A Two-Dimentional Discrete Limit Theorem in the Space of Analytic Functions for Mellin Transforms of the Riemann Zeta-Function*

V. Balinskaitė, A. Laurinčikas

Vilnius University Naugarduko str. 24, LT-03225 Vilnius, Lithuania antanas.laurincikas@maf.vu.lt

Received: 2008.01.24 Revised: 2008.03.14 Published online: 02.06.2008

Abstract. In the paper, a two-dimentional discrete limit theorem in the sense of weak convergence of probability measures in the space of analytic functions for Mellin transforms of the Riemann zeta-function on the critical line is obtained.

Keywords: limit theorem, Mellin transform, Riemann zeta-function, weak convergence.

1 Introduction

Let $s = \sigma + it$ be a complex variable, and let, as usual, $\zeta(s)$ denote the Riemann zetafunction. The modified Mellin transform $\mathcal{Z}_k(s)$ of $|\zeta(\frac{1}{2} + it)|^{2k}$, $k \ge 0$, is defined, for $\sigma \ge \sigma_0(k) > 1$, by

$$\mathcal{Z}_k(s) = \int_{1}^{\infty} \left| \zeta\left(\frac{1}{2} + ix\right) \right|^{2k} x^{-s} \, \mathrm{d}x.$$

In [1] and [2], discrete limit theorems on the complex plane for the functions $\mathcal{Z}_1(s)$ and $\mathcal{Z}_2(s)$ were proved. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, and put, for $N \in \mathbb{N} \cup \{0\} = \mathbb{N}_0$,

$$\mu_N(\ldots) = \frac{1}{N+1} \sum_{0 \le m \le N} 1,$$

where in place of dots a condition satisfied by m is to be written. Let h > 0 be a fixed number.

^{*}Partially supported by Grant from Lithuanian State Science and Studies Foundation.

Theorem 1 ([1]). Let $\sigma > \frac{1}{2}$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ there exists a probability measure P_{σ} such that the probability measure

 $\mu_N \big(\mathcal{Z}_1(\sigma + imh) \in A \big), \quad A \in \mathcal{B}(\mathbb{C}),$

converges weakly to P_{σ} as $N \to \infty$.

Theorem 2 ([2]). Let $\sigma > \frac{5}{6}$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ there exists a probability measure P_{σ} such that the probability measure

$$\mu_N(\mathcal{Z}_2(\sigma + imh) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to P_{σ} as $N \to \infty$.

In [3], a two-dimentional generalization of Theorems 1 and 2 was obtained.

Theorem 3 ([3]). Suppose that $\sigma_1 > \frac{1}{2}$ and $\sigma_2 > \frac{5}{6}$. Then on $(\mathbb{C}^2, \mathcal{B}(\mathbb{C}^2))$ there exists a probability measure P_{σ_1, σ_2} such that the probability measure

$$\mu_N((\mathcal{Z}_1(\sigma_1 + imh), \mathcal{Z}_2(\sigma_2 + imh)) \in A), \quad A \in \mathcal{B}(\mathbb{C}^2),$$

converges weakly to P_{σ_1,σ_2} as $N \to \infty$.

Let G be a region on the complex plane. Denote by H(G) the space of analytic on G functions equipped with the topology of uniform convergence on compacta. Let $D_1 = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ and $D_2 = \{s \in \mathbb{C} : \frac{5}{6} < \sigma < 1\}$. Then in [1] and [2] discrete limit theorems for $\mathcal{Z}_1(s)$ in $H(D_1)$ and for $\mathcal{Z}_2(s)$ in $H(D_2)$ were obtained, respectively.

Theorem 4 ([1]). On $(H(D_1), \mathcal{B}(H(D_1)))$, there exists a probability measure P_1 such that the probability measure

$$\mu_N(\mathcal{Z}_1(s+imh)\in A), \quad A\in\mathcal{B}(H(D_1)),$$

converges weakly to P_1 as $N \to \infty$.

Theorem 5 ([2]). On $(H(D_2), \mathcal{B}(H(D_2)))$, there exists a probability measure P_2 such that the probability measure

$$\mu_N(\mathcal{Z}_2(s+imh)\in A), \quad A\in\mathcal{B}(H(D_2)),$$

converges weakly to P_2 as $N \to \infty$.

The aim of this paper is to prove a two-dimensional discrete limit theorem in the space of analytic functions for the pair $(\mathcal{Z}_1(s), \mathcal{Z}_2(s))$. Let $H = H(D_1, D_2) = H(D_1) \times H(D_2)$, and

$$P_N(A) = \mu_N((\mathcal{Z}_1(s_1 + imh), \mathcal{Z}_2(s_2 + imh)) \in A), \quad A \in \mathcal{B}(H).$$

Theorem 6. On $(H, \mathcal{B}(H))$, there exists a probability measure P such that the probability measure P_N converges weakly to P as $N \to \infty$.

2 A limit theorem for the integrals over finite interval

Let a > 1 and $\sigma_0 > \frac{1}{2}$ be fixed numbers, for $x \ge y, y \ge 1$, define $v(x,y) = \exp\{-(\frac{x}{y})^{\sigma_0}\}$, and let

$$\mathcal{Z}_{k,a,y}(s) = \int_{1}^{a} \left| \zeta \left(\frac{1}{2} + ix \right) \right|^{2k} x^{-s} v(x,y) \, \mathrm{d}x, \quad k = 1, 2.$$

For brevity, we put

$$\underline{\mathcal{Z}}_{a,y}(s_1, s_2, \tau) = \big(\mathcal{Z}_{1,a,y}(s_1 + i\tau), \mathcal{Z}_{2,a,y}(s_2 + i\tau)\big),$$

and consider the probability measure

$$P_{N,a,y}(A) = \mu_N \left(\underline{\mathcal{Z}}_{a,y}(s_1, s_2, mh) \in A \right), \quad A \in \mathcal{B}(H).$$

Theorem 7. On $(H, \mathcal{B}(H))$, there exists a probability measure $P_{a,y}$ such that the probability measure $P_{N,a,y}$ converges weakly to $P_{a,y}$ as $N \to \infty$.

For the proof of Theorem 7, we will apply a limit theorem on the torus

$$\Omega_a = \prod_{u \in [1,a]} \gamma_u,$$

where $\gamma_u = \{s \in \mathbb{C} : |s| = 1\} \stackrel{\text{def}}{=} \gamma$ for all $u \in [1, a]$. By the Tikhonov theorem, with the product topology and pointwise multiplication, the torus Ω_a is a compact topological Abelian group. On $(\Omega_a, \mathcal{B}(\Omega_a))$ define the probability measure

$$Q_{N,a}(A) = \mu_N ((u^{-imh}: u \in [1, a]) \in A).$$

Lemma 1. On $(\Omega_a, \mathcal{B}(\Omega_a))$ there exists a probability measure Q_a such that the probability measure $Q_{N,a}$ converges weakly to Q_a as $N \to \infty$.

Proof. The lemma is Theorem 5 from [2].

Proof of Theorem 7. Define a function $h_{a,y}: \Omega_a \to H$ by the formula

$$h_{a,y}(\{y_x: x \in [1,a]\}) = \left(\int_{1}^{a} \left|\zeta\left(\frac{1}{2} + ix\right)\right|^2 x^{-s_1} v(x,y) \widehat{y}_x \, \mathrm{d}x, \int_{1}^{a} \left|\zeta\left(\frac{1}{2} + ix\right)\right|^4 x^{-s_2} v(x,y) \widehat{y}_x \, \mathrm{d}x\right)$$

where

$$\widehat{y}_x = \begin{cases} y_x \text{ if } y_x \text{ is integrable over } [1,a],\\ \text{an arbitrary circle integrable over } [1,a] \text{ function otherwise.} \end{cases}$$

The function $h_{a,y}$ is continuous, and

$$\begin{aligned} h_{a,y} \left(\left\{ x^{-imh} : \ x \in [1,a] \right\} \right) \\ &= \left(\int_{1}^{a} \left| \zeta \left(\frac{1}{2} + ix \right) \right|^{2} x^{-(s_{1} + imh)} v(x,y) \, \mathrm{d}x, \int_{1}^{a} \left| \zeta \left(\frac{1}{2} + ix \right) \right|^{4} x^{-(s_{2} + imh)} v(x,y) \, \mathrm{d}x \right) \\ &= \underline{\mathcal{Z}}_{a,y}(s_{1}, s_{2}, mh). \end{aligned}$$

Therefore, $P_{N,a,y}(A) = Q_{N,a}h_{a,y}^{-1}(A) = Q_{N,a}(h_{a,y}^{-1}A)$, and the theorem is a consequence of Theorem 5.1 from [4], Lemma 1 and continuity of $h_{a,y}$.

3 A limit theorem for absolutely convergent integrals

In [1] and [2], it was observed that the integrals

$$\mathcal{Z}_{k,y}(s) = \int_{1}^{\infty} \left| \zeta\left(\frac{1}{2} + ix\right) \right|^{2k} x^{-s} v(x,y) \,\mathrm{d}x, \quad k = 1, 2,$$

are absolutely convergent for $\sigma > \frac{1}{2}$ and $\sigma > \frac{5}{6},$ respectively. We put

$$\underline{\mathcal{Z}}_{y}(s_1, s_2, \tau) = \left(\mathcal{Z}_{1,y}(s_1 + i\tau), \mathcal{Z}_{2,y}(s_2 + i\tau)\right)$$

and define the probability measure

$$P_{N,y}(A) = \mu_N \big(\underline{\mathcal{Z}}_y(s_1, s_2, mh) \in A \big), \quad A \in \mathcal{B}(H).$$

Theorem 8. On $(H, \mathcal{B}(H))$, there exists a probability measure P_y such that the probability measure $P_{N,y}$ converges weakly to P_y as $N \to \infty$.

Proof. By Theorem 7, the probability measure $P_{N,a,y}$ converges weakly to the measure $P_{a,y}$ as $N \to \infty$. First we will prove the tightness of the family of probability measures $\{P_{a,y}\}$ for fixed y.

On a certain probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$, define a random variable θ_N by

$$\mathbb{P}(\theta_N = hm) = \frac{1}{N+1}, \quad m = 0, 1, \dots, N,$$

and put

$$\underline{X}_{N,a,y}(s_1, s_2) = (X_{N,a,y,1}(s_1), X_{N,a,y,2}(s_2))$$
$$= (\mathcal{Z}_{1,a,y}(s_1 + i\theta_N), \mathcal{Z}_{2,a,y}(s_2 + i\theta_N)).$$

Then, by Theorem 7,

$$\underline{X}_{N,a,y}(s_1, s_2) \xrightarrow[N \to \infty]{\mathcal{D}} \underline{X}_{a,y}(s_1, s_2), \tag{1}$$

where $\underline{X}_{a,y} = \underline{X}_{a,y}(s_1, s_2)$ is a *H*-valued random element with the distribution $P_{a,y}$, and $\xrightarrow{\mathcal{D}}$ denotes the convergence in distribution.

Now we introduce a metric in the space H which induces its topology. For j = 1, 2, let $\{K_{jl}\}$ be a sequence of compact subsets of the strip D_j such that

$$D_j = \bigcup_{l=1}^{\infty} K_{jl},$$

 $K_{jl} \subset K_{j,l+1}, l \in \mathbb{N}$, and if $K_j \subset D_j$ is a compact subset, then $K_j \subseteq K_{jl}$ for some $l \in \mathbb{N}$. Then, for j = 1, 2,

$$\rho_j(g_{j1}, g_{j2}) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_{jl}} |g_{j1}(s) - g_{j2}(s)|}{1 + \sup_{s \in K_{jl}} |g_{j1}(s) - g_{j2}(s)|}$$

where $g_{j1}, g_{j2} \in H(D_j)$, is a metric on $H(D_j)$ which induces its topology of uniform convergence on compacta. Putting

$$\rho(\underline{g}_1, \underline{g}_2) = \max_{1 \le j \le 2} \rho_j(g_{j1}, g_{j2}),$$

where $\underline{g}_1=(g_{11},g_{21}),\,\underline{g}_2=(g_{12},g_{22})\in H,$ we obtain the desired metric in H. We take $M_{jl}>0,\,l\in\mathbb{N},\,j=1,2.$ Then

$$\lim_{N \to \infty} \sup \mathbb{P}\left(\sup_{s_j \in K_{jl}} |X_{N,a,y,j}(s_j)| > M_{jl} \text{ for at least one } j = 1, 2\right)$$

$$\leq \limsup_{N \to \infty} \sum_{j=1}^{2} \mathbb{P}\left(\sup_{s_j \in K_{jl}} |X_{N,a,y,j}(s_j)| > M_{jl}\right)$$

$$= \limsup_{N \to \infty} \sum_{j=1}^{2} \mu_N\left(\sup_{s_j \in K_{jl}} |\mathcal{Z}_{j,a,y}(s_j + imh)| > M_{jl}\right)$$

$$\leq \limsup_{N \to \infty} \sum_{j=1}^{2} \frac{1}{M_{jl}} \frac{1}{N+1} \sum_{m=0}^{N} \sup_{s_j \in K_{jl}} |\mathcal{Z}_{j,a,y}(s_j + imh)|.$$
(2)

The integrals for $Z_{j,y}(s)$ converge absolutely on D_j , thus uniformly on compact subsets of D_j , j = 1, 2. Hence,

$$\sup_{a\geq 1} \limsup_{N\to\infty} \frac{1}{N+1} \sum_{m=0}^{N} \sup_{s_j\in K_{jl}} |\mathcal{Z}_{j,a,y}(s_j+imh)| \le R_{jl} < \infty.$$
(3)

Now we choose $M_{jl} = R_{jl}2^{l+1}\varepsilon^{-1}$, $j = 1, 2, l \in \mathbb{N}$, where ε is an arbitrary positive number. Then from (2) and (3) we deduce

$$\begin{split} \limsup_{N \to \infty} \mathbb{P}\Big(\sup_{s_j \in K_{jl}} |X_{N,a,y,j}(s_j)| > M_{jl} \text{ for at least one } j = 1,2\Big) \\ \leq \sum_{j=1}^2 \frac{R_{jl}}{M_{jl}} = \frac{\varepsilon}{2^l}, \quad l \in \mathbb{N}. \end{split}$$

This and (1) imply

$$\mathbb{P}\Big(\sup_{s_j \in K_{jl}} |X_{N,a,y,j}(s_j)| > M_{jl} \text{ for at least one } j = 1,2\Big) \le \frac{\varepsilon}{2^l}, \quad l \in \mathbb{N}.$$
(4)

Now we set

$$K_{\varepsilon} = \Big\{ (g_1, g_2) \in H : \sup_{s_j \in K_{jl}} |g_j(s_j)| \le M_{jl}, \quad j = 1, 2, \ l \in \mathbb{N} \Big\}.$$

Then the set K_{ε} is compact on H, and in view of (4)

$$\mathbb{P}(\underline{X}_{a,y} \in K_{\varepsilon}) \ge 1 - \varepsilon,$$

or, by the definition of $\underline{X}_{a,y}$,

$$P_{a,y}(K_{\varepsilon}) \ge 1 - \varepsilon$$

for all $a \ge 1$. Thus, we proved that the family $\{P_{a,y}\}$ is tight. Therefore, by the Prokhorov theorem, see, for example, [4], it is relatively compact. Hence, we have that there exists a sequence $\{P_{a_k,y}\} \subset \{P_{a,y}\}\}$ such that $P_{a_k,y}$ converges weakly to a certain probability measure P_y on $(H, \mathcal{B}(H))$ as $k \to \infty$. In other words,

$$\underline{X}_{a_k,y} \xrightarrow[k \to \infty]{\mathcal{D}} P_y.$$
(5)

The definition of $\mathcal{Z}_{j,a,y}(s)$, and the absolute convergence of the integral for $\mathcal{Z}_{j,y}(s)$ show that

$$\lim_{a \to \infty} \mathcal{Z}_{j,a,y}(s) = \mathcal{Z}_{j,y}(s)$$

uniformly on compact subsets of D_j , j = 1, 2. Therefore, putting

$$\underline{X}_{N,y} = \underline{X}_{N,y}(s_1, s_2) = (X_{N,y,1}(s_1), X_{N,y,2}(s_2))$$
$$= (\mathcal{Z}_{1,y}(s_1 + i\theta_N), \mathcal{Z}_{2,y}(s_2 + i\theta_N)),$$

we find that, for every $\varepsilon > 0$,

$$\lim_{a \to \infty} \limsup_{N \to \infty} \mathbb{P}\left(\rho(\underline{X}_{N,y}(s_1, s_2), \underline{X}_{N,a,y}(s_1, s_2)) \ge \varepsilon\right)$$

=
$$\lim_{a \to \infty} \limsup_{N \to \infty} \mu_N\left(\rho(\underline{\mathcal{Z}}_y(s_1, s_2, mh), \underline{\mathcal{Z}}_{a,y}(s_1, s_2, mh)) \ge \varepsilon\right)$$

$$\le \lim_{a \to \infty} \limsup_{N \to \infty} \frac{1}{\varepsilon(N+1)} \sum_{m=0}^N \left(\rho(\underline{\mathcal{Z}}_y(s_1, s_2, mh), \underline{\mathcal{Z}}_{a,y}(s_1, s_2, mh)) \ge \varepsilon\right) = 0$$

This, (1), (5) and Theorem 4.2 of [4] imply that

$$\underline{X}_{N,y} \xrightarrow[N \to \infty]{\mathcal{D}} P_y,$$

or that $P_{N,y}$ converges weakly to P_y as $N \to \infty$. The theorem is proved.

4 Approximation in the mean

Let, for brevity,

$$\underline{\mathcal{Z}}(s_1, s_2, \tau) = \big(\mathcal{Z}_1(s_1 + i\tau), \mathcal{Z}_2(s_2 + i\tau)\big).$$

In this section, we approximate $\underline{\mathcal{Z}}(s_1, s_2, mh)$ by $\underline{\mathcal{Z}}_y(s_1, s_2, mh)$ in the mean.

Theorem 9. We have

$$\lim_{y \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \rho(\underline{\mathcal{Z}}(s_1, s_2, mh), \underline{\mathcal{Z}}_y(s_1, s_2, mh)) = 0.$$

Proof. In [1] it was obtained that

$$\lim_{y \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \rho_1 \left(\mathcal{Z}_1(s+imh), \mathcal{Z}_{1,y}(s+imh) \right) = 0.$$
(6)

Similarly, in [5] it was proved that

$$\lim_{y \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \rho_2 \left(\mathcal{Z}_2(s+imh), \mathcal{Z}_{2,y}(s+imh) \right) = 0.$$
(7)

Therefore, the assertion of the theorem follows from (6) and (7), and the metric ρ as defined in the proof of Theorem 8.

5 Proof of Theorem 6

We use a method similar to that of the proof of Theorem 9. By this theorem,

$$\underline{X}_{N,y}(s_1, s_2) \xrightarrow[N \to \infty]{\mathcal{D}} \underline{X}_y(s_1, s_2), \tag{8}$$

where $\underline{X}_y = \underline{X}_y(s_1, s_2)$ is a *H*-valued random element with the distribution P_y . Let $M_{jl} > 0, l \in \mathbb{N}, j = 1, 2$. Then

$$\lim_{N \to \infty} \sup \mathbb{P} \left(\sup_{s_j \in K_{jl}} |X_{N,y,j}(s_j)| > M_{jl} \text{ for at least one } j = 1, 2 \right)$$

$$\leq \limsup_{N \to \infty} \sum_{j=1}^{2} \mathbb{P} \left(\sup_{s_j \in K_{jl}} |X_{N,y,j}(s_j)| > M_{jl} \right)$$

$$= \limsup_{N \to \infty} \sum_{j=1}^{2} \mu_N \left(\sup_{s_j \in K_{jl}} |\mathcal{Z}_{j,y}(s_j + imh)| > M_{jl} \right)$$

$$\leq \limsup_{N \to \infty} \sum_{j=1}^{2} \frac{1}{M_{jl}} \frac{1}{N+1} \sum_{m=0}^{N} \sup_{s_j \in K_{jl}} |\mathcal{Z}_{j,y}(s_j + imh)|.$$
(9)

We have that, for j = 1, 2,

$$\limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \sup_{s_j \in K_{jl}} |\mathcal{Z}_{j,y}(s_j + imh)| \\
\leq \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \sup_{s_j \in K_{jl}} |\mathcal{Z}_{j,y}(s_j + imh) - \mathcal{Z}_j(s_j + imh)| \\
+ \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \sup_{s_j \in K_{jl}} |\mathcal{Z}_j(s_j + imh)|.$$
(10)

Since by [1]

$$\limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \sup_{s_1 \in K_{1l}} |\mathcal{Z}_1(s_1 + imh)| \ll_{j,l} 1$$

and by [5]

$$\limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \sup_{s_2 \in K_{2l}} |\mathcal{Z}_2(s_2 + imh)| \ll_{j,l} 1,$$

(9), (10) and (6), (7) show that

$$\limsup_{N \to \infty} \mathbb{P}\Big(\sup_{s_j \in K_{jl}} |X_{N,y,j}(s_j)| > M_{jl} \text{ for at least one } j = 1, 2\Big) \le \sum_{j=1}^2 \frac{R_{jl}}{M_{jl}}.$$

Now taking $M_{jl} = R_{jl} 2^{l+1} \varepsilon^{-1}$, $\varepsilon > 0$, from this we have that

$$\limsup_{N \to \infty} \mathbb{P}\Big(\sup_{s_j \in K_{jl}} |X_{N,y,j}(s_j)| > M_{jl} \text{ for at least one } j = 1, 2\Big) \le \frac{\varepsilon}{2^l}, \quad l \in \mathbb{N}.$$

This together with (8) shows that

$$\mathbb{P}\Big(\sup_{s_j \in K_{jl}} |X_{y,j}(s_j)| > M_{jl} \text{ for at least one } j = 1, 2\Big) \le \frac{\varepsilon}{2^l}, \quad l \in \mathbb{N}.$$

Thus, preserving the notation of Section 3, we obtain that

 $P_y(K_{\varepsilon}) \ge 1 - \varepsilon$

for all $y \ge 1$, that is, the family of probability measures $\{P_y : y \ge 1\}$ is tight. Hence, by the Prokhorov theorem, it is relatively compact, and there exists a sequence $\{P_{y_k}\} \subset \{P_y\}$ such that P_{y_k} converge to some probability measure P on $(H, \mathcal{B}(H))$ as $k \to \infty$, or

$$\underline{X}_{y_k}(s_1, s_2) \xrightarrow[k \to \infty]{\mathcal{D}} P.$$

Now this, (8), Theorem 9 and Theorem 4.2 of [4] prove Theorem 6.

References

- 1. V. Balinskaitė, A. Laurinčikas, On value distribution of the Mellin transform of the Riemann zeta-function (submitted).
- 2. V. Balinskaitė, A. Laurinčikas, Discrete limit theorems for the Mellin transform of the Riemann zeta-function, *Acta Arith.*, **131**(1), pp. 29–42, 2008.
- 3. V. Balinskaitė, A two-dimensional limit discrete theorem for Mellin transforms of the Riemann zeta-function, *Liet. Matem. Rink.*, **47**(spec. nr.), pp. 31–36, 2007.
- 4. P. Billingsley, Convergence of probability measures, Willey, New York, 1968.
- 5. V. Balinskaitė, A. Laurinčikas, Discrete limit theorems for the Mellin transforms of the Riemann zeta-function II (submitted).