On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value Problems

G. A. Afrouzi, S. H. Rasouli
Department of Mathematics, Faculty of Basic Sciences
Mazandaran University, Babolsar, Iran afrouzi@umz.ac.ir

Received: 05.04.2006 Revised: 19.04.2006 Published online: 30.10.2006

$$
\begin{aligned}
& \text { Abstract. This study concerns the existence of positive solutions to classes of } \\
& \text { boundary value problems of the form } \\
& \qquad \begin{array}{l}
-\Delta u=g(x, u), \quad x \in \Omega, \\
u(x)=0,
\end{array} \quad x \in \partial \Omega,
\end{aligned}
$$

where Δ denote the Laplacian operator, Ω is a smooth bounded domain in R^{N} ($N \geq 2$) with $\partial \Omega$ of class C^{2}, and connected, and $g(x, 0)<0$ for some $x \in \Omega$ (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of $g(x, u)$.
Keywords: positive solutions, sub-super solution.
AMS classification: 35J65.

1 Introduction

In this paper we consider the existence of positive solution to boundary value problems of the form

$$
\begin{align*}
-\Delta u & =g(x, u), & & x \in \Omega \tag{1}\\
u(x) & =0, & & x \in \partial \Omega
\end{align*}
$$

where Δ denote the Laplacian operator, Ω is a smooth bounded domain in R^{N} $(N \geq 2)$ with $\partial \Omega$ of class C^{2}, and connected, and $g(x, 0)<0$ for some $x \in \Omega$ (semipositone problems). In particular, we first study the case when $g(x, u)=$
$a(x) u-b(x) u^{2}-c h(x)$, where $a(x), b(x)$ are $C^{1}(\bar{\Omega})$ functions that $a(x)$ is allowed to be negative near the boundary of Ω, and $b(x)>b_{0}>0$ for $x \in \Omega$. Here $h: \bar{\Omega} \rightarrow R$ is a $C^{1}(\bar{\Omega})$ function satisfying $h(x) \geq 0$ for $x \in \Omega, h(x) \not \equiv 0$, and $\max _{x \in \bar{\Omega}} h(x)=1$. We prove that there exists a $c_{0}=c_{0}(\Omega, a, b)>0$ such that for $0<c<c_{0}$ there exists a positive solution.

The above equation arises in the studies of population biology of one species with u representing the concentration of the species or the population density, and $\operatorname{ch}(x)$ representing the rate of harvesting (see [1]). The case when $a(x), b(x)$ are positive constants throughout $\bar{\Omega}$, has been studied in [1]. In [2] the authors studied the case when $c=0$ (non-harvesting case), $b(x) \equiv 1$ for $\bar{\Omega}$ and $a(x)$ is apositive function throughout $\bar{\Omega}$. However the $c>0$ case is a semipositone problem $(g(x, 0)<0)$ and studying positive solutions in this case is significantly harder. Here we consider the challenging semipositone case $c>0$. Semipositone problems have been of great interest during the past two decades, and continue to pose mathematically difficult problems in the study of positive solutions (see [3-6]).

We next study the case when $g(x, u)=\lambda m(x) f(u)$, where the weight m satisfying $m \in C(\Omega)$ and $m(x) \geq m_{0}>0$ for $x \in \Omega, f \in C^{1}[0, \rho)$ is a nondecreasing function for some $\rho>0$ such that $f(0)<0$ and there exist $\alpha \in(0, \rho)$ such that $f(t)(t-\alpha) \geq 0$ for $t \in[0, \rho]$.

See [7] where positive solution is obtained for large λ when $m(x) \equiv 1$ for $x \in \Omega$ and f is sublinear at infinity. We are interested in the existence of a positive solution in a range of λ without assuming any condition on f at infinity. Our approach is based on the method of sub-super solutions, see $[2,8]$.

2 Existence results

We first give the definition of sub-super solution of (1). A super solution to (1) is defined as a function $z \in C^{2}(\bar{\Omega})$ such that

$$
\begin{array}{rlrl}
-\Delta z & \geq \lambda g(x, z), & & x \in \Omega, \\
z \geq 0, & & x \in \partial \Omega .
\end{array}
$$

Sub solutions are defined similarly with the inequalities reversed and it is well known that if there exists a sub solution ψ and a super solution z to (1) such that
$\psi(x) \leq z(x)$ for $x \in \bar{\Omega}$, then (1) has a solution u such that $\psi(x) \leq u(x) \leq z(x)$ for $x \in \bar{\Omega}$. Further note that if $\psi(x) \geq 0$ for $x \in \Omega$ then $u \geq 0$ for $x \in \Omega$.

To precisely state our existence result we consider the eigenvalue problem

$$
\begin{align*}
-\Delta \phi & =\lambda \phi, & & x \in \Omega, \tag{2}\\
\phi & =0, & & x \in \partial \Omega .
\end{align*}
$$

Let $\phi_{1} \in C^{1}(\bar{\Omega})$ be the eigenfunction corresponding to the first eigenvalue λ_{1} of (3) such that $\phi_{1}(x)>0$ in Ω, and $\left\|\phi_{1}\right\|_{\infty}=1$. It can be shown that $\frac{\partial \phi_{1}}{\partial n}<0$ on $\partial \Omega$. Here n is the outward normal. This result is well known (see, e.g., [9]), and hence, depending on Ω, there exist positive constants k, η, μ such that

$$
\begin{align*}
& \lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2} \leq-k, \quad x \in \bar{\Omega}_{\eta}, \tag{3}\\
& \phi_{1} \geq \mu, \quad x \in \Omega_{0}=\Omega \backslash \bar{\Omega}_{\eta}, \tag{4}
\end{align*}
$$

with $\bar{\Omega}_{\eta}=\{x \in \Omega \mid d(x, \partial \Omega) \leq \eta\}$. Further assume that there exists a constants $a_{0}, a_{1}>0$ such that $a(x) \geq-a_{0}$ in $\bar{\Omega}_{\eta}$ and $a(x) \geq a_{1}$ in $\Omega_{0}=\Omega \backslash \bar{\Omega}_{\eta}$.

We will also consider the unique solution, $\zeta \in C^{1}(\bar{\Omega})$, of the boundary value problem

$$
\begin{aligned}
-\Delta \zeta & =1, & & x \in \Omega, \\
\zeta & =0, & & x \in \partial \Omega,
\end{aligned}
$$

to discuss our existence result. It is known that $\zeta>0$ in Ω and $\frac{\partial \zeta}{\partial n}<0$ on $\partial \Omega$.
First we obtain the existence of positive solution of (1) in the case when $g(x, u)=a(x) u-b(x) u^{2}-c h(x)$.

Theorem 1. Suppose that $a_{0}<2 k$ and $2 \lambda_{1}<a_{1} \mu^{2}$. Then there exists $c_{0}=$ $c_{0}\left(\Omega, a_{0}, a_{1}, b\right)>0$ such that if $0<c<c_{0}$ then the problem (1) has a positive solution u.

Proof. To obtain the existence of positive solution to problem (1) we constructing a positive subsolution ψ and supersolution z. We shall verify that $\psi=\delta \phi_{1}^{2}$ is a subsolution of (1), where $\delta>0$ is small and specified later (note that $\|\psi\|_{\infty} \leq \delta$). Since $\nabla \psi=2 \delta \phi_{1} \nabla \phi_{1}$, a calculation shows that

$$
-\Delta \psi=-\delta \Delta \phi_{1}^{2}=-2 \delta\left(\left|\nabla \phi_{1}\right|^{2}+\phi_{1} \Delta \phi_{1}\right)=2 \delta\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) .
$$

Then ψ is a subsolution if

$$
2 \delta\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) \leq a(x) \psi-b(x) \psi^{2}-\operatorname{ch}(x)
$$

Now $\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2} \leq-k$ in $\bar{\Omega}_{\eta}$, and therefore

$$
2 \delta\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) \leq-2 k \delta \leq-a_{0} \delta-\|b\|_{\infty} \delta^{2}-c
$$

if

$$
\begin{aligned}
& \delta<\theta_{1}=\frac{2 k-a_{0}}{\|b\|_{\infty}} \\
& c \leq \widehat{c}(\delta)=\delta\left(2 k-a_{0}-\|b\|_{\infty} \delta\right) .
\end{aligned}
$$

Clearly $\widehat{c}(\delta)>0$.
Furthermore, we note that $\phi_{1} \geq \mu>0$ in $\Omega_{0}=\Omega \backslash \bar{\Omega}_{\eta}$, also in Ω_{0} we have

$$
2 \delta\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) \leq 2 \lambda_{1} \delta \leq a_{1} \delta \phi_{1}^{2}-\|b\|_{\infty} \delta^{2}-c,
$$

if

$$
\begin{aligned}
& \delta<\theta_{2}=\frac{a_{1} \mu^{2}-2 \lambda_{1}}{\|b\|_{\infty}} \\
& c \leq \bar{c}(\delta)=\delta\left(a_{1} \mu^{2}-2 \lambda_{1}-\|b\|_{\infty} \delta\right)
\end{aligned}
$$

Clearly $\bar{c}(\delta)>0$. Choose $\theta=\min \left\{\theta_{1}, \theta_{2}\right\}$ and $\delta=\theta / 2$. Then simplifying, both \widehat{c} and \bar{c} are greater than $\left(\frac{\theta}{2}\right)^{2}\|b\|_{\infty}$. Hence if $c \leq\left(\frac{\theta}{2}\right)^{2}\|b\|_{\infty}=c_{0}\left(\Omega, a_{0}, a_{1}, b\right)$ then ψ is a subsolution.

Next, we construct a supersolution z of (1). We denote $z=N \zeta(x)$, where the constant $N>0$ is large and to be chosen later. We shall verify that z is a supersolution of (1). A calculation shows that

$$
-\Delta z=N(-\Delta \zeta)=N
$$

Thus z is a supersolution if

$$
N \geq a(x) z-b(x) z^{2}-\operatorname{ch}(x)
$$

and therefore if $N \geq N_{0}$ where $N_{0}=\sup _{\left[0,\|a\|_{\infty} / b_{0}\right]}\left(\|a\|_{\infty} v-b_{0} v^{2}\right)$, we have

$$
-\Delta z \geq a(x) z-b(x) z^{2}-\operatorname{ch}(x)
$$

and hence z is supersolution of (1). Since $\zeta>0$ and $\partial \zeta / \partial n<0$ on $\partial \Omega$, we can choose N large enough so that $\psi \leq z$ is also satisfied. Hence Theorem 1 is proven.

Now, we obtain the existence of positive solution of (1) in the case when $g(x, u)=\lambda m(x) f(u)$. Assume that there exist positive constants $r_{1}, r_{2} \in(\alpha, \rho]$ satisfying:
(H.1) $\frac{r_{2}}{r_{1}} \geq \max \left\{\frac{2 \lambda_{1}\|\zeta\|_{\infty}}{\mu^{2}}, \frac{2 \lambda_{1}\|\zeta\|_{\infty}\|m\|_{\infty} f\left(r_{2}\right)}{m_{0} \mu^{2} f\left(r_{1}\right)}\right\}$,
(H.2) $\quad k f\left(r_{1}\right)>\lambda_{1}|f(0)|$.

Theorem 2. Let (H.1), (H.2) hold. Then there exist $\lambda_{*}<\tilde{\lambda}$ such that (1) has a positive solution for $\lambda \in\left[\lambda_{*}, \widetilde{\lambda}\right]$.

Proof. Let $\lambda_{1}, \phi_{1}, k, \mu$ and $\zeta(x)$ are the same as in the proof of Theorem 1. We now construct our positive subsolution. Let $\psi=r_{1}\left(\phi_{1} / \mu\right)^{2}$. Using a calculation similar to the one in the proof of Theorem 1, we have

$$
\begin{equation*}
-\Delta \psi=\frac{2 r_{1}}{\mu^{2}}\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) . \tag{5}
\end{equation*}
$$

Thus ψ is a subsolution if

$$
\frac{2 r_{1}}{\mu^{2}}\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) \leq \lambda m(x) f(\psi),
$$

Now $\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2} \leq-k$ in $\bar{\Omega}_{\eta}$, and therefore

$$
\frac{2 r_{1}}{\mu^{2}}\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) \leq-\frac{2 k r_{1}}{\mu^{2}} \leq \lambda m(x) f(\psi),
$$

if

$$
\lambda \leq \widehat{\lambda}=\frac{2 k r_{1}}{\mu^{2} m_{0}|f(0)|} .
$$

Furthermore, we note that $\phi_{1} \geq \mu>0$ in $\Omega_{0}=\Omega \backslash \bar{\Omega}_{\eta}$, and therefore

$$
\psi=r_{1}\left(\phi_{1} / \mu\right)^{2} \geq r_{1}(\mu / \mu)^{2}=r_{1},
$$

thus $f(\psi) \geq f\left(r_{1}\right)$. Hence if

$$
\lambda \geq \lambda_{*}=\frac{2 \lambda_{1} r_{1}}{\mu^{2} m_{0} f\left(r_{1}\right)},
$$

we have

$$
\frac{2 r_{1}}{\mu^{2}}\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) \leq \frac{2 \lambda_{1} r_{1}}{\mu^{2}} \leq \lambda m_{0} f\left(r_{1}\right) \leq \lambda m(x) f(\psi) .
$$

We get $\lambda_{*}<\widehat{\lambda}$ by using (H.2). Therefore if $\lambda_{*} \leq \lambda \leq \hat{\lambda}$, then ψ is subsolution.
Next, we construct a supersolution z of (1) such that $z \geq \psi$. We denote $z=\frac{r_{2}}{\|\zeta\|_{\infty}} \zeta(x)$. We shall verify that z is a super solution of (1). We have

$$
\begin{equation*}
-\Delta z=\frac{r_{2}}{\|\zeta\|_{\infty}} \tag{6}
\end{equation*}
$$

Thus z is a super solution if

$$
\frac{r_{2}}{\|\zeta\|_{\infty}} \geq \lambda m(x) f(z) .
$$

But $f(z) \leq f\left(r_{2}\right)$ and hence z is a super solution if

$$
\lambda \leq \bar{\lambda}=\frac{r_{2}}{\|\zeta\|_{\infty}\|m\|_{\infty} f\left(r_{2}\right)} .
$$

We easily see that $\lambda_{*}<\bar{\lambda}$, by using (H.1). Finally, using (5), (6) and the comparison principle, we see that $\psi \leq z$ in Ω when (H.1) is satisfied. Therefore (1) has a positive solution for $\lambda \in\left[\lambda_{*}, \widetilde{\lambda}\right]$, where $\widetilde{\lambda}=\min \{\widehat{\lambda}, \bar{\lambda}\}$. This completes the proof of Theorem 2.

Remark 1. Theorem 2 holds no matter what the growth condition of f is, for large u. Namely, f could satisfy superlinear, sublinear or linear growth condition at infinity.

References

1. S. Oruganti, J. Shi, R. Shivaji, Diffusive logistic equation with constant yield harvesting, I: Steady states, Trans. Amer. Math. Soc., 354(9), pp. 3601-3619, 2002.
2. P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonl. Anal., 44(2), pp. 189-204, 2001.
3. V. Anuradha, D. D. Hai, R. Shivaji, Existence results for superlinear semipositone boundary value problems, Proc. Amer. Math. Soc., 124(3), pp.757-763, 1996.
4. H. Berestycki, A. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Annali della Scuola Normale Superiore di Pisa, Class di Scienze IV, 25(1-2) (volume dedicated to E. De Giorgi), pp. 69-94, 1997.
5. A. Castro, S. Gadam, R. Shivaji, Evolution of Positive Solution Curves in Semipositone Problems with Concave Nonlinearities, J. Math. Anal. Appl., 245(1), pp. 282-293, 2000.
6. D. D. Hai, On a class of sublinear quasilinear elliptic problems, Proc. Amer. Math. Soc., 131(8), pp. 2409-2414, 2003.
7. D. D. Hai, R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh, 134(1), pp. 137-141, 2004.
8. C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
9. A. Friedman, Partial differential equations of parabolic type, Prentice Hall, Inc., Englewood Cliffs, NJ, 1964.
