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Abstract. Estimation of the distribution function under sampling on two occasions
with a simple random sampling design on each occasion is investigated. Composite
regression and ratio type estimators are considered, usingvalues of the study variable as
auxiliary information obtained on the first occasion. The optimal estimator, in the sense
of minimal variance, is also obtained. A simulation study, based on the real population
data, is performed and the proposed estimators are comparedby a simple estimator for a
distribution function.
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1 Introduction

Consider a finite populationU = {1, . . . , N}. Let y be the study variable, defined on
the populationU and taking values{y1, . . . , yN}. The values of the variabley are not
known. We are interested in the estimation of the finite population distribution function
of the study variabley

Fy(z) =
♯Az

N
,

where for any given numberz (−∞ < z < ∞), the setAz = {l ∈ U : yl ≤ z}, and
♯Az denotes the number of elements in the setAz (see [1,2]). Such a functionFy(z) may
be of considerable interest wheny is a measure of income and the population units are
individuals or households.

In sample surveys, supplementary information is often usedin the estimation stage to
increase the precision of estimators of the population meanor total. SinceF (z) is simply
a population proportion for any given value ofz, usual methods for estimating the means
such as the ratio and regression estimators taking advantage of auxiliary information can
be used. Recently, several estimators of the population distribution function have been
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proposed, using auxiliary information in the estimation stage (see [3–7]). Most of the
studies related to a distribution function have been developed by assuming simple random
sampling or a stratified simple random sampling design.

When the investigation deals with variables such as income,sometimes the same
population is sampled repeatedly on several occasions and the same study variable is mea-
sured on each occasion. Repeated sampling of population is aquite common sampling
procedure in the official statistics.

Cochran (see [8, chapter 12]) considered sampling on two occasions, using random
sampling at each of the occasions. He has found that current estimates might be improved
by using the first occasion data. Some problems of estimator construction for sampling
on two occasions have been discussed (see [8–10]). In all thestudies, the parameter
estimated is a mean.

In this paper, we investigate sampling on two occasions, concentrating on the estima-
tors of the distribution function. The aim of this paper is, first, to obtain some estimators
of the distribution function under sampling on two occasions: the ratio and regression
estimators; second, to obtain optimal composite estimators in the sense of minimizing
the variance of the estimators; third, to investigate how the sample matching fraction
influences precision of the distribution function estimates using a sampling scheme on
two occasions, and, finally, to illustrate the theoretical results by simulation study.

2 Estimation of the distribution function using a scheme of two
occasions

Suppose we have a finite populationU = {1, . . . , N} of sizeN , which is assumed to
retain its composition over two-time periods.

Let us denote the study variable on the second occasion byy, and the same variable
on the first occasion byx with the valuesyi, andxi. Denote byn′ the sample size on the
first occasion.

On the second occasion, two independent samples are drawn, one being matched
with the sample of the first occasion and the other unmatched.The matched sample is
a subsample of sizem, drawn from the previously selectedn′ units, and the unmatched
sample of sizeu is drawn fromN − n′ remaining units. Thus, the total sample on the
current occasion consists ofn = m + u units.

So, we have a two-phase sampling scheme. The first-phase sample s′ of sizen′ is
drawn according to a certain sampling design withp(s′), i.e., the probability ofs′ being
chosen. The corresponding first and second order inclusion probabilities areπ′

i, π′
ij , for

i, j ∈ U .
Givens′, on the second occasion, a matched samplesm of sizem is drawn froms′

according to a certain sampling design, such thatp(sm|s′) is the conditional probability
of choosingsm. The corresponding first and second order inclusion probabilities areπi|s′ ,
πij|s′ .

The unmatched samplesu of sizeu is drawn fromU \ s′ = s′c in accordance with a
certain sampling design, such thatp(su|s

′c) is the conditional probability of choosingsu.
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The corresponding first and second order inclusion probabilities areπi|s′c , πij|s′c . The
whole sample on the current occasion iss = sm ∪ su.

We are interested in estimation of the finite population distribution function using
a two occasion scheme, when a simple random sampling design is used at each of the
occasions.

2.1 Simple estimator

Let us define an indicator variableh(z) with the values

hi(z) =

{
1, if yi ≤ z,

0, if yi > z, −∞ < z < ∞,

i = 1, 2, . . . , N , and its totalth(z) =
∑N

i=1 hi(z). Then the distribution function of the
study variabley can be expressed as:

Fy(z) =
th(z)

N
=

1

N

N∑

i=1

hi(z). (1)

The whole second phase samples consists of two samplessm andsu, for sampling
on two occasions each of them being a two-phase sample:

U → s′ → sm,

U → U \ s′ = s′c → su.

Under two-phase sampling, Särndal et al. (see [2, chapter 9]) have shown, that the
usual Horvitz-Thompson type estimator of the population total cannot always be used in
practice, because the inclusion probabilities, associated with the second-phase sample,
should be known for each first-phase sample. The use ofπ∗ estimators is a possible
alternative, proposed by Särndal et al. (see [2, chapter 9]), for the problem of estimation of
the population total. Using this idea, Rueda et al. (see [11]) have presented the quantities

π∗
i = P(s′ : i ∈ s′)P(sm : i ∈ sm | s′) + P(s′c : i ∈ s′c)P(su : i ∈ su | s′c)

= π′
iπi|s′ + π′c

i πi|s′c , (2)

whereπ′c
i = 1 − π′

i.
Using the samplessu andsm, the following unbiasedπ∗ estimator of the distribution

function (1) can be constructed

F̂y(z) =
1

N

∑

i∈s

hi(z)

π∗
i

=
1

N

∑

i∈sm

hi(z)

π∗
i

+
1

N

∑

i∈su

hi(z)

π∗
i

=
1

N

∑

i∈sm

π′
iπi|s′

π∗
i

hi(z)

π′
iπi|s′

+
1

N

∑

i∈su

π′c
i πi|s′c

π∗
i

hi(z)

π′c
i πi|s′c

, (3)
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for any sampling designs on both occasions.
Let us introduce new notation:

d1i =
π′

iπi|s′

π∗
i

, i ∈ sm, t̂h(z)m
=
∑

i∈sm

hi(z)

π′
iπi|s′

, unbiased,

d2i =
π′c

i πi|s′c

π∗
i

, i ∈ su, t̂h(z)u
=
∑

i∈su

hi(z)

π′c
i πi|s′c

, unbiased.

The coefficientsd1i, d2i do not depend oni for design of a simple random sample
on each occasions, for a two-occasion sampling scheme

d1i = d1, i ∈ sm, d2i = d2, i ∈ su.

Under the new notation, introduced before, the estimator ofdistribution function (3)
can be expressed as

F̂y(z) =
1

N
d1t̂h(z)m

+
1

N
d2t̂h(z)u

. (4)

Assume thats′ is a simple random sample from the populationU and its complement
s′c is also a simple random sample from the populationU . sm is a simple random sample
from s′ and su is a simple random sample froms′c. Then the first and second stage
inclusion probabilities are calculated as follows:

π′
i =

n′

N
, π′

ij =
n′

N

n′ − 1

N − 1
, πi|s′ =

m

n′
, πij|s′ =

m(m − 1)

n′(n′ − 1)
,

π′c
i =

N − n′

N
, πi|s′c =

u

N − n′
, πij|s′c =

u(u − 1)

(N − n′)(N − n′ − 1)
,

π∗
i = π′

iπi|s′ + π′c
i πi|s′c =

n′

N

m

n′
+

N − n′

N

u

N − n′
=

m

N
+

u

N
=

n

N

and the coefficientsd1 andd2 are:

d1 =
m

n
, d2 =

u

n
.

In the case of simple random sampling, on each of the two occasions the estimator (4)
of the distribution function can be rewritten as

F̂y(z) =
m

n

1

N
t̂h(z)m

+
u

n

1

N
t̂h(z)u

=
m

n
h(z)m +

u

n
h(z)u, (5)

where

h(z)m =
1

m

∑

i∈sm

hi(z), h(z)u =
1

u

∑

i∈su

hi(z).
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In the case of simple random sampling, on each of the two occasions, the resulting
sample of sizen = m+u is also simple random sample. The varianceVar(F̂y(z)) of the
distribution functionFy(z) estimatorF̂y(z) (5) is expressed:

Var
(
F̂y(z)

)
=

(
1 −

n

N

)
s2

h(z)

n
, (6)

where

s2
h(z) =

1

N − 1

N∑

i=1

(
hi(z) − µh(z)

)2
, µh(z) =

1

N

N∑

i=1

hi(z).

Remark 1. We use the unbiased variance estimator̂Var(F̂y(z)) of the distribution func-
tion estimator (5) by replacings2

h(z) in variance expression (6) with

ŝ 2
h(z)n

=
1

n − 1

∑

i∈s

(
hi(z) − h(z)n

)2
, h(z)n =

1

n

∑

i∈s

hi(z).

2.2 Regression type estimator

In sample surveys, auxiliary information is often used at the estimation stage to increase
the accuracy of estimators. Using sampling on two occasionswe can construct distri-
bution function estimators withxi values from the first occasion sample as auxiliary
information.

Let us define a new indicator variableg(z) with the values

gi(z) =

{
1, if xi ≤ z,

0, if xi > z,

i = 1, 2, . . . , N , and the totaltg(z) =
∑N

i=1 gi(z). Then the distribution functionFx(z)
can be expressed as:

Fx(z) =
tg(z)

N
=

1

N

N∑

i=1

gi(z). (7)

Using the first occasion samples′ and the matched samplesm, we can form a regression
type estimator of the distribution function

F̂ reg
ym (z) =

1

N
t̂ reg

h(z)m
=

1

N
t̂h(z)m

+
1

N
b
(
t̂g(z)n′

− t̂g(z)m

)
, (8)

with

t̂h(z)m
=
∑

i∈sm

hi(z)

πiπi|s′

, t̂g(z)m
=
∑

i∈sm

gi(z)

πiπi|s′

, t̂g(z)n′
=
∑

i∈s′

gi(z)

πi

.
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andb is some constant.
A second estimator̂Fyu(z) of the distribution functionFy(z) can be obtained from

the unmatched samplesu. It was already introduced in (5).
By a linear combination of̂F reg

ym (z) andF̂yu(z) we obtain a new type of composite
regression estimator

F̂ reg
y (z) = ω

1

N
t̂ reg

h(z)m
+ (1 − ω)

1

N
t̂h(z)u

, (9)

whereω is a constant(0 < ω < 1). The variance of the term̂t reg

h(z)m
depends on the

constantb. We can findbopt by minimizing the varianceVar(t̂ reg

h(z)m
).

bopt =
sh(z)g(z)

s2
g(z)

=

∑N

i=1(hi(z) − µh(z))(gi(z) − µg(z))∑N

i=1(gi(z) − µg(z))2
, (10)

where

µh(z) =
1

N

N∑

i=1

hi(z), µg(z) =
1

N

N∑

i=1

gi(z).

Since the values of indicator variablesh(z) andg(z) are not known in the population as
usual, we cannot calculate the coefficientbopt, so we need to estimate it from a sample.
The coefficientbopt can be estimated by

b̂opt =
ŝh(z)g(z)

ŝ2
g(z)

=

∑
i∈sm

(hi(z) − h(z)m)(gi(z) − g(z)m)
∑

i∈sm
(gi(z) − g(z)m)2

, (11)

where

g(z)m =
1

m

∑

i∈sm

gi(z),

h(z)m has been defined in (5).
In the case of simple random sampling on each of two occasions, estimator (9) of

the distribution functionFy(z), using a two-occasion scheme, can be expressed:

F̂ reg
y (z) = ω

(
h(z)m + b̂opt

(
g(z)n′ − g(z)m

))
+ (1 − ω)h(z)u, (12)

where

g(z)n′ =
1

n′

∑

i∈s′

gi(z), g(z)m =
1

m

∑

i∈sm

gi(z),

h(z)m andh(z)u have been defined earlier by equalities (5).
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Proposition 1. In the case of simple random sampling on each of the two occasions,
an approximate varianceAVar(F̂ reg

y (z)) of regression type estimator̂F reg
y (z) (12) of

the distribution functionFy(z) is expressed:

AVar
(
F̂ reg

y (z)
)

= ω2 1

N2
AVar

(
t̂ reg

h(z)m

)
+ (1 − ω)2

1

N2
Var
(
t̂h(z)u

)

+ 2ω(1 − ω)
1

N2
Cov

(
t̂ reg

h(z)m
, t̂h(z)u

)
, (13)

AVar
(
t̂ reg

h(z)m

)
= N2

((
1 −

n′

N

)
s2

h(z)

n′
+

(
1 −

m

n′

)
s2

D(z)

m

)
,

Var
(
t̂h(z)u

)
= N2

(
1 −

u

N

)
s2

h(z)

u
, Cov

(
t̂ reg

h(z)m
, t̂h(z)u

)
= −Ns2

h(z),

s2
D(z) =

1

N − 1

N∑

i=1

(
Di(z) − µD(z)

)2
, µD(z) =

1

N

N∑

i=1

Di(z),

s2
h(z) has been defined earlier in(6) andDi(z) = hi(z) − boptgi(z).

Proof. The variance of the composite regression type estimator (9)equals

Var
(
F̂ reg

y (z)
)

= ω2 1

N2
Var
(
t̂ reg

h(z)m

)
+ (1 − ω)2

1

N2
Var
(
t̂h(z)u

)

+ 2ω(1 − ω)
1

N2
Cov

(
t̂ reg

h(z)m
, t̂h(z)u

)
. (14)

The known approximation of theVar(t̂ reg

h(z)m
) (see [2]) is

AVar
(
t̂ reg

h(z)m

)
=
∑

i,j∈U

(
π′

ij − π′
iπ

′
j

)hi(z)

π′
i

hj(z)

π′
j

+ E

( ∑

i,j∈s′

(
πij|s′ − πi|s′πj|s′

)Di(z)

π′
iπi|s′

Dj(z)

π′
jπj|s′

)
, (15)

with Di(z) = hi(z) − boptgi(z). Var(t̂h(z)u
) and covarianceCov(t̂ reg

h(z)m
, t̂h(z)u

) =

Cov(t̂h(z)m
, t̂h(z)u

) are expressed, respectively, as

Var
(
t̂h(z)u

)
=
∑

i,j∈U

(
π′c

ij − π′c
i π′c

j

)hi(z)

π′c
i

hj(z)

π′c
j

+ E

( ∑

i,j∈s′c

(
πij|s′c − πi|s′cπj|s′c

) hi(z)

π′c
i πi|s′c

hj(z)

π′c
j πj|s′c

)
(16)
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and

Cov
(
t̂ reg

h(z)m
, t̂h(z)u

)
= −

∑

i,j∈U

(
π′

ij − π′
iπ

′
j

)hi(z)

π′
i

hj(z)

π′c
j

. (17)

Replacingπ values in (14), (15) by the corresponding values, obtained for a sim-
ple random sampling design on each of the two occasions, we obtain an expression of
approximate variance (13) of the distribution function estimator (12).

Remark 2. We use variance estimator̂Var(F̂ reg
y (z)) of the composite regression type

distribution function estimator (12), replacings2
h(z) ands2

D(z) in theAVar(t̂ reg

h(z)m
) of (13)

by the estimates below

ŝ2
h(z)m

=
1

m − 1

∑

i∈sm

(
hi(z) − h(z)m

)2
, h(z)m =

1

m

∑

i∈sm

hi(z),

and

ŝ2
D(z)m

=
1

m − 1

∑

i∈sm

(
D̂i(z) − D̂(z)m

)2
, D̂(z)m =

1

m

∑

i∈sm

D̂i(z),

whereD̂i(z) = hi(z) − b̂optgi(z).

In theVar(t̂h(z)u
), s2

h(z) is replaced by

ŝ2
h(z)u

=
1

u − 1

∑

i∈su

(
hi(z) − h(z)u

)2
, h(z)u =

1

u

∑

i∈su

hi(z),

and in theCov(t̂ reg

h(z)m
, t̂h(z)u

), s2
h(z) is replaced by

ŝ2
h(z)n

=
1

n − 1

∑

i∈s

(
hi(z) − h(z)n

)2
, h(z)n =

1

n

∑

i∈s

hi(z).

We use a constantω, in the expression of regression type estimator (12) of the
distribution functionFy(z). Its optimal valueωopt can be found in the sense of minimal
variance (13).

Proposition 2. In the case of simple random sampling on each of the two occasions, the
optimal valueωopt in (12) is expressed:

ωopt =
Var
(
t̂h(z)u

)
− Cov(t̂ reg

h(z)m
, t̂h(z)u

)

Var(t̂ reg

h(z)m
) + Var(t̂h(z)u

) − 2Cov(t̂ reg

h(z)m
, t̂h(z)u

)
(18)

on the two-occasion sampling scheme.
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Proof. DifferentiatingVar(F reg
y (z) in (14) with respect to the coefficientω and equating

the derivative to zero, we get the optimal valueωopt of the coefficientω.

Replacing the coefficientω by the coefficientωopt in the distribution function esti-
matorF̂ reg

y (z) given by (12), we obtain an optimal composite regression type estimator
of the distribution function. In the case of simple random sampling on each of the two
occasions:

F̂ reg
y opt(z) = ωopt

(
h(z)m + b̂opt

(
g(z)n′ − g(z)m

))
+ (1 − ωopt)h(z)u. (19)

Proposition 3. In the case of simple random sampling on each of the two occasions,
the approximate minimal varianceAVar(F̂ reg

y opt(z))min of the regression type estimator

F̂ reg
y opt(z) (19)of the distribution functionFy(z) is expressed:

AVar
(
F̂ reg

y opt(z)
)
min

=
1

N2

(
Var1Var2 − Cov2

Var1 + Var2 − 2Cov

)
, (20)

whereVar1 = AVar(t̂ reg

h(z)m
), Var2 = Var(t̂h(z)u

), Cov = Cov(t̂ reg

h(z)m
, t̂h(z)u

).

Proof. By inserting the optimal valueωopt (18) of ω into the expression of approximate
variance (13), we obtain (20).

Remark 3. The coefficientwopt depends on unknown variances and the covariance, and
we estimate it by

ω̂opt =
V̂ar(t̂h(z)u

) − Ĉov(t̂ reg

h(z)m
, t̂h(z)u

)

V̂ar(t̂ reg

h(z)m
) + V̂ar(t̂h(z)u

) − 2Ĉov(t̂ reg

h(z)m
, t̂h(z)u

)
. (21)

We use the approximate minimal variance estimator̂Var(F̂ reg
y (z))min of the composite

optimal regression type distribution function estimator (19) replacingVar1, Var2, and
Cov in AVar(t̂ reg

h(z)m
)min of (20) by the corresponding estimatorŝVar1, V̂ar2, andĈov.

2.3 Ratio type estimator

A particular case within the regression type estimator is the ratio type estimator. Dis-
tribution function estimators of the regression type and ratio type differ in the choice
coefficientb in (8).

Using the first occasion samples′ and the matched samplesm, we can form a ratio
type estimator of the distribution function

F̂ r
ym(z) =

1

N
t̂rh(z)m

=
1

N
t̂g(z)n′

R̂(z), (22)
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where

t̂g(z)n′
=
∑

i∈s′

gi(z)

π′
i

, R̂(z) =
t̂h(z)m

t̂g(z)m

,

t̂h(z)m
=
∑

i∈sm

hi(z)

π′
iπi|s′

, t̂g(z)m
=
∑

i∈sm

gi(z)

π′
iπi|s′

,

which corresponds to the choiceb =
bth(z)m

btg(z)m

= R̂(z).

A second estimator̂Fyu(z) (5) of the distribution functionFy(z) can be obtained
from the unmatched samplesu. By linear combination of̂F r

ym(z) andF̂yu(z), we obtain
a new composite ratio type estimator

F̂ r
y (z) = λ

1

N
t̂rh(z)m

+ (1 − λ)
1

N
t̂h(z)u

, (23)

whereλ is a constant(0 < λ < 1).
In the case of simple random sampling on each of the two occasions, the ratio

type estimator (23) of the distribution functionFy(z), using the two-occasion scheme
is expressed:

F̂ r
y (z) = λg(z)n′R̂(z) + (1 − λ)

1

N
h(z)u, (24)

where

R̂(z) =

∑
i∈sm

hi(z)∑
i∈sm

gi(z)
,

λ is a constant(0 < λ < 1), andg(z)n′ , h(z)u have been introduced in (12).

Proposition 4. In the case of simple random sampling on each of the two occasions,
the approximate varianceAVar(F̂ r

y (z)) of the ratio type estimator̂F r
y (z) (24) of the

distribution functionFy(z) is expressed:

AVar
(
F̂ r

y (z)
)

= λ2 1

N2
AVar

(
t̂rh(z)m

)
+ (1 − λ)2

1

N2
Var
(
t̂h(z)u

)

+ 2λ(1 − λ)
1

N2
Cov

(
t̂rh(z)m

, t̂h(z)u

)
, (25)

where

AVar
(
t̂rh(z)m

)
= N2

((
1 −

n′

N

)
s2

h(z)

n′
+

(
1 −

m

n′

)
s2

R(z)

m

)
, (26)

s2
R(z) =

1

N − 1

N∑

i=1

(
hi(z) − R(z)gi(z)

)2
, R(z) =

∑N

i=1 hi(z)
∑N

i=1 gi(z)
,

324



Estimation of a Distribution Function under Sampling on TwoOccasions

Cov
(
t̂rh(z)m

, t̂h(z)u

)
= −Ns2

h(z),

Var(t̂h(z)u
) ands2

h(z) are given in(13)and(6).

Proof. The variance of the composite ratio type estimator (23) equals

Var
(
F̂ r

y (z)
)

= λ2 1

N2
Var
(
t̂rh(z)m

)
+ (1 − λ)2

1

N2
Var
(
t̂h(z)u

)

+ 2λ(1 − λ)
1

N2
Cov

(
t̂rh(z)m

, t̂h(z)u

)
. (27)

The approximation ofVar(t̂r
h(z)m

) is given:

AVar
(
t̂rh(z)m

)
=
∑

i,j∈U

(
π′

ij − π′
iπ

′
j

)hi(z)

π′
i

hj(z)

π′
j

+ E

( ∑

i,j∈s′

(
πij|s′ − πi|s′πj|s′

) Ri(z)

π′
iπi|s′

Rj(z)

π′
jπj|s′

)
, (28)

with Ri(z) = hi(z) − R(z)gi(z). R(z) defined in (24). Var(t̂h(z)u
) and

Cov(t̂r
h(z)m

, t̂h(z)u
) = Cov(t̂h(z)m

, t̂h(z)u
) are given in (16) and (17).

Replacingπ values in (27), (28) by the corresponding values, obtained for a simple
random sampling design on each of the two occasions, we get anexpression of the
approximate variance (25) of the distribution function estimator (24).

Remark 4. We use variance estimator̂Var(F̂ r
y (z)) of the composite ratio type distri-

bution function estimator (24) replacings2
h(z), s2

R(z) in theAVar(t̂r
h(z)m

) of (25) by the
corresponding estimates

ŝ2
R(z)m

=
1

m − 1

∑

i∈sm

(
hi(z) − R̂(z)gi(z)

)2
, R̂(z) =

∑
i∈sm

hi(z)∑
i∈sm

gi(z)
,

ŝ2
h(z)m

are given in Remark 2.

The estimatorŝVar(t̂h(z)u
) and Ĉov(t̂r

h(z)m
, t̂h(z)u

) = Ĉov(t̂ reg

h(z)m
, t̂h(z)u

) have

been obtained for the variance estimator̂Var(F̂ reg
y (z)).

Using the same ideas as for obtaining a composite optimal regression type estimator
of the distribution function, we obtain a composite optimalratio type estimator of the dis-
tribution function. In the case of simple random sampling for each of the two occasions:

F̂ r
y opt(z) = λoptg(z)n′R̂(z) + (1 − λopt)

1

N
h(z)u, (29)

where

λopt =
Var(t̂h(z)u

) − Cov(t̂rh(z)m
, t̂h(z)u

)

Var(t̂r
h(z)m

) + Var(t̂h(z)u
) − 2Cov(t̂r

h(z)m
, t̂h(z)u

)
.
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The approximate minimal varianceAVar(F̂ r
y opt(z))min of the ratio type estimator

F̂ r
y opt(z) (29) of the distribution functionFy(z) is expressed:

Var
(
F̂ r

y opt(z)
)
min

=
1

N2

(
Var1Var2 − Cov2

Var1 + Var2 − 2Cov

)
, (30)

whereVar1 = Var(t̂r
h(z)m

), Var2 = Var(t̂h(z)u
), Cov = Cov(t̂r

h(z)m
, t̂h(z)u

).
The coefficientλopt depends on unknown variances and covariance, and we have to

estimate it by

λ̂opt =
V̂ar(t̂h(z)u

) − Ĉov(t̂r
h(z)m

, t̂h(z)u
)

V̂ar(t̂r
h(z)m

) + V̂ar(t̂h(z)u
) − 2Ĉov(t̂r

h(z)m
, t̂h(z)u

)
. (31)

Finally, we use the minimal variance estimator̂Var(F̂ r
y (z))min of the composite

optimal ratio type estimator (29) of the distribution function replacingVar1, Var2, and
Cov in Var(t̂ reg

h(z)m
)min of (30) by the corresponding estimatorŝVar1, V̂ar2, andĈov.

3 Simulation study

In this section, we present a simulation study for the comparison of the performance of
several distribution function estimators using the schemeof two-occasion sampling, with
simple random sampling on each of the two occasions.

We study real household data of Statistics Lithuania. The study population consists
of N = 2 932 households. The data are available for two occasions. The variables of
interest,y andx, are the total household gross income; the valuesxi (the first occasion)
refer to the population in 2005, the valuesyi (the second occasion) refer to the population
in 2006. The correlation coefficient between the variablesx and y in the household
population is̺(x, y) = 0.86. It means a strong linear relationship. To construct the
estimatorF̂y(z), we have chosen the following pointszk:

z1 = K0.10, z2 = K0.25, z3 = K0.50, z4 = K0.75, z5 = K0.90,

whereKq is theq-level quantile of the study variabley in the household population.
We have selectedB = 10 000 samples of sizen′ = 200 on the first occasion

under simple random sampling, with different matching fractions on the second occasion:
m
n

= 1
4 (m = 50, u = 150), m

n
= 1

2 (m = 100, u = 100) andm
n

= 3
4 (m = 150, u = 50)

under simple random sampling as well. For each sample we compute several estimators of
the population distribution function: a simple estimatorF̂y(z), ratio and regression type
estimatorsF̂ r

y (z) andF̂ reg
y (z), respectively, with the coefficientω = 0.5 andλ = 0.5, as

well as optimal ratio and regression type estimatorsF̂ r
yopt(z) andF̂ reg

yopt(z), respectively,
in the sense of minimizing variance with the optimal coefficientsωopt andλopt.

For each estimator, we have calculated estimates of the distribution function of the
study variabley at the pointsK0.10, K0.25, K0.50, K0.75, andK0.90. Thus, for each
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estimator we have10 000 estimates of̂Fy(z) for z=K0.10, K0.25, K0.50, K0.75, andK0.90.
For these estimates we have calculated a relative bias, relative root mean square errors,
and a relative efficiency of the estimators. For each estimator θ̂y(z) we define the relative
bias as

RB
(
θ̂y(z)

)
=

1

Fy(z)

(
1

B

B∑

i=1

(
θ̂(i)

y (z) − Fy(z)
)
)

,

the relative root mean square error as

RMSE
(
θ̂y(z)

)
=

1

Fy(z)

√√√√ 1

B

B∑

i=1

(
θ̂
(i)
y (z) − Fy(z)

)2
,

whereθ̂
(i)
y (z) is the i-th estimate at the pointz, calculated for the estimator̂θy(z), the

relative efficiency with

RE
(
θ̂y(z)

)
=

RMSE(F̂y(z))

RMSE(θ̂y(z))
,

whereRMSE(F̂y(z)) is the relative root mean square error defined for the simple es-
timator F̂y(z). For each estimator also we define efficiencyE(θ̂y(z)), the ratio of the
RMSE(F̂y(z)) andRMSE(θ̂y(z)) with the corresponding formulae based variances.

Table 1 illustrates the relative bias of proposed estimators of the population distri-
bution function. For non-optimal estimators of a distribution function, the relative bias is
decreasing when theq level of the population quantile is increasing. The simple and
regression type estimators,̂Fy(z) and F̂ reg

y (z), respectively, in all cases behave in a

similar way, but in most caseŝF reg
y (z) has the lowest relative bias. The regression type

estimatorF̂ reg
y (z) is less biased than the ratio type estimatorF̂ r

y (z), especially for a low
q level of the population quantile and for a low matching fraction m/n. The optimal ratio
and regression type estimators,F̂ r

yopt(z) andF̂ reg
yopt(z), respectively, have the highest bias

in most cases.
Table 2 shows a relative root mean square error of estimatorsfor the real household

population and several matching fractions on the second occasion. As to the efficiency,
measured by the relative root mean square error, the regression type estimator̂F reg

y (z)

is more efficient than the ratio type estimatorF̂ r
y (z), especially for a lowq level of the

population quantile and a low matching fraction. This is probably due to the specificity
of variablesg(z) andh(z). In most cases, a simple estimatorF̂y(z) of the population
distribution function has a high relative root mean square error especially for a low match-
ing fraction and a highq level of the population quantile. The estimatorsF̂ r

yopt(z) and

F̂ reg
yopt(z) are usually more efficient in most cases, thanF̂ r

y (z) andF̂ reg(z), respectively.

The relative efficiency for the proposed estimatorsF̂ r
y (z), F̂ reg

y (z), F̂ r
yopt(z),

F̂ reg
yopt(z) and for the simple estimator̂Fy(z) of the population distribution function, using

a two-occasion scheme, is presented in Table 3. The estimatorsF̂ r
yopt(z) andF̂ reg

yopt(z) are
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Table 1. Relative bias (RB) of estimators

Estimator K0.10 K0.25 K0.50 K0.75 K0.90

m

n
=

1

4

bFy 0.01148 0.00009 −0.00052 −0.00038 −0.00041

bF
r
y 0.02512 0.00394 0.00086 0.00019 −0.00010

bF
reg
y 0.01131 0.00077 −0.00009 −0.00013 −0.00046

bF
r
yopt −0.01278 −0.00287 0.00148 0.00348 0.00376

bF
reg

yopt −0.02036 −0.00478 0.00117 0.00361 0.00403

m

n
=

1

2

bFy 0.01429 −0.00055 −0.00025 0.00015 0.00015

bF
r
y 0.01614 0.00171 0.00063 0.00031 0.00014

bF
reg
y 0.01504 0.00046 0.00027 0.00022 0.00012

bF
r
yopt −0.01740 −0.00546 0.00082 0.00300 0.00379

bF
reg

yopt −0.01804 −0.00689 0.00049 0.00298 0.00393

m

n
=

3

4

bFy 0.01636 0.00112 0.00135 0.00025 0.00045

bF
r
y 0.01682 0.00153 0.00146 0.00023 0.00040

bF
reg
y 0.01560 0.00129 0.00141 0.00024 0.00040

bF
r
yopt −0.02234 −0.00827 0.00105 0.00313 0.00500

bF
reg

yopt −0.02415 −0.00865 0.00098 0.00315 0.00502

Table 2. Relative root mean square error (RMSE) of estimators

Estimator K0.10 K0.25 K0.50 K0.75 K0.90

m

n
=

1

4

bFy 0.2066 0.1206 0.0688 0.0397 0.0233

bF
r
y 0.2340 0.1192 0.0667 0.0393 0.0233

bF
reg
y 0.2160 0.1171 0.0659 0.0392 0.0299

bF
r
yopt 0.2207 0.1136 0.0639 0.0378 0.0299

bF
reg

yopt 0.2173 0.1131 0.0637 0.0381 0.0233

m

n
=

1

2

bFy 0.2083 0.1195 0.0693 0.0401 0.0299

bF
r
y 0.1996 0.1115 0.0642 0.0376 0.0214

bF
reg
y 0.1969 0.1110 0.0640 0.0375 0.0214

bF
r
yopt 0.2065 0.1119 0.0638 0.0378 0.0223

bF
reg

yopt 0.2040 0.1113 0.0636 0.0378 0.0224

m

n
=

3

4

bFy 0.2069 0.1194 0.0687 0.0394 0.0228

bF
r
y 0.2377 0.1371 0.0787 0.0455 0.0264

bF
reg
y 0.2368 0.1370 0.0786 0.0454 0.0263

bF
r
yopt 0.2192 0.1159 0.0655 0.0385 0.0244

bF
reg

yopt 0.2175 0.1155 0.0654 0.0385 0.0244
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Table 3. Relative efficiency (RE) of estimators

Estimator K0.10 K0.25 K0.50 K0.75 K0.90

m

n
=

1

4

bFy 1.000 1.000 1.000 1.000 1.000

bF
r
y 0.883 1.012 1.032 1.012 1.003

bF
reg
y 0.956 1.030 1.043 1.014 1.017

bF
r
yopt 0.936 1.062 1.076 1.050 1.020

bF
reg

yopt 0.951 1.067 1.079 1.044 0.999
m

n
=

1

2

bFy 1.000 1.000 1.000 1.000 1.000

bF
r
y 1.044 1.072 1.080 1.067 1.070

bF
reg
y 1.058 1.077 1.083 1.069 1.070

bF
r
yopt 1.009 1.068 1.087 1.060 1.027

bF
reg

yopt 1.021 1.074 1.090 1.062 1.021
m

n
=

3

4

bFy 1.000 1.000 1.000 1.000 1.000

bF
r
y 0.871 0.871 0.873 0.867 0.866

bF
reg
y 0.874 0.872 0.874 0.868 0.867

bF
r
yopt 0.944 1.031 1.048 1.023 0.936

bF
reg

yopt 0.952 1.034 1.051 1.025 0.937

Table 4. Efficiency (E) of estimators

Estimator K0.10 K0.25 K0.50 K0.75 K0.90

m

n
=

1

4

bFy 1.000 1.000 1.000 1.000 1.000

bF
r
y 0.781 1.004 1.075 1.017 1.002

bF
reg
y 0.995 1.074 1.113 1.043 1.039

bF
r
yopt 1.133 1.163 1.195 1.171 1.219

bF
reg

yopt 1.187 1.196 1.213 1.183 1.237
m

n
=

1

2

bFy 1.000 1.000 1.000 1.000 1.000

bF
r
y 1.092 1.148 1.170 1.145 1.139

bF
reg
y 1.126 1.163 1.179 1.151 1.150

bF
r
yopt 1.141 1.180 1.204 1.177 1.206

bF
reg

yopt 1.183 1.200 1.216 1.185 1.221
m

n
=

3

4

bFy 1.000 1.000 1.000 1.000 1.000

bF
r
y 0.755 0.761 0.764 0.761 0.760

bF
reg
y 0.758 0.762 0.765 0.762 0.761

bF
r
yopt 1.119 1.121 1.129 1.117 1.152

bF
reg

yopt 1.135 1.128 1.134 1.121 1.159
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as usual more efficient than̂F r
y (z) and F̂ reg

y (z), respectively, in most cases. Optimal
estimators mostly have a higher bias shown before. That is a reason why sometimes
the efficiency is decreasing, compared with other estimators. The relative efficiency of a
simple estimator is higher for the lowestq level of the population quantile with a lowest
and highest matching fraction. The relative efficiency of the optimal distribution function
estimators at the median are highest with any sampling fractions.

The efficiency, ratio of theRMSE with the corresponding formulae based vari-
anceŝVar(F̂ r

y (z)), V̂ar(F̂ reg
y (z)), V̂ar(F̂ r

yopt(z)), V̂ar(F̂ reg
yopt(z)) andV̂ar(F̂y(z)) of the

population distribution function, using a two-occasion scheme, is presented in Table 4.
Efficiency of proposed optimal estimators using ratio ofRMSE with the corresponding
formulae based variance is grows up comparable with relative efficiency. Average esti-
mates of the variances of the proposed optimal ratio and regression estimators are smaller
than the empirical variances. The Taylor series expansion of the ratio and regression
estimators are used for the expressions of approximate variances. If higher order terms
of Taylor expansion would be taken into expression of the approximate variances of these
estimators, one can expect to improve the accuracy of the approximation of the variances.

4 Conclusions

We have proposed composite regression and ratio type estimators for a distribution func-
tion, as well as optimal estimators, in the sense of minimizing the variance for a two-
occasion sampling scheme with a simple random sampling design on each occasion.
Simulation has been studied on the real population of Lithuanian households of Statistics
Lithuania. The simulation results show that the proposed composite estimators using
auxiliary information can be used for improving the accuracy of distribution function
estimates. The efficiency of the estimators proposed depends on the matching fraction
and on the level of quantiles for two-occasion sampling.
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