [3, 4] and

semi-parametric [5, 6] algorithms are also popular. Application of many popular

non-parametric estimation procedures in practice encounters a problem ofoptimal
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parameter selection. The most important element of the kernel density estimators

is the smoothing bandwidth. Spline knots selection for spline estimators is also

a difficult task. Though there exists a lot of adaptive procedures for selection

of mentioned parameters [2, 7–9], the efficiency is low in the case of a small

sample size. It is advisable to apply the data projection technique [10–12] in this

case, because the parameter selection problem becomes more difficult when the

dimension of the observed random vectors increases.

Let X be ad-dimensional random vector with a density functionf(x). Let

T ⊂ R
d be a unit sphere. For eachτ ∈ T , the scalar productτ ′X will denote

the projection of a random vectorX onto a directionτ . Its density function

will be denoted byfτ (u), u ∈ R
1. Let X = (X(1), . . . , X(n)) be a sample

of independent copies ofX. The density functionf(x) could be estimated using

the two-stage procedure:

1. The estimateŝfτ (u) are calculated for eachτ ∈ T0, whereT0 is a finite set

of random points onT .

2. The density functionf(x) is estimated by{f̂τ (·), τ ∈ T0}.

The multivariate density function estimate could be obtained using the in-

version formula [12] if we have density function estimates for the large enough

number of the univariate projections. One of such estimators is analysed in this

paper (expressions (2) and (3); Section 2).

The idea proposed by J. H. Friedman [10] is more delicate. It facilitates over-

coming much difficulty in applying the previously mentioned inversion formula,

namely: selection of a smoothing parameter, a large number of projected density

estimates, etc.

Friedman has developed the idea of Huber [13], who considered the Gaussian

distribution to be least “interesting” (because it is so common), and proposed

an iterative algorithm, based on both the sequential search of univariate pro-

jections, whose distribution function is most different from the Gaussian one,

and transformation of those projections into the Gaussian random values. Let

Z be a standardized random vector (i.e., random vector with zero mean and

unit covariance matrix) with an unknown density functionf(z). The valueZ

is transformed after each step,Z(k) = Qk(Z), k = 1, 2, . . . . Let us define
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Z(0) = Z. Z(k) is obtained fromZ(k−1) by the following procedure. Letgk(u),

u ∈ R
1 denote the density function of univariate projectionτ ′Z(k−1), where the

direction vectorτ = τ(k) is selected so thatgk differs most from the standard

normal densityϕ. Let us denote the corresponding distribution functions byGk

andΦ. We define

Z(k) = Z(k−1) − (τ ′Z(k−1))τ + Φ−1
(
Gk(τ

′Z(k−1))
)
τ.

Thus, the random vectorZ(k−1) is transformed in such a way that the projection

of Z(k) onto the directionτ would have the distribution functionΦ, and the

projection to the direction orthogonal toτ would remain unchanged. Friedman has

proved [10] that the random vectorZ(k) converges in distribution to the standard

Gaussian random vector ask → ∞. Thus, for large enoughM ,

f(z) ' ϕ
(
z(M)

) M∏

k=1

gk

(
τ ′(k)z(k−1)

)

ϕ(τ ′(k)z(k))
, (1)

wherez(k) = Qk(z). Friedman’s statistics is obtained by substituting statistical

estimates for the unknown univariate density functionsgk into the right side of

expression (1). Many-sided analysis results obtained by the authors and other

scientists has showed sufficiently good properties of this density function esti-

mator [14]. It is evident that, the more the analysed multivariate distribution

is similar to the Gaussian distribution, the more accurate the estimator is. If

this method is used to estimate multimodal density functions, larger errors are

obtained. This conclusion can also be applied to other estimation methods under

investigation.

One of the possible ways to increase the estimation accuracy is to reduce the

problem of a multimodal density analysis to the estimation of unimodal densities

by treating the density analysed as a mixture of unimodal densities. The authors

suggest performing sample clustering at the first stage of analysis and estima-

ting each component of distribution mixture separately at the second stage. The

constructive procedure [15] based on approximation of the sample distribution

by the Gaussian mixture can be used for sample clustering. The clustering can

also be performed by EM algorithm with a random start. The idea of preliminary

clustering is not new. Originally it has been used only for the popular kernel
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density estimator. The authors are thankful to the referee for taking a noteof

papers [16] and [17]. The aim of this paper is to determine whether the usage

of the preliminary sample clustering decreases estimation errors of multimodal

densities. For such density functions, a comparative accuracy analysisof various

non-parametric estimators is made by the Monte-Carlo method. This paper com-

prises the following sections: Section 2 reviews the density estimators; Section3

describes the EM algorithm used for sample clustering; Section 4 contains the

simulation results and conclusions. The accuracy of the estimators is presented

(by means of figures and tables) in appendices.

2 The analysed algorithms

The comparative analysis of estimation accuracy was made using five different

methods. The density function estimators were selected as representativesof po-

pular different technique estimators which were studied experimentally by other

researchers. The exception is the first procedure which is new. The Monte-Carlo

method was used to analyse the following statistical estimators of the density

function:

1. The inversion formula-based density estimator (IFDE), which is proposed by

the authors of this paper.

2. The method based on projection pursuit and sequential normalization of pro-

jections proposed by Friedman (PPDE).

3. Silverman’s adaptive kernel density estimator (AKDE). A separate bandwidth

is used for each observation.

4. The semi-parametric kernel density estimator (SKDE) analysed by Hoti and

Holmström, who decomposed a random vector into two subvectors. The

density of one of these vectors is estimated by the kernel density estimator,

while the density of the other is approximated by the normal density function.

5. The log-spline density estimator (LSDE) proposed by Kooperberg andStone.

The logarithm of the analysed density is approximated by the sum of cubic

B-splines.

396



Application of Clustering in the Non-Parametric Estimation of Distribution Density

Before applying the above methods, the sample is standardized (except for

the last method), i.e., the sample is transformed to have a zero mean and a unit

covariance matrix. Let us describe these methods in more detail.

2.1 IFDE algorithm

Using the inversion formula and passing to spherical coordinates, we obtain

f(x) = c(d)

∫

{τ∈T}

ds

∞∫

0

e−iuτ ′xψ(uτ)ud−1 du, x ∈ R
d, (2)

whereψ(x)
def
= Eeit

′X is the characteristic function,c(d) = d 2−dπ−
d
2 /Γ(d

2 +1),

Γ is a Gamma function, and the outer integral is the surface integral over the unit

sphere. Using expression (2), we obtain the estimator (originally proposed in [12])

f̂(x) =
c(d)

M

∑

τ∈T0

∞∫

0

e−iuτ ′xψ̂τ (u)u
d−1e−λu2

du; (3)

here the setT0 consists ofM random points uniformly distributed on the sphere

T , the factore−λu2
is used for additional smoothing and̂ψτ (·) is the Fourier

transform of the univariate projectionτ ′X density function estimatêfτ . The

estimatef̂τ was obtained by AKDE procedure with the Gaussian kernel function.

This enables us to calculate the integral on the right side of the expression (3)

analytically. For eachτ ∈ T0,

f̂τ (ν) =
1

n

n∑

j=1

ϕ

(
ν − τ ′X(j)

hj

)
/hj , hj = hj(τ) (4)

and

ψ̂τ (u) =
1

n

n∑

j=1

exp
(
iuτ ′X(j) − h2

ju
2/2

)
.

The smoothing parameterλ was selected using the cross-validation method [18],

for M = 10000.
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2.2 PPDE algorithm

This estimator is defined by equality (1). The projective estimator, on the basisof

the Legendre orthogonal polynomial, was used for estimating densitiesgk of the

univariate projections. This estimator is identical to that used by Friedman. Let

ξ1, . . . , ξn be univariate random values with a density functiong(u). Applying

the transformationηk = 2Φ(ξk) − 1, ν = 2Φ(u) − 1, we obtain random values

η1, . . . , ηn with densityg∗(ν) = g(u)
2ϕ(u) , which is supported on the interval[−1, 1].

Using the expansion in the Legendre polynomial basis{ψj}∞j=0

g∗(ν) =
∞∑

j=0

bjψτ (ν)

and replacing the coefficientsbj = (j+1/2)Eψj(ηi) by their empirical analogues,

we obtain the estimator

ĝ(y) = ϕ(y)
s∑

y=0

2j + 1

n

n∑

k=1

ψj(ηk)ψj(·). (5)

According to the recommendations [1], the order of expansion (5) was as-

sumed to bes ≤ 6. Projection directions, assuring the maximal absolute values

of empirical skewness and kurtosis, were selected.

2.3 AKDE algorithm

The kernel density estimator with the variable bandwidth is defined by the follo-

wing expression

f̂(z) =
1

n

n∑

j=1

1

hd
j

K

(
z − Z(j)

hj

)
. (6)

The algorithm is identical to the procedure defined in [1]. The standard Gaussian

kernel functionϕ is used. The bandwidth is defined by

hj = h
(
f̃
(
Z(j)

)
/q

)−ν

,

whereh = ( 4
(2d+1)n)

1
d+4 , f̃(·) is the kernel density estimator (6) obtained by

substitutingh for hi, q = exp( 1
n

log
∑n

j=1 f̃(Z(j))) and ν is the sensitivity

parameter. As proposed in [1], values of the parameterν are chosen from the

set{0.2, 0.4, 0.6, 0.8} using the cross-validation method.
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2.4 SKDE algorithm

The observedd-dimensional random vectorX is decomposed into two sub-vectors

X =
(
Y
Z

)
. Thus, the sample is decomposedX =

(
Y

Z

)
. The density functionfX(·)

is presented as the product of the density function of random vectorY and a

conditional density function of random vectorZ, i.e.,

fX(x) = fY (y)fZ|Y (z|y), where x =

(
y

z

)
∈ R

d.

The density functionfY (y) is estimated using the kernel method, analogous

to (6), with the constant kernel bandwidthh. SubvectorY and the kernel band-

width h are selected by the cross-validation method [19] as suggested in [6].

The conditional densityfZ|Y (·|y) is approximated by the Gaussian distribution

N (m(y), C(y)). The conditional meanm(y) and the conditional covariance

matrixC(y) of the random vectorY are defined by the equalities

m̂(y) =
n∑

j=1

Wh,j(y,Y)Z(j)

and

Ĉ(y) =
n∑

j=1

Wh,j(y,Y)
(
Z(j) − m̂(y)

)(
Z(j) − m̂(y)

)′
,

whereWh,j(y,Y) =
ϕ(

y−Y (j)
h

)
∑n

i=1 ϕ(
y−Y (j)

h
)
.

2.5 LSDE algorithm

The log-spline density estimator approximates the logarithm of the multivariate

density function by the sum of splines

f̂(x) = exp

( n∑

j=1

βjBj(x) − C(β)

)
,

for the given set of basis functionsB1, . . . , Bs with the coefficient vectorβ =

(β1, . . . , βs) and the normalizing factorC(β). The procedure proposed by Ko-

operberg and Stone applies the cubic B-splines to estimate univariate densities.
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The spline knots are selected using the Akaike information criterion [20], and

the spline coefficients are calculated using the maximum likelihood method. The

estimate of the multivariate density function is the product of univariate spline

density estimates. To calculate this estimate, the software [21] is used.

3 Sample clustering using the EM algorithm

If the density function of the random vectorX hasq maxima, it can be approxi-

mated by a mixture ofq unimodal densities

f(x) =

q∑

k=1

pkϕk(x). (7)

Let the distribution ofX depend on the random variableν that assumes

values1, . . . , q with probabilitiesp1, . . . , pq, respectively. In the classification

theory, ν is interpreted as the number of the class the object belongs to, and

each observationX(t), t = 1, . . . , n has a corresponding class numberν(t).

The functionsϕk are treated as conditional densities givenν = k. Using this

approach, the soft clustering problem is equivalent to the estimation problem of

posterior classification probabilities

πk(x) = P{ν = k|X = k}

for eachx ∈ {X(1), . . . , X(n)}. A hard clustering problem is equivalent to

the estimation problem of random variablesν(1), . . . , ν(n). In this paper, hard

clustering is used for the density function estimation. The sample is decomposed

into subsets using the following decision rule

ν̂(t) = arg max
k=1,...,q

π̂k

(
X(t)

)
. (8)

The estimateŝπk are obtained applying the approximation of unknown den-

sity componentsϕk by the normal density function and using the EM algorithm.

Let expression (7) be valid andϕk be density functions of the normal distributions

N (M(k), R(k)), k = 1, . . . , q. In this case, let us denote the right side of the

expression (7) byf(x, θ), whereθ = (pk,M(k), R(k), k = 1, . . . , q). Then the

following expression holds

πk(x) =
pkϕk(x)

f(x, θ)
, k = 1, q. (9)
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Having the estimate ofθ, the estimates ofπk are obtained from expression (9)

by the “plug-in” method, i.e., by replacing unknown values on the right side of

the expression with their statistical estimates. The EM algorithm is an iterative

procedure for finding the maximum likelihood estimateθ∗ of θ,

θ∗ = arg max
θ
L(θ), L(θ) =

n∏

t=1

f
(
X(t), θ

)
(10)

and the corresponding estimatesπ̂k. Assume that the estimateŝπk = π̂
(r)
k after

r iterations of the procedure. Then a new valueθ̂ = θ̂(r+1) is defined by the

equalities

p̂k =
1

n

n∑

t=1

π̂k

(
X(t)

)
,

M̂(k) =
1

npk

n∑

t=1

π̂k

(
X(t)

)
X(t),

R̂(k) =
1

npk

n∑

t=1

π̂k

(
X(t)

)[
X(t) −M(k)

][
X(t) −M(k)

]′
,

wherek = 1, . . . , q. By insertingθ̂(r+1) into the right side of expression (9),

we find π̂(r+1)(X(t)), k = 1, q, t = 1, n. Using the above iterative procedure,

we obtain a non-decreasing sequenceL(θ̂(r)), whose convergence to the global

maximum depends on the selection of the initial valueθ̂(0) (or π̂(0)). The simplest

solution of the initial value selection problem is the random start technique. The

EM algorithm is repeatedly applied, using the random initial valuesπ̂(0). Finally

the estimatêθ is selected if it gives maximum toL(θ̂). The number of clusters

is selected, using the cross-validation method [18]. Sufficiently good results are

also obtained applying the automated procedure to selectπ̂(0).

4 Monte-Carlo simulation

The comparative analysis of the mentioned density estimation methods has been

made exploring the data that was used by J.N. Hwang, S.R. Lay and A. Lippman

in their paper. Mixtures of the multivariate (d = 2, 5) Gaussian and Cauchy
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distributions with independent components are used. So, the density functions of

the data are defined as follows:

f(x) =

q∑

i=1

pifN (x,Mi, σi) (Gaussian mixture)

or

f(x) =

q∑

i=1

pifC(x,Mi, ui) (Cauchy mixture)

with restrictions
∑q

i=1 pi = 1, pi ≥ 0, i = 1, q. Here

fN (x,Mi, σi) =
1

d∏
j=1

σij

√
2π

exp

(
− 1

2

d∑

j=1

(xj −mij)
2

σ2
ij

)
,

fC(x,Mi, ui) =
d∏

j=1

uij

π
(
u2

ij + (xj −mij)2
) .

Unimodal distribution

The very first data generated are of unimodal distribution with the following

parameters: for the Gaussian distribution,

p = 1, m = (0.0, 0.0, 0.0, 0.0, 0.0)′, σ2= (0.84, 1.02, 0.70, 1.20, 0.96)′;

for the Cauchy distribution,

p = 1, m = (0.0, 0.0, 0.0, 0.0, 0.0)′, u = (0.84, 1.02, 0.70, 1.20, 0.96)′.

In cased = 2, 4, the parameters are defined by the firstd elements of the given

5-dimensional parameter.

Slightly overlapping bimodal distribution

Data of the second type are of slightly overlapping bimodal distribution with the

following parameters: for the Gaussian distribution,

p1 =0.65, m1 =(0.0, 0.0, 0.0, 0.0, 0.0)′, σ2
1 =(0.42, 0.51, 0.35, 0.60, 0.48)′,

p2 =0.35, m2 =(2.0, 2.0, 2.0, 2.0, 2.0)′, σ2
2 =(0.33, 0.46, 0.53, 0.43, 0.45)′;
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for the Cauchy distribution,

p1 =0.65, m1 =(0.0, 0.0, 0.0, 0.0, 0.0)′, u1 =(0.42, 0.51, 0.35, 0.60, 0.48)′,

p2 =0.35, m2 =(2.0, 2.0, 2.0, 2.0, 2.0)′, u2 =(0.33, 0.46, 0.53, 0.43, 0.45)′.

Highly overlapping bimodal distribution

Data of the third type are og highly overlapping bimodal distribution with the

following parameters: for the Gaussian distribution,

p1 =0.65, m1 =(0.0, 0.0, 0.0, 0.0, 0.0)′, σ2
1 =(0.84, 1.02, 0.70, 1.20, 0.96)′,

p2 =0.35, m2 =(2.0, 2.0, 2.0, 2.0, 2.0)′, σ2
2 =(0.66, 0.92, 1.06, 0.86, 0.90)′;

for the Cauchy distribution,

p1 =0.65, m1 =(0.0, 0.0, 0.0, 0.0, 0.0)′, u1 =(0.84, 1.02, 0.70, 1.20, 0.96)′,

p2 =0.35, m2 =(2.0, 2.0, 2.0, 2.0, 2.0)′, u2 =(0.66, 0.92, 1.06, 0.86, 0.90)′.

For each type of data, for both distributions (Gaussian and Cauchy) andfor

each dimension (d = 2, 5), samples of sizes 200, 400, 800, 1600 and 3200 are

generated. In each case, simulation is repeated 100 times.

The deviation of the approximationg of functionf is measured by

δ = E
(
g(X) − f(X)

)2
/Df(X).

This measure was proposed in [1], and we make use of it in order to obtain

comparable results. We define

δ = Err/V ar

by substituting the density function forf , as well as the estimator̂f for g, and by

taking empirical analogues of unknown values. HereErr = 1
n

∑n
t=1(f̂t − ft)

2

stands for the mean square error, whereft = f(X(t)) is a value of the true

density at the observation point, andV ar = 1
n

∑n
t=1(ft − f)2, wheref signifies

the average off1, . . . , fn.
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Simulation results

The results of errors of the analysed methods for the best selected values of the

parameters are presented in appendices A, B, and C. The typical models are

presented. For other data models, the accuracy analysis results are similarto

the presented ones. For each method, the arithmetic mean of the error calculated

using 100 simulations is presented in figures. Appendix A contains the density

estimation results for AKDE, PPDE, IFDE, LSDE, and SKDE methods when

the primary data clustering is used. The data clustering was performed, using

automated clustering software (developed by Institute of Mathematics and Infor-

matics, Vilnius) which is based on the EM algorithm. Appendix B contains the

density estimation results for AKDE and PPDE methods, with the preliminary

data clustering in use and without it. Appendix C contains the accuracy analysis

results for the density estimators. The results, obtained by means of AKDE and

PPDE, are similar to those obtained by J.N. Hwang, S.R. Lay and A. Lippman,

i.e., in the case of small sample sizes and heavy tails (Cauchy samples), it is

better to use the kernel density estimators, in the case of large data dimensions

and large sample sizes (400 and more observations), or in the case of the Gaussian

distribution, better results are obtained using the projection pursuit density estima-

tor. In the case of the5-dimensional Gaussian distribution, quite good results are

obtained using the IFDE method, based on the inversion formula. The preliminary

data clustering into homogeneous groups, using automatic EM algorithm, enabled

us to reduce errors 2–3 times in the case of a small sample, and up to 5 times in

some other cases. For large samples (n = 1600, 3200), the error reduction ratio

equals 1.05–2. A conclusion can be drawn that unambiguously,PPDE is the best

estimator. For unimodal Gaussian and Cauchy distributions, estimation errors

decrease (especially in the case of small samples) up to 4.6 times, provided the

preliminary data clustering is applied. SKDE estimations are good enough in the

case of unimodal Gaussian densities. For5-dimensional mixture densities, IFDE

turned out to be a good estimator either. It has been found out that, in some cases,

very accurate results could be obtained by the LSDE method, however, in the

cases with outliers, LSDE yielded great errors that increased the overall averaged

error of this method. The IFDE algorithm is very slow in comparison with other

methods.
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Appendix A

The density estimation results are presented. Preliminary data clustering is used.

Each figure corresponds to a different sample distribution.

Single mode 2-d Gaussian Single mode 5-d Gaussian

Bimodal slightly overlapping
5-d Gaussian

Bimodal highly overlapping
5-d Gaussian

Single mode 2-d Cauchy Single mode 3-d Cauchy
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Single mode 4-d Cauchy Single mode 5-d Cauchy

Bimodal slightly overlapping
2-d Cauchy

Bimodal slightly overlapping
5-d Cauchy

Bimodal highly overlapping
2-d Cauchy

Bimodal highly overlapping
5-d Cauchy
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Appendix B

The efficiency analysis of the preliminary data clustering is presented. Each figure

corresponds to a different sample distribution.

Single mode 5-d Gaussian Bimodal slightly overlapping
5-d Gaussian

Bimodal highly overlapping
5-d Gaussian

Single mode 5-d Cauchy

Bimodal slightly overlapping
2-d Cauchy

Bimodal slightly overlapping
5-d Cauchy
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Bimodal highly overlapping
2-d Cauchy

Bimodal highly overlapping
5-d Cauchy

Appendix C

The tables illustrate the averaged errors (in bold) and their standard deviation.

Table 1. Single mode 4-dimensional distributions

Method Gaussian distribution Cauchy distribution
n = 400 n = 1600 n = 400 n = 1600

with without with without with without with without
cluster. cluster. cluster. cluster. cluster. cluster. cluster. cluster.

AKDE 0.2055 0.1178 0.1455 0.0845 0.1994 0.1787 0.1283 0.1052
0.0289 0.0121 0.0169 0.0169 0.0056 0.0324 0.0014 0.0051

PPDE 0.1260 0.0668 0.0457 0.0243 0.1804 0.1115 0.0445 0.0323
0.0088 0.0141 0.0061 0.0061 0.0034 0.0109 0.0073 0.0031

IKDE 0.1764 0.1661 0.1260 0.1159 0.2099 0.1900 0.0777 0.0719
0.0063 0.0178 0.0037 0.0059 0.0087 0.0278 0.0094 0.0118

LSDE 0.1208 0.1099 0.1729 0.0729
0.0066 0.0126 0.0107 0.0045

SKDE 0.0993 0.0541 0.1908 0.0647
0.0124 0.0015 0.0032 0.0071
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Table 2. Bimodal slightly overlapping 4-dimensional mixtures

Method Gaussian mixture Cauchy mixture
n = 400 n = 1600 n = 400 n = 1600

with without with without with without with without
cluster. cluster. cluster. cluster. cluster. cluster. cluster. cluster.

AKDE 0.2963 0.2531 0.2495 0.1882 0.2173 0.1755 0.1706 0.1257
0.0550 0.0166 0.0706 0.0178 0.1644 0.0466 0.0861 0.0214

PPDE 0.2219 0.0928 0.0590 0.0328 0.2106 0.2027 0.1834 0.1057
0.0242 0.0137 0.0229 0.0148 0.0804 0.0598 0.0266 0.0224

IKDE 0.2530 0.2531 0.1841 0.1766 0.2270 0.2124 0.1851 0.1732
0.0621 0.0017 0.0316 0.0017 0.0685 0.0037 0.0847 0.0214

LSDE 0.1281 0.0824 0.2130 0.1378
0.0148 0.0136 0.0283 0.0077

SKDE 0.1393 0.0759 0.2011 0.1418
0.0107 0.0147 0.0313 0.0201

Table 3. Bimodal highly overlapping 4-dimensional mixtures

Method Gaussian mixture Cauchy mixture
n = 400 n = 1600 n = 400 n = 1600

with without with without with without with without
cluster. cluster. cluster. cluster. cluster. cluster. cluster. cluster.

AKDE 0.2526 0.1049 0.2039 0.0629 0.2478 0.1946 0.1416 0.1341
0.0471 0.0058 0.0729 0.0094 0.0889 0.0123 0.0434 0.0109

PPDE 0.1684 0.0512 0.0591 0.0412 0.1879 0.1628 0.1403 0.0912
0.0278 0.0106 0.0050 0.0063 0.0078 0.0429 0.0165 0.0021

IKDE 0.2563 0.2321 0.1808 0.1644 0.2496 0.2239 0.1455 0.1427
0.0122 0.0018 0.0050 0.0052 0.0258 0.0518 0.0373 0.0213

LSDE 0.1772 0.1213 0.2184 0.1352
0.0061 0.0055 0.0299 0.0106

SKDE 0.0801 0.0809 0.2193 0.1245
0.0078 0.0097 0.0047 0.0056
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