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Abstract. We consider a mathematical model which describes the antiplane shear
deformation of a cylinder in frictionless contact with a rigid foundation. The adhesion of
the contact surfaces, caused by the glue, is taken into account. The material is assumed
to be electro-viscoelastic and the foundation is assumed tobe electrically conductive. We
derive a variational formulation of the model which is givenby a system coupling an
evolutionary variational equality for the displacement field, a time-dependent variational
equation for the electric potential field and a differentialequation for the bonding field.
Then we prove the existence of a unique weak solution to the model. The proof is based
on arguments of evolution equations with monotone operators and fixed point.

Keywords: antiplane shear, electro-viscoelastic material, contactprocess, adhesion,
fixed point, weak solution.

1 Introduction

Antiplane shear deformations are one of the simplest examples of deformations that solids
can undergo: in antiplane shear of a cylindrical body, the displacement is parallel to the
generators of the cylinder and is independent of the axial coordinate. For this reason, the
antiplane problems play a useful role as pilot problems, allowing for various aspects of
solutions in Solid Mechanics to be examined in a particularly simple setting. Considerable
attention has been paid to the analysis of such kind of problems, see for instance [1–5]. In
particular, the last two references deal with antiplane problems for piezoelectric materials.

Piezoelectric materials are characterized by the couplingbetween the mechanical
and electrical properties. This coupling leads to the appearance of electric potential when
mechanical stress is present and, conversely, mechanical stress is generated when electric

379



M. Sofonea, L. Chouchane, L. Selmani

potential is applied. The first effect is used in mechanical sensors and the reverse effect is
used in actuators, in engineering control equipment. Piezoelectric materials for which
the mechanical properties are elastic are called electro-elastic materials and those for
which the mechanical properties are viscoelastic are called electro-viscoelastic materials.
General models for electro-elastic materials can be found in [6–8]. Static frictional contact
problems for electro-elastic materials were studied in [9–12] and contact problems for
electro-viscoelastic materials were considered in [13, 14]. In all these references the
foundation was assumed to be electrically insulated.

Processes of adhesion are important in many industrial settings where parts, usually
nonmetallic, are glued together. For this reason, adhesivecontact between bodies, when a
glue is added to prevent the surfaces from relative motion, has recently received increased
attention in the literature. General models with adhesion can be found in [15–18]. In all
these references the idea is the introduction of a surface internal variable, the bonding field
β ∈ [0, 1], which describes the fractional density of active bonds on the contact surface.
At a point on the contact surface, whenβ = 1 the adhesion is complete and all bonds are
active; whenβ = 0 all the bonds are inactive, severed, and there is no adhesion; when
0 < β < 1 the adhesion is partial and only a fractionβ of the bonds is active.

Existence and uniqueness results in the study of models for adhesive contact were
obtained by several authors, by using various functional methods. A partial list include
[19–23], among other references. The method used in [19] is based on time-discretization
and compactness arguments and the method used in [20] requires the application of a
compactness lemma and the Faedo-Galerkin discretization.The existence of a solution
for a delamination problem is obtained in [21] by using a regularized interface model and
arguments of nonsmooth analysis; the lack of convexity of the functional governing this
problem leads to a new and nonstandard mathematical model. Finally, the unique weak
solvability of the adhesive problems studied in [22] and [23] is based on arguments of
evolution equations with monotone operators and fixed point.

In this paper we study an antiplane frictionless contact problem with adhesion for
electro-viscoelastic materials, in the framework of the Mathematical Theory of Contact
Mechanics, when the foundation is electrically conductive. Our interest is to describe a
physical process in which both antiplane shear, contact, adhesion and piezoelectric effect
are involved, leading to a well posedness mathematical problem. Taking into account the
piezoelectric effect, the conductivity of the foundation and the adhesion in the study of an
antiplane problem for viscoelastic materials represents the main novelty of this work. We
rarely actually load piezoelectric bodies so as to cause them to deform in antiplane shear.
However, the governing equations and boundary conditions for antiplane shear problems
are beautifully simple and the solution has many of the features of the more general case
and may help us to solve the more complex problem too.

Our paper is structured as follows. In Section 2 we present the model of the antiplane
frictionless adhesive contact for an electro-viscoelastic cylinder. In Section 3 we introduce
the notation and list the assumptions on problem’s data, derive the variational formula-
tion of the problem and state our main existence and uniqueness result, Theorem 1. In
Section 4 we provide a proof of the theorem which is carried out in several steps by
constructing three intermediate problems for the displacement field, the electric potential
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and the bonding field, respectively. We prove the unique solvability of the intermediate
problems, then we consider a contraction mapping whose unique fixed point leads us to
construct the solution of the original problem.

2 The model

We consider a piezoelectric bodyB identified with a region inR3 it occupies in a fixed
and undistorted reference configuration. We assume thatB is a cylinder with gener-
ators parallel to thex3-axes with a cross-section which is a regular regionΩ in the
x1, x2-plane,Ox1x2x3 being a cartesian coordinate system. The cylinder is assumed
to be sufficiently long so that the end effects in the axial direction are negligible. Thus,
B = Ω × (−∞,+∞). The cylinder is acted upon by body forces of densityf0 and
electric charges of densityq0. It is also constrained mechanically and electrically on the
boundary. To describe the boundary conditions we denote by∂Ω = Γ the boundary ofΩ
and we assume a partition ofΓ into three open disjoint partsΓ1, Γ2 andΓ3, on the one
hand, and a partition ofΓ1 ∪ Γ2 into two open partsΓa andΓb, on the other hand. We
assume that the one-dimensional measure ofΓ1 andΓa, denotedmeasΓ1 andmeasΓa,
are positive. The cylinder is clamped onΓ1 × (−∞,+∞) and therefore the displacement
field vanishes there. Surface tractions of densityf2 act onΓ2 × (−∞,+∞). We also
assume that the electrical potential vanishes onΓa × (−∞,+∞) and a surface electrical
charge of densityqb is prescribed onΓb×(−∞,+∞). The cylinder is in adhesive contact
overΓ3 × (−∞,+∞) with a conductive obstacle, the so called foundation.

Below in this paper the indicesi andj denote components of vectors and tensors
and run from1 to 3, summation over two repeated indices is implied, and the index that
follows a comma represents the partial derivative with respect to the corresponding spatial
variable. Also, a dot above represents the time derivative.We useS3 for the linear space
of second order symmetric tensors onR

3 or, equivalently, the space of symmetric matrices
of order3; “ · ” and‖ · ‖ will represent the inner products and the Euclidean norms onR

3

andS
3, i.e.

u · v = uivi, ‖v‖ = (v · v)1/2 for all u = (ui), v = (vi) ∈ R
3,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for all σ = (σij), τ = (τij) ∈ S
3.

We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω × [0, T ] → R, (1)

f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0, T ] → R, (2)

q0 = q0(x1, x2, t) : Ω × [0, T ] → R, (3)

q2 = q2(x1, x2, t) : Γb × [0, T ] → R, (4)

where[0, T ] denotes the time interval of interest,T > 0.
The forces (1), (2) and the electric charges (3), (4) would beexpected to give rise

to deformations and to electric charges of the piezoelectric cylinder corresponding to a
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displacementu and an electric potential fieldϕ which are independent onx3 and have
the form

u = (0, 0, u) with u = u(x1, x2, t) : Ω × [0, T ] → R, (5)

ϕ = ϕ(x1, x2, t) : Ω × [0, T ] → R. (6)

Such kind of deformation, associated to a displacement fieldof the form (5), is called an
antiplane shear, see for instance [2,3] for details.

We denote byε(u) = (εij(u)) the strain tensor and byσ = (σij) the stress tensor;
we also denote byE(ϕ) = (Ei(ϕ)) the electric field. Here and below, in order to simplify
the notation, we do not indicate the dependence of various functions onx1, x2, x3 or t
and we recall that

εij(u) =
1

2
(ui,j + uj,i), Ei(ϕ) = −ϕ,i.

The material’s behavior is modelled by an electro-viscoelastic constitutive law of the
form

σ = 2θ ε(u̇) + ζ tr ε(u̇) I + 2µ ε(u) + λ tr ε(u) I − E∗
E(ϕ), (7)

D = Eε(u) + αE(ϕ), (8)

whereζ andθ are viscosity coefficients,λ andµ are the Lamé coefficients,tr ε(u) =
εii(u), I is the unit tensor inR3, α is the electric permittivity constant,E represents the
third-order piezoelectric tensor andE∗ its transpose. We assume that

Eε =





e(ε13 + ε31)
e(ε23 + ε32)

eε33



 ∀ ε = (εij) ∈ S
3, (9)

wheree is a piezoelectric coefficient. We also assume that the coefficientsθ, µ, α and
e depend on the spatial variablesx1, x2, but are independent on the spatial variablex3.
SinceEτ · v = τ · E∗

v for all τ ∈ S
3 andv ∈R

3, it follows from (9) that

E∗
v =





0 0 ev1
0 0 ev2
ev1 ev2 ev3



 ∀v = (vi) ∈ R
3. (10)

In the antiplane context (5), (6), using the constitutive equations (7), (8) and equali-
ties (9), (10), it follows that the stress field and the electric displacement field are given
by

σ =





0 0 θu̇,1 + µu,1 + eϕ,1

0 0 θu̇,2 + µu,2 + eϕ,2

θu̇,1 + µu,1 + eϕ,1 θu̇,2 + µu,2 + eϕ,2 0



 , (11)

382



Analysis of an Antiplane Contact Problem with Adhesion for Electro-Viscoelastic Materials

D =





eu,1 − αϕ,1

eu,2 − αϕ,2

0



 . (12)

We assume that the process is mechanically dynamic and electrically static and
therefore is governed by the balance equations

div σ + f0 = ρü, Di,i − q0 = 0 in B × (0, T ), (13)

wherediv σ = (σij,j) represents the divergence of the tensor fieldσ andρ denotes the
mass density, assumed to be independent onx3. Taking into account (11), (12), (5), (6),
(1) and (3), the balance equations (13) reduce to the following scalar equations

div (θ∇
.
u + µ∇u+ e∇ϕ) + f0 = ρü in Ω × (0, T ), (14)

div (e∇u − α∇ϕ) = q0 in Ω × (0, T ). (15)

Here and below we use the notation

div τ = τ1,1 + τ1,2 for τ =
(

τ1(x1, x2, t), τ2(x1, x2, t)
)

,

∇v = (v,1, v,2), ∂νν = v,1ν1 + v,2ν2 for v = v(x1, x2, t).

We now describe the boundary conditions. During the processthe cylinder is clamped
onΓ1 × (−∞,+∞) and the electric potential vanishes onΓa × (−∞,+∞); thus (5) and
(6) imply that

u = 0 on Γ1 × (0, T ), (16)

ϕ = 0 on Γa × (0, T ). (17)

Let ν denote the unit normal onΓ × (−∞,+∞). We have

ν = (ν1, ν2, 0) with νi = νi(x1, x2) : Γ → R, i = 1, 2. (18)

For a vectorv we denote byvν andvτ the normal and tangential components on the
boundary, given by

vν = v · ν, vτ = v − vνν. (19)

Also, for a given stress tensorσ we denote byσν andστ the normal and the tangential
components on the boundary, that is

σν = (σν) · ν, στ = σν − σνν. (20)

From (11), (12) and (18) we deduce that the Cauchy stress vector and the normal compo-
nent of the electric displacement field are given by

σν = (0, 0, θ∂ν u̇+ µ∂νu+ e∂νϕ), D · ν = e∂νu− α∂νϕ. (21)
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Therefore, taking into account (2), (4) and (21), the traction condition onΓ2×(−∞,+∞)
and the electric condition onΓb × (−∞,+∞) are given by

θ∂ν
.
u+ µ∂νu+ e∂νϕ = f2 on Γ2 × (0, T ), (22)

e∂νu− α∂νϕ = qb on Γb × (0, T ). (23)

We now continue with the boundary conditions on the contact surface
Γ3 × (−∞,+∞) in which our interest is. First, from (5) and (18) we infer that the
normal displacement vanishes,uν = 0, which shows that the contact is bilateral, i.e. is
kept during all the process. Using now (5), (11), (18)–(20) we conclude that

uτ = (0, 0, u), στ = (0, 0, θ∂νu̇+ µ∂νu+ e∂νϕ). (24)

Since the contact is adhesive, following [22, 23] we assume that the tangential tangential
stressστ satisfies

−στ = p(β)R(uτ ) on Γ3 × (−∞,+∞) × (0, T ). (25)

Herep is a given function,β is the bonding field andR is a truncation operator defined
by

R(v) =







v if ‖v‖ ≤ L,

L
v

‖v‖
if ‖v‖ > L

(26)

with L > 0 being a characteristic length of the bond, beyond which there is no any
additional traction (see, e.g. [18]). It follows from (25) that the shear of the contact
surface depends on the bonding field and on the tangential displacement, but only up
to the bond lengthL. The frictional tangential traction is assumed to be much smaller
than the adhesive one and, therefore, omitted. Using now (24) and assuming thatp does
not depend onx3, it is straightforward to see that the tangential boundary condition (25)
implies

−(θ∂ν
.
u+ µ∂νu+ e∂νϕ) = p(β)R(u) on Γ3 × (0, T ), (27)

whereR is the real valued function defined by

R(v) =











−L if v < −L,

v if − L ≤ v ≤ L,

L if v > L.

(28)

Since the foundation is electrically conductive and the contact is bilateral, we as-
sume that the normal component of the electric displacementfield is proportional to the
difference between the potential on the foundation and the body’s surface. Thus,

D · ν = k(ϕ− ϕF ) on Γ3 × (−∞,+∞) × (0, T ), (29)
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whereϕF represents the electric potential of the foundation andk is the electric con-
ductivity coefficient, both assumed to be independent onx3. We use (21) and (29) to
obtain

e∂νu− α∂νϕ = k(ϕ− ϕF ) on Γ3 × (0, T ). (30)

We describe the evolution of the bonding fieldβ is by the first order ordinary diffe-
rential equation

β̇ = −
(

β
(

δS(uν)2 + γ ‖R(uτ )‖2
)

− ǫa
)

+
on Γ3 × (−∞,+∞) × (0, T ), (31)

already used in [22, 23]. Hereδ, γ andǫa are given adhesion coefficients which depend
only onx1 andx2, R is defined by (26),S : R → R is a truncation operator such that
S(0) = 0 and r+ = max {r, 0}. We note that the adhesive process is irreversible;
indeed, once debonding occurs bonding cannot be reestablished, sinceβ̇ ≤ 0. Replacing
the differential equation (31) with a condition which allows the adhesive process for
rebonding will represent an important extension of the results in this paper and will be
consider in a further paper. Using now equalitiesuν = 0, S(0) = 0, uτ = (0, 0, u) and
the definitions (26) and (28) of the operatorsR andR, it is straightforward to see that
(31) implies

β̇ = −
(

γβR(u)2 − ǫa
)

+
, on Γ3 × (0, T ). (32)

In (32) and below we use the simplified notationR(u)2 for the square ofR(u), i.e.
R(u)2 = (R(u))2.

Finally, we prescribe the initial displacement, velocity and bonding fields, i.e.

u(0) = u0 in Ω, (33)

u̇(0) = v0 in Ω, (34)

β(0) = β0 on Γ3, (35)

whereu0, v0 andβ0 are given.
We collect the above equations and conditions to obtain the following mathematical

model which describes the antiplane shear of an electro-viscoelastic cylinder in friction-
less adhesive contact with a conductive foundation.

Problem P . Find a displacement fieldu : Ω× [0, T ] → R, an electric potentialϕ : Ω×
[0, T ] → R and a bonding fieldβ : Γ3 × [0, T ] → R such that(14)–(17), (22), (23), (27),
(30), (32)–(35)hold.

Note that once the displacement fieldu and the electric potentialϕ which solve
ProblemP are known, then the stress tensorσ and the electric displacement fieldD can
be obtained by using (11) and (12), respectively.
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3 Variational formulation

In this section we derive a variational formulation of the ProblemP . To this end we
introduce the function spaces

V =
{

v ∈ H1(Ω): v = 0 on Γ1

}

, W =
{

ψ ∈ H1(Ω): ψ = 0 on Γa

}

,

where, here and below, we writew for the trace onΓ of a functionw ∈ H1(Ω). Since
measΓ1 > 0 andmeasΓa > 0, it is well known thatV andW are real Hilbert spaces
with the inner products

(u,v)V =

∫

Ω

∇u · ∇v dx ∀u, v ∈ V, (ϕ, ψ)W =

∫

Ω

∇ϕ · ∇ψ dx ∀ϕ, ψ ∈W.

Moreover, the associated norms

‖v‖V = ‖∇v‖L2(Ω)2 ∀ v ∈ V, ‖ψ‖W = ‖∇ψ‖L2(Ω)2 ∀ψ ∈ W (36)

are equivalent onV andW , respectively, with the usual norm‖ · ‖H1(Ω). Also, by
Sobolev’s trace theorem we deduce that there exists positive constantscV > 0, cW > 0
such that

‖v‖L2(Γ3) ≤ cV ‖v‖V ∀ v ∈ V, ‖ψ‖L2(Γ3) ≤ cW ‖ψ‖W ∀ψ ∈ W. (37)

We suppose that the mass density satisfies

ρ ∈ L∞(Ω) and there existsρ∗ > 0 such thatρ(x) ≥ ρ∗ a.e. x ∈ Ω. (38)

We use a modified inner product onH = L2(Ω), given by

(u,v)H = (ρu, v)
1

2

L2(Ω) ∀u, v ∈ H, (39)

that is, it is weighted withρ, and let‖ · ‖H be the associated norm, i.e.

‖v‖H = (ρv, v)
1

2

L2(Ω) ∀ v ∈ H. (40)

It follows from assumptions (38) that‖·‖H and‖·‖L2(Ω) are equivalent norms onH , and
the inclusion mapping of(V, ‖ · ‖V ) into (H, ‖ · ‖H) is continuous and dense. We denote
by (V ′, ‖ · ‖V ′) the dual space ofV . IdentifyingH with its own dual, we can write the
Gelfand triple

V ⊂ H ⊂ V ′.

We use the notation〈·, ·〉V ′×V to represent the duality pairing betweenV ′ andV and we
recall that

〈u, v〉V ′×V = (u, v)H ∀u ∈ H, v ∈ V. (41)
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For a real Banach space(X, ‖ · ‖X) we use the usual notation for the spaces
Lp(0, T ;X) andW k,p(0, T ;X) where1 ≤ p ≤ ∞, k = 1, 2, . . .; we also denote by
C([0, T ];X) andC1([0, T ];X) the spaces of continuous and continuously differentiable
functions on[0, T ] with values inX , respectively, with the norms

‖u‖C([0,T ];X) = max
t∈[0,T ]

‖u(t)‖X ,

‖u‖C1([0,T ];X) = max
t∈[0,T ]

‖u(t)‖X + max
t∈[0,T ]

‖u̇(t)‖X .

Finally, we will use the set

Z =
{

θ ∈ C
(

[0, T ];L2(Γ3)
)

: 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ], a.e. onΓ3

}

.

We now list the assumptions on the rest of the problem’s data.We assume that the
viscosity coefficient and the electric permittivity coefficient satisfy

θ ∈ L∞(Ω) and ∃ θ∗ > 0 such that θ(x) ≥ θ∗ a.e. x ∈Ω, (42)

α ∈ L∞(Ω) and ∃α∗> 0 such thatα(x) ≥ α∗ a.e. x ∈Ω. (43)

We also assume that the Lamé coefficient and the piezoelectric coefficient satisfy

µ ∈ L∞(Ω) and µ(x) ≥ 0 a.e. x ∈Ω, (44)

e ∈ L∞(Ω). (45)

The tangential functionp satisfies






























(a) p : Γ3 × R → R+.

(b) There existsL > 0 such that

|p(x,β1) − p(x,β2)| ≤ L|β1 − β2| ∀β1, β2 ∈ R, a.e. x ∈Γ3.

(c) There existsM > 0 such that|p(x,β)| ≤M ∀β ∈ R, a.e. x ∈Γ3.

(d) The mappingx 7→p(x,β) is measurable onΓ3 ∀β ∈ R.

(46)

The adhesion coefficientsγ andǫa satisfy the conditions

γ ∈ L∞(Γ3) and γ(x) ≥ 0 a.e. x ∈Γ3, (47)

ǫa ∈ L2(Γ3) and ǫa(x) ≥ 0 a.e. x ∈Γ3. (48)

The forces, tractions, volume and surface free charges densities have the regularity

f0 ∈ L2
(

0, T ;L2(Ω)
)

, f2 ∈ L2
(

0, T ;L2(Γ2)
)

, (49)

q0 ∈ W 1,2
(

0, T ;L2(Ω)
)

, qb ∈W 1,2
(

0, T ;L2(Γb)
)

. (50)

The electric conductivity coefficient satisfies

k ∈ L∞(Γ3) and k(x) ≥ 0 a.e. x ∈ Γ3. (51)
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Finally, we assume that the electric potential of the foundation and the initial data
are such that

ϕF ∈W 1,2
(

0, T ;L2(Γ3)
)

, (52)

u0 ∈ V, v0 ∈ L2(Ω), (53)

β0 ∈ L2(Γ3), 0 ≤ β0(x) ≤ 1 a.e. x ∈ Γ3. (54)

Next, we define bilinear formsaθ : V×V → R, aµ : V ×V → R, ae : V ×W → R,
a∗e : W × V → R and aα : W ×W → R by equalities

aθ(u, v) =

∫

Ω

θ ∇u · ∇v dx, (55)

aµ(u,v) =

∫

Ω

µ ∇u · ∇v dx, (56)

ae(u,ϕ) =

∫

Ω

e∇u · ∇ϕdx = a∗e(ϕ,u), (57)

aα(ϕ,ψ) =

∫

Ω

α ∇ϕ · ∇ψ dx+

∫

Γ3

k ϕψ dx, (58)

for all u, v ∈ V , ϕ, ψ ∈ W. Assumptions (42)–(45), (51) imply that the integrals above
are well defined and, using (36) and (37), it follows that the formsaθ, aµ, ae, a

∗

e andaα

are continuous; moreover, the formsaθ, aµ andaα are symmetric and, in addition, the
form aθ is V - elliptic and the formaα isW - elliptic, since

aθ(v, v) ≥ θ∗ ‖v‖2
V ∀ v ∈ V, (59)

aα(ψ,ψ) ≥ α∗ ‖ψ‖2
W ∀ψ ∈ W. (60)

Assumptions (49) allows us, for a.e.t ∈ (0, T ), to definef(t) ∈ V ′ by

〈f(t), v〉V ′×V =

∫

Ω

f0(t)v dx+

∫

Γ2

f2(t)v da ∀ v ∈ V, (61)

and, moreover, yields

f ∈ L2(0, T ;V ′). (62)

We also define the mappingsq : [0, T ] → W and j : L2(Γ3) × V × V → R,
respectively, by

(q(t), ψ)W =

∫

Ω

q0(t)ψ dx−

∫

Γb

qb(t)ψ da+

∫

Γ3

k ϕFψ da, (63)
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j(β, u, v) =

∫

Γ3

p(β)R(u) v da, (64)

for all v ∈ V, ψ ∈ W , β ∈ L2(Γ3) andt ∈ [0, T ]. For the convenience of the reader we
recall that here and belowR is the real valued function defined by (28). The definition
of q is based on Riesz’s representation theorem; moreover, it follows from assumptions
(50)–(52) that the integrals in (63) are well defined and

q ∈W 1,2(0, T ;W ). (65)

Performing integrals par parts, using notation (55)–(58),(61), (63)–(64) and recall-
ing (39), (41), we obtain the following variational formulation of the antiplane contact
ProblemP .

Problem PV . Find a displacement fieldu : [0, T ] → V, an electric potential field
ϕ : [0, T ] →W and a bonding fieldβ : [0, T ] → L2(Γ3) such that, for a.e.t ∈ (0, T ),

〈ü(t), w〉V ′×V + aθ

(

u̇(t), w
)

+ aµ

(

u(t), w
)

+ a∗e
(

ϕ(t), w
)

+ j
(

β(t), u(t), w
)

= 〈f(t), w〉V ′×V ∀w ∈ V, (66)

aα

(

ϕ(t), ψ
)

− ae

(

u(t), ψ
)

=
(

q(t), ψ
)

W
∀ψ ∈W, (67)

β̇(t) = −
(

γβ(t)R
(

u(t)
)2

− ǫa
)

+
, (68)

and

u(0) = u0, u̇(0) = v0, β(0) = β0. (69)

The main existence and uniqueness result in the study Problem PV , that we state
here and prove in the next section, is the following.

Theorem 1. Assume that(42)–(54) hold. Then, there exists a unique solution of Prob-
lem(66)–(69). Moreover, the solution satisfies

u ∈W 1,2(0, T ;V ) ∩ C1([0, T ];H), ü ∈ L2(0, T ;V ′), (70)

ϕ ∈W 1,2(0, T ;W ), (71)

β ∈W 1,∞
(

0, T ;L2(Γ3)
)

∩ Z. (72)

We conclude that, under the stated assumptions, ProblemP has a uniqueweak
solutionwhich satisfies (70)–(72).

4 Proof of Theorem 1

The proof of Theorem 1 will be carried out in several steps. Weassume in the following
that (42)–(54) hold and below in this sectionc will denote a generic positive constant
which may depend onΩ, Γ1, Γ2, Γ3, θ, µ, e, α p, L andT , but does not depend ont,
nor on the rest of the input data, and whose value may change from place to place. Let
η ∈ L2(0, T ;V ′) be given. In the first step we consider the following variational problem.
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Problem PV 1
η . Find a displacement fielduη : [0, T ] → V such that

〈üη(t), w〉V ′×V + aθ

(

u̇η(t), w
)

+ 〈η(t), w〉V ′×V = 〈f(t), w〉V ′×V

∀w ∈ V, a.e. t ∈ (0, T ), (73)

uη(0) = u0, u̇η(0) = v0. (74)

We have the following result.

Lemma 1. There exists a unique solution of ProblemPV 1
η and it has the regularity

expressed in(70).

Proof. We define the operatorAθ : V → V ′ by

〈Aθv, w〉V ′×V = aθ(v, w) ∀ v, w ∈ V. (75)

It follows from (75), the continuity of the bilinear formaθ and (59) that the linear operator
Aθ is continuous and positively definite, i.e.

〈Aθw,w〉V ′×V ≥ θ∗ ‖w‖2
V for all w ∈ V.

Recall also thatf − η ∈ L2(0, T ;V ′) andv0 ∈ H . Then, from a classical result on
ordinary differential equations in abstract spaces (see, e.g. [24, p. 140]), it follows that
there exists a unique functionvη which satisfies

vη ∈ L2(0, T ;V ) ∩C([0, T ];H), v̇η ∈ L2(0, T ;V ′), (76)

v̇η(t) +Aθvη(t) + η(t) = f(t) a.e. t ∈ (0, T ), (77)

vη(0) = v0. (78)

Let uη : [0, T ] → V be the function defined by

uη(t) =

t
∫

0

vη(s) ds+ u0 ∀ t ∈ [0, T ]. (79)

It follows from (75) and (76)–(79) thatuη is a solution of the variational problemPV 1
η and

it satisfies the regularity expressed in (70). This concludes the existence part of Lemma 1.
The uniqueness of the solution follows from the uniqueness of the solution of problem
(76)–(78).

In the next step, we use the displacement fielduη obtained in Lemma 1 to define the
following variational problem for the electrical potential field.

Problem PV 2
η . Find an electrical potential fieldϕη : [0, T ] →W such that

aα

(

ϕη(t), ψ
)

− ae

(

uη(t),ψ
)

=
(

q(t), ψ
)

W
∀ψ ∈W, t ∈ [0, T ], (80)

The well-posedness of ProblemPV 2
η follows.
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Lemma 2. There exists a unique solutionϕη ∈ W 1,2(0, T ;W ) of ProblemPV 2
η .

Proof. Let t ∈ [0, T ].We use the properties of the bilinear formaα and the Lax-Milgram
lemma to see that there exists a unique elementϕη(t) ∈ W which solves (80) at any
momentt ∈ [0, T ]. Consider nowt1, t2 ∈ [0, T ]; using (80) and (60) we find that

α∗ ‖ϕη(t1) − ϕη(t2)‖
2
W ≤ ‖e‖L∞(Ω) ‖uη(t1) − uη(t2)‖V ‖ϕη(t1) − ϕη(t2)‖W

+ ‖q(t1) − q(t2)‖W ‖ϕη(t1) − ϕη(t2)‖W ,

which implies that

‖ϕη(t1) − ϕη(t2)‖W ≤ c (‖uη(t1) − uη(t2)‖V + ‖q(t1) − q(t2)‖W ). (81)

We note that regularityuη ∈ W 1,2(0, T ;V ) combined with (65) and (81) imply that
ϕη ∈ W 1,2(0, T ;W ) which concludes the proof.

We use again the solutionuη obtained in Lemma 1 to construct the following Cauchy
problem for the bonding field.

Problem PV 3
η . Find a bonding fieldβη : [0, T ] → L2(Γ3) such that

β̇η(t) = −
(

γ βη(t)R
(

uη(t)
)2

− ǫa
)

+
, (82)

βη(0) = β0. (83)

We have the following existence and uniqueness result.

Lemma 3. There exists a unique solution to ProblemPV 3
η . Moreover, the solution

satisfiesβη ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z.

Proof. For the sake of simplicity, we omit the explicit display of ofthe dependence of
various functions onx ∈ Γ3. Consider the mappingF : [0, T ] × L2(Γ3) → L2(Γ3)
defined by

Fη(t, β) = −
(

γβR
(

uη(t)
)2

− ǫa
)

+
,

for t ∈ [0, T ] andβ ∈ L2(Γ3). It follows thatFη is Lipschitz continuous with re-
spect to the second argument, uniformly in time. Moreover, for anyβ ∈ L2(Γ3), the
mappingt 7→ Fη(t, β) belongs toL∞(0, T ;L2(Γ3)). Thus, using a version of Cauchy-
Lipschitz theorem (see, e.g. [23, p. 48]), we obtain that there exists a unique function
βη ∈ W 1,∞(0, T ;L2(Γ3)) which satisfies (82)–(83). The regularityβη ∈ Z follows
from (82)–(83) and the assumption (54). Indeed, equation (82) implies that for a.e.
x ∈ Γ3 the functiont 7−→ βη(x, t) is decreasing and its derivative vanishes when
γ βη(t)R(uη(t))2 ≤ ǫa. Combining these properties with the inequality0 ≤ β(0) ≤ 1
we deduce that0 ≤ βη(t) ≤ 1 for all t ∈ [0, T ], a.e. onΓ3, which shows thatβη ∈ Z.
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Now, for η ∈ L2(0, T ;V ′) we denote byuη the solution of problemPV 1
η obtained

in Lemma 1, byϕη the solution of problemPV 2
η obtained in Lemma 2 and byβη the

solution of ProblemPV 3
η given by Lemma 3. LetΛη(t) denote the element ofV ′ defined

by

〈Λη(t), w〉V ′×V = aµ

(

uη(t), w
)

+ a∗e
(

ϕη(t), w
)

+ j
(

βη(t), uη(t), w
)

, (84)

for all w ∈ V andt ∈ [0, T ]. We have the following result.

Lemma 4. For all η ∈ L2(0, T ;V ′) the elementΛη belongs toC([0, T ];V ′). Moreover,
the operatorΛ: L2(0, T ;V ′) → L2(0, T ;V ′) has a unique fixed pointη∗.

Proof. Let η ∈ L2(0, T ;V ′) and lett1, t2 ∈ [0, T ]. Using (84), the continuity of the
bilinear formsaµ anda∗e and (64), we obtain

‖Λη(t1)−Λη(t2)‖V ′ ≤ c
(

‖uη(t1)−uη(t2)‖V +‖ϕη(t1)−ϕη(t2)‖W

+
∥

∥p
(

βη(t1)
)

R
(

uη(t1)
)

−p
(

βη(t2)
)

R
(

uη(t2)
)∥

∥

L2(Γ3)

)

.

Now, keeping in mind (37), assumptions on the functionp, the inequality0 ≤ βη ≤ 1 and
the properties of the operatorR we find

‖Λη(t1) − Λη(t2)‖V ′ ≤ c
(

‖uη(t1) − uη(t2)‖V + ‖ϕη(t1) − ϕη(t2)‖W

+ ‖βη(t1) − βη(t2)‖L2(Γ3)

)

.
(85)

Sinceuη ∈ W 1,2(0, T ;V ), ϕη ∈ W 1,2(0, T ;W ) andβη ∈ W 1,∞(0, T ;L2(Γ3)) we
deduce from inequality (85) thatΛη ∈ C([0, T ];V ′).

Let nowη1, η2 ∈ L2(0, T ;V ′) and lett ∈ [0, T ]. In what follows we use the notation
ui = uηi

, vi = vηi
= u̇ηi

, ϕi = ϕηi
andβi = βηi

for i = 1, 2. Using arguments similar
to those in the proof of (85) we find that

‖Λη1(t) − Λη2(t)‖V ′ ≤ c
(

‖u1(t) − u2(t)‖V + ‖ϕ1(t) − ϕ2(t)‖W

+ ‖β1(t) − β2(t)‖L2(Γ3)

)

.
(86)

On the other hand, (80) and arguments similar as those used inthe proof of (81) yield

‖ϕ1(t) − ϕ2(t)‖W ≤ c ‖u1(t) − u2(t)‖V . (87)

Moreover, using (82), (83) and the properties of the functionR it follows that

‖β1(t) − β2(t)‖L2(Γ3) ≤ c

t
∫

0

‖β1(s) − β2(s)‖L2(Γ3) ds+ c

t
∫

0

‖u1(s)− u2(s)‖V ds

and, by using Gronwall’s inequality, we find

‖β1(t) − β2(t)‖L2(Γ3) ≤ c

t
∫

0

‖u1(s) − u2(s)‖V ds. (88)
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We combine now the inequalities (86), (87) and (88) to obtain

‖Λη1(t) − Λη2(t)‖V ′ ≤ c ‖u1(t) − u2(t)‖V + c

t
∫

0

‖u1(s) − u2(s)‖V ds.

Also, sinceu1 andu2 have the same initial value it follows that

‖u1(t) − u2(t)‖V ≤

t
∫

0

‖v1(s) − v2(s)‖V ds.

We use now the last two inequalities to obtain

‖Λη1(t) − Λη2(t)‖V ′ ≤ c

t
∫

0

‖v1(s) − v2(s)‖V ds

which implies

‖Λη1(t) − Λη2(t)‖
2
V ′ ≤ c

t
∫

0

‖v1(s) − v2(s)‖
2
V ds. (89)

Next, we obtain from (73)

〈v̇1 − v̇2, v1 − v2〉V ′×V + aθ(v1 − v2, v1 − v2) + 〈η1 − η2, v1 − v2〉V ′×V = 0

a.e. on(0, T ). We integrate this relation with respect to the time and use the initial
conditionsv1(0) = v2(0) = v0 and (59) to find

θ∗
t

∫

0

‖v1(s) − v2(s)‖
2
V ds ≤ −

t
∫

0

〈η1(s) − η2(s), v1(s) − v2(s)〉V ′×V ds

≤

t
∫

0

‖η1(s) − η2(s)‖V ′‖v1(s) − v2(s)‖V ds

≤
1

θ∗

t
∫

0

‖η1(s) − η2(s)‖
2
V ′ ds+

θ∗

4

t
∫

0

‖v1(s) − v2(s)‖
2
V ds.

Therefore, from the previous inequality we obtain

t
∫

0

‖v1(s) − v2(s)‖
2
V ds ≤ c

t
∫

0

‖η1(s) − η2(s)‖
2
V ′ ds, (90)
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and from (89), (90) we deduce that

‖Λη1(t) − Λη2(t)‖
2
V ′ ≤ c

t
∫

0

‖η1(s) − η2(s)‖
2
V ′ ds.

Reiterating this inequalitym times yields

‖Λmη1 − Λmη2‖
2
L2(0,T ;V ′) ≤

cm

m!
‖η1 − η2‖

2
L2(0,T ;V ′),

which implies that form sufficiently large a powerΛm of Λ is a contraction in the Banach
spaceL2(0, T ;V ′); therefore there exists a unique elementη∗ ∈ L2(0, T ;V ′) such that
Λη∗ = η∗.

Proof of Theorem1. Existence.Let η∗ ∈ L2(0, T ;V ′) be the fixed point of the operator
Λ and letu, ϕ, β be the solutions of ProblemsPV 1

η , PV
2
η andPV 3

η respectively with
η = η∗, i.e. u = uη∗ , ϕ = ϕη∗ , β = βη∗ . Clearly, equalities (67)–(69) hold fromPV 1

η ,
PV 2

η andPV 3
η . Moreover, sinceη∗ = Λη∗ it follows from (73) and (84) that (66) holds

too. The regularity of the solution expressed in (70)–(72) follows from Lemmas 1–3. We
conclude that(u, ϕ, β) is a solution of ProblemPV and it satisfies (70)–(72).

Uniqueness.The uniqueness of the solution follows from the uniqueness of the
fixed point ofΛ combined with the unique solvability of ProblemsPV 1

η , PV
2
η andPV 3

η ,
guaranteed by Lemmas 1–3.
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