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Abstract. This study concerns the existence of positive solutions to classes of
boundary value problems of the form

−∆u = g(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where∆ denote the Laplacian operator,Ω is a smooth bounded domain inRN

(N ≥ 2) with ∂Ω of classC2, and connected, andg(x, 0) < 0 for somex ∈ Ω
(semipositone problems). By using the method of sub-super solutions we prove
the existence of positive solution to special types ofg(x, u).
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1 Introduction

In this paper we consider the existence of positive solution to boundary value

problems of the form

−∆u = g(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1)

where∆ denote the Laplacian operator,Ω is a smooth bounded domain inRN

(N ≥ 2) with ∂Ω of classC2, and connected, andg(x, 0) < 0 for somex ∈ Ω

(semipositone problems). In particular, we first study the case wheng(x, u) =
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a(x) u − b(x) u2 − ch(x), wherea(x), b(x) areC1(Ω̄) functions thata(x) is

allowed to be negative near the boundary ofΩ, andb(x) > b0 > 0 for x ∈ Ω.

Hereh : Ω̄ → R is aC1(Ω̄) function satisfyingh(x) ≥ 0 for x ∈ Ω, h(x) 6≡ 0,

andmaxx∈Ω̄ h(x) = 1. We prove that there exists ac0 = c0(Ω, a, b) > 0 such

that for0 < c < c0 there exists a positive solution.

The above equation arises in the studies of population biology of one species

with u representing the concentration of the species or the population density,

andch(x) representing the rate of harvesting (see [1]). The case whena(x), b(x)

are positive constants throughoutΩ̄, has been studied in [1]. In [2] the authors

studied the case whenc = 0 (non-harvesting case),b(x) ≡ 1 for Ω̄ anda(x)

is apositive function throughout̄Ω. However thec > 0 case is a semipositone

problem (g(x, 0) < 0) and studying positive solutions in this case is significantly

harder. Here we consider the challenging semipositone casec > 0. Semipositone

problems have been of great interest during the past two decades, andcontinue

to pose mathematically difficult problems in the study of positive solutions (see

[3–6]).

We next study the case wheng(x, u) = λm(x)f(u), where the weightm

satisfyingm ∈ C(Ω) andm(x) ≥ m0 > 0 for x ∈ Ω, f ∈ C1[0, ρ) is

a nondecreasing function for someρ > 0 such thatf(0) < 0 and there exist

α ∈ (0, ρ) such thatf(t)(t− α) ≥ 0 for t ∈ [0, ρ].

See [7] where positive solution is obtained for largeλ whenm(x) ≡ 1 for

x ∈ Ω and f is sublinear at infinity. We are interested in the existence of a

positive solution in a range ofλ without assuming any condition onf at infinity.

Our approach is based on the method of sub-super solutions, see [2,8].

2 Existence results

We first give the definition of sub-super solution of (1). A super solutionto (1) is

defined as a functionz ∈ C2(Ω̄) such that

−∆z ≥ λg(x, z), x ∈ Ω,

z ≥ 0, x ∈ ∂Ω.

Sub solutions are defined similarly with the inequalities reversed and it is well

known that if there exists a sub solutionψ and a super solutionz to (1) such that
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ψ(x) ≤ z(x) for x ∈ Ω̄, then (1) has a solutionu such thatψ(x) ≤ u(x) ≤ z(x)

for x ∈ Ω̄. Further note that ifψ(x) ≥ 0 for x ∈ Ω thenu ≥ 0 for x ∈ Ω.

To precisely state our existence result we consider the eigenvalue problem

−∆φ = λφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.
(2)

Let φ1 ∈ C1(Ω̄) be the eigenfunction corresponding to the first eigenvalue

λ1 of (3) such thatφ1(x) > 0 in Ω, and‖φ1‖∞ = 1. It can be shown that∂φ1

∂n < 0

on ∂Ω. Heren is the outward normal. This result is well known ( see, e.g., [9]),

and hence, depending onΩ, there exist positive constantsk, η, µ such that

λ1φ
2
1 − |∇φ1|

2 ≤ −k, x ∈ Ω̄η, (3)

φ1 ≥ µ, x ∈ Ω0 = Ω \ Ω̄η, (4)

with Ω̄η = {x ∈ Ω | d(x, ∂Ω) ≤ η}. Further assume that there exists a constants

a0, a1 > 0 such thata(x) ≥ −a0 in Ω̄η anda(x) ≥ a1 in Ω0 = Ω \ Ω̄η.

We will also consider the unique solution,ζ ∈ C1(Ω̄), of the boundary value

problem

−∆ζ = 1, x ∈ Ω,

ζ = 0, x ∈ ∂Ω,

to discuss our existence result. It is known thatζ > 0 in Ω and ∂ζ
∂n < 0 on∂Ω.

First we obtain the existence of positive solution of (1) in the case when

g(x, u) = a(x)u− b(x)u2 − ch(x).

Theorem 1. Suppose thata0 < 2k and 2λ1 < a1µ
2. Then there existsc0 =

c0(Ω, a0, a1, b) > 0 such that if0 < c < c0 then the problem(1) has a positive

solutionu.

Proof. To obtain the existence of positive solution to problem (1) we constructing

a positive subsolutionψ and supersolutionz. We shall verify thatψ = δφ2
1 is a

subsolution of (1), whereδ > 0 is small and specified later (note that‖ψ‖∞ ≤ δ).

Since∇ψ = 2δφ1∇φ1, a calculation shows that

−∆ψ = −δ∆φ2
1 = −2δ

(
|∇φ1|

2 + φ1∆φ1

)
= 2δ

(
λ1φ

2
1 − |∇φ1|

2
)
.
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Thenψ is a subsolution if

2δ
(
λ1φ

2
1 − |∇φ1|

2
)
≤ a(x)ψ − b(x)ψ2 − ch(x),

Now λ1φ
2
1 − |∇φ1|

2 ≤ −k in Ω̄η, and therefore

2δ
(
λ1φ

2
1 − |∇φ1|

2
)
≤ −2kδ ≤ −a0δ − ‖b‖∞δ

2 − c,

if

δ < θ1 =
2k − a0

‖b‖∞
,

c ≤ ĉ(δ) = δ
(
2k − a0 − ‖b‖∞δ

)
.

Clearly ĉ(δ) > 0.

Furthermore, we note thatφ1 ≥ µ > 0 in Ω0 = Ω \ Ω̄η, also inΩ0 we have

2δ
(
λ1φ

2
1 − |∇φ1|

2
)
≤ 2λ1δ ≤ a1δφ

2
1 − ‖b‖∞δ

2 − c,

if

δ < θ2 =
a1µ

2 − 2λ1

‖b‖∞
,

c ≤ c̄(δ) = δ
(
a1µ

2 − 2λ1 − ‖b‖∞δ
)
.

Clearly c̄(δ) > 0. Chooseθ = min{θ1, θ2} andδ = θ/2. Then simplifying, both

ĉ and c̄ are greater than( θ
2)2‖b‖∞. Hence ifc ≤ ( θ

2)2‖b‖∞ = c0(Ω, a0, a1, b)

thenψ is a subsolution.

Next, we construct a supersolutionz of (1). We denotez = Nζ(x), where

the constantN > 0 is large and to be chosen later. We shall verify thatz is a

supersolution of (1). A calculation shows that

−∆z = N(−∆ζ) = N.

Thusz is a supersolution if

N ≥ a(x)z − b(x)z2 − ch(x),

and therefore ifN ≥ N0 whereN0 = sup[0,‖a‖∞/b0](‖a‖∞v − b0v
2), we have

−∆z ≥ a(x)z − b(x)z2 − ch(x),
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and hencez is supersolution of (1). Sinceζ > 0 and∂ζ/∂n < 0 on ∂Ω, we

can chooseN large enough so thatψ ≤ z is also satisfied. Hence Theorem 1 is

proven.

Now, we obtain the existence of positive solution of (1) in the case when

g(x, u) = λm(x)f(u). Assume that there exist positive constantsr1, r2 ∈ (α, ρ]

satisfying:

(H.1)
r2
r1

≥ max
{2λ1‖ζ‖∞

µ2
,
2λ1‖ζ‖∞‖m‖∞f(r2)

m0µ2f(r1)

}
,

(H.2) kf(r1) > λ1

∣∣f(0)
∣∣.

Theorem 2. Let (H.1), (H.2)hold. Then there existλ∗ < λ̃ such that(1) has a

positive solution forλ ∈ [λ∗, λ̃].

Proof. Let λ1, φ1, k, µ andζ(x) are the same as in the proof of Theorem 1. We

now construct our positive subsolution. Letψ = r1(φ1/µ)2. Using a calculation

similar to the one in the proof of Theorem 1, we have

−∆ψ =
2r1
µ2

(
λ1φ

2
1 − |∇φ1|

2
)
. (5)

Thusψ is a subsolution if

2r1
µ2

(
λ1φ

2
1 − |∇φ1|

2
)
≤ λm(x)f(ψ),

Now λ1φ
2
1 − |∇φ1|

2 ≤ −k in Ω̄η, and therefore

2r1
µ2

(
λ1φ

2
1 − |∇φ1|

2
)
≤ −

2kr1
µ2

≤ λm(x)f(ψ),

if

λ ≤ λ̂ =
2kr1

µ2m0

∣∣f(0)
∣∣ .

Furthermore, we note thatφ1 ≥ µ > 0 in Ω0 = Ω \ Ω̄η, and therefore

ψ = r1(φ1/µ)2 ≥ r1(µ/µ)2 = r1,
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thusf(ψ) ≥ f(r1). Hence if

λ ≥ λ∗ =
2λ1r1

µ2m0f(r1)
,

we have

2r1
µ2

(
λ1φ

2
1 − |∇φ1|

2
)
≤

2λ1r1
µ2

≤ λm0f(r1) ≤ λm(x)f(ψ).

We getλ∗ < λ̂ by using (H.2). Therefore ifλ∗ ≤ λ ≤ λ̂, thenψ is subsolution.

Next, we construct a supersolutionz of (1) such thatz ≥ ψ. We denote

z = r2

‖ζ‖∞
ζ(x). We shall verify thatz is a super solution of (1). We have

−∆z =
r2

‖ζ‖∞
. (6)

Thusz is a super solution if

r2
‖ζ‖∞

≥ λm(x)f(z).

But f(z) ≤ f(r2) and hencez is a super solution if

λ ≤ λ̄ =
r2

‖ζ‖∞‖m‖∞f(r2)
.

We easily see thatλ∗ < λ̄, by using (H.1). Finally, using (5), (6) and the

comparison principle, we see thatψ ≤ z in Ω when (H.1) is satisfied. Therefore

(1) has a positive solution forλ ∈ [λ∗, λ̃], whereλ̃ = min{λ̂, λ̄}. This completes

the proof of Theorem 2.

Remark 1. Theorem2 holds no matter what the growth condition off is, for

largeu. Namely,f could satisfy superlinear, sublinear or linear growth condition

at infinity.
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