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Faculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania

svajunas.sajavicius@mif.vu.lt
Faculty of Social Informatics, Mykolas Romeris University

Ateities str. 20, LT-08303 Vilnius, Lithuania
svajunas@mruni.eu

Received: 2010-07-26 Revised: 2010-09-29 Published online: 2010-11-29

Abstract. In the paper, the eigenvalue problems for one- and two-dimensional second
order differential operators with nonlocal coupled boundary conditions are considered.
Conditions for the existence of zero, positive, negative or complex eigenvalues are
proposed and analytical expressions of eigenvalues are provided.
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1 Introduction

The present paper deals with the eigenvalue problems for one- and two-dimensional
second order differential operators with given nonlocal coupled boundary conditions.
The corresponding finite-difference (discrete) problems have been investigated in the
paper [1].

First of all, we will consider the eigenvalue problem for one-dimensional differen-
tial operator with given nonlocal coupled boundary conditions,

d2u

dx2
+ λu = 0, 0 < x < 1, (1)

u(0) = γ0u(1), (2)

du

dx

∣∣∣∣
x=0

= γ1
du

dx

∣∣∣∣
x=1

, (3)

where γ0, γ1 ∈ R, γ0 + γ1 6= 0. We will also briefly discuss the similar two-dimensional
problem

∂2u

∂x2
+
∂2u

∂y2
+ λu = 0, 0 < x < 1, 0 < y < 1, (4)
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with the classical boundary conditions

u(x, 0) = u(x, 1) = 0, 0 < x < 1, (5)

and the coupled boundary conditions

u(0, y) = γ0u(1, y), (6)

∂u

∂x

∣∣∣∣
x=0

= γ1
∂u

∂x

∣∣∣∣
x=1

, 0 < y < 1. (7)

Such values of λ that the problem (1)–(3) or (4)–(7) has the non-trivial solution are called
eigenvalues, and the set of all eigenvalues is called the spectrum of the problem.

Since conditions (2), (3) and (6), (7) are nonlocal, the corresponding differential
operators are non-self-adjoint. Therefore, the analysis of the spectra of these problems
leads to the problems on the existence of both real and complex eigenvalues.

Let us introduce a parameter γ,

γ =
1 + γ0γ1
γ0 + γ1

.

The main aim of this paper is to investigate the dependence of the qualitative structure of
the spectra of the differential problems (1)–(3) and (4)–(7) on the parameters γ0, γ1 (to
be precise, on the generalized parameter γ), i.e., to formulate conditions for the existence
of zero, positive, negative or complex eigenvalues, and (when it is possible) to provide
analytical expressions of eigenvalues. The eigenvalue problems for differential operators
with nonlocal conditions can be investigated numerically [2]. We use technique and
argument which are used, for example, in the papers [3,4] to investigate similar problems
with other types of nonlocal conditions.

2 The one-dimensional problem

Let us consider the one-dimensional differential problem (1)–(3) and four qualitative
cases of possible values of λ: λ < 0, λ = 0, λ > 0 and λ ∈ C.

Case 1: λ < 0. If a number λ < 0 is an eigenvalue of the problem (1)–(3), the general
solution of the equation (1) can be expressed as

u(x) = c1 cosh (αx) + c2 sinh (αx), α =
√
−λ > 0,

where c1 and c2 are arbitrary constants. By substituting this expression into nonlocal
conditions (2), (3), we get a system of two linear algebraic equations with unknowns c1
and c2:{

(1− γ0 coshα)c1 − γ0 sinhα · c2 = 0,

γ1α sinhα · c1 + α(1− γ1 coshα)c2 = 0.
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This system has a non-trivial solution if its determinant is equal to zero, i.e.,

D1 =

∣∣∣∣1− γ0 coshα −γ0 sinhα
γ1α sinhα α(1− γ1 coshα)

∣∣∣∣ = α
(
1 + γ0γ1 − (γ0 + γ1) coshα

)
= 0.

Since α > 0, after simple rearrangements we get the equation

coshα = γ, α > 0, (8)

and the following proposition is valid.

Proposition 1. The inequality γ > 1 is the necessary and sufficient condition for the
existence of one and only one negative eigenvalue of the problem (1)–(3):

λ−1 = −(arccosh γ)2 = −
{
ln
(
γ +

√
γ2 − 1

)}2

.

Case 2: λ = 0. The general solution of the equation (1) in this case is u(x) = c1 + c2x.
Similarly as in Case 1, we get a system of two linear algebraic equations with unknowns
c1 and c2:{

(1− γ0)c1 − γ0c2 = 0,

(1− γ1)c2 = 0.

There exists a non-trivial solution to this system, if

D2 =

∣∣∣∣1− γ0 −γ0
0 1− γ1

∣∣∣∣ = 1 + γ0γ1 − (γ0 + γ1) = 0.

Proposition 2. The number λ0 = 0 is an eigenvalue of the problem (1)–(3) if and only if
γ = 1.

Case 3: λ > 0. In this case, the general solution of the equation (1) is

u(x) = c1 cos (αx) + c2 sin (αx), α =
√
λ > 0.

Using the same technique as in Case 1 and Case 2, we get a system of two linear algebraic
equations{(

1− γ0 cosα
)
c1 − γ0 sinα · c2 = 0,

γ1α sinα · c1 + α
(
1− γ1 cosα

)
c2 = 0.

By equating the determinant of this system with zero, we obtain

D3 =

∣∣∣∣1− γ0 cosα −γ0 sinα
γ1α sinα α(1− γ1 cosα)

∣∣∣∣ = α
(
1 + γ0γ1 − (γ0 + γ1) cosα

)
= 0,

i.e.,

cosα = γ, α > 0. (9)

Hence, we can prove the following
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Proposition 3. The inequality |γ| ≤ 1 is the necessary and sufficient condition for the
existence of infinitely many positive solutions to the equation (9), i.e., for the existence of
infinitely many (countable set) positive eigenvalues for the problem (1)–(3):

λ2k−1 = (2kπ − arccos γ)2, λ2k = (2kπ + arccos γ)2, k ∈ N.

Remark 1. When |γ| < 1, all positive eigenvalues are simple. However, when |γ| = 1,
all positive eigenvalues (except λ1 = π2, when γ = −1) are multiple (double).

Remark 2. We can observe the qualitative behaviour of real eigenvalues of the problem
(1)–(3) from Fig. 1, where graphs of functions γ(α) = coshα and γ(α) = cosα, α > 0,
are exhibited.

Fig. 1. The graphs of functions γ(α) = coshα (dash-dot line) and γ(α) = cosα
(dashed line), α > 0.

Case 4: λ ∈ C. We represent the general solution of the equation (1) in the form

u(x) = c1e
iqx + c2e

−iqx, q =
√
λ = α± iβ, i =

√
−1.

We assume that α 6= 0 and β 6= 0. If α = 0, β 6= 0 or α 6= 0, β = 0, then this case
coincides with Case 1 or Case 3, respectively. However, when α = β = 0, a situation is
the same as in Case 2.

By substituting the expression of general solution into nonlocal conditions (2) and
(3), we get{(

1− γ0eiq
)
c1 +

(
1− γ0e−iq

)
c2 = 0,

iq
(
1− γ1eiq

)
c1 − iq

(
1− γ1e−iq

)
c2 = 0.
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The determinant of this system is equal to zero, if

D4 =

∣∣∣∣ 1− γ0eiq 1− γ0e−iq

iq(1− γ1eiq) −iq(1− γ1e−iq)

∣∣∣∣
= 2iq

(
1 + γ0γ1 − (γ0 + γ1) cosh (iq)

)
= 0,

i.e.,

cosh (iq) = γ, q = α± iβ, α 6= 0, β 6= 0.

Since cosh (iq) = cos(q), the condition for the existence of a non-trivial solution is

cos q = γ, q = α± iβ, α 6= 0, β 6= 0.

By separating the real and imaginary parts in the latter relation, we obtain the equations{
cosα · cosh (±β) = γ,

sinα · sinh (±β) = 0.
(10)

Taking into account assumption that α 6= 0 and β 6= 0 allow us to prove the following
statement:

Proposition 4. When |γ| > 1, there exists the series of non-trivial solutions to the
system (10), (αk,±β), k ∈ Z \ {0}, where

αk =

{
(2k + 1)π, if γ < −1,
2kπ, if γ > 1;

β = arccosh |γ|,

i.e., the problem (1)–(3) has infinitely many (countable set) complex eigenvalues λc,k.
Distinct pairs of conjugate complex eigenvalues can be calculated by the formula

λc,k = (α2
k − β2)± i(2αkβ), k ∈ N.

Remark 3. When α2
k < β2, i.e.,

1 ≤ k < arccosh |γ|
2π

− 1

2
, if γ < −1,

1 ≤ k < arccosh γ

2π
, if γ > 1,

then real parts of complex eigenvalues λc,k are negative.

3 The two-dimensional problem

Now let us consider the real part of the spectrum of the two-dimensional differential
eigenvalue problem (4)–(7). By separating variables, i.e., by representing the solution of
the problem (4)–(7) in the form

u(x, y) = v(x)w(y),
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we get two one-dimensional eigenvalue problems:

d2v

dx2
+ ηv = 0, 0 < x < 1, v(0) = γ0v(1),

dv

dx

∣∣∣∣
x=0

= γ1
dv

dx

∣∣∣∣
x=1

, (11)

and

d2w

dy2
+ µw = 0, 0 < y < 1, w(0) = w(1) = 0, (12)

where η + µ = λ. The problem (11) was considered in Section 2, while the problem (12)
is classic. It is well-known, that all the eigenvalues of the problem (12) are real, positive,
algebraically simple, and can be computed by the formula

µl = (πl)2, l ∈ N. (13)

Let us denote

λkl = ηk + µl. (14)

It is easy to see, that the positivity of λkl is conditioned by the positivity of ηk. Therefore,
the following statement is valid.

Proposition 5. If |γ| ≤ 1, then the problem (4)–(7) has infinitely many (countable set)
positive eigenvalues:

λ2k−1,l = (2kπ−arccos γ)2+(πl)2, λ2k,l = (2kπ+arccos γ)2+(πl)2, k, l ∈ N.

Now let us investigate the existence of zero and negative eigenvalues of the problem
(4)–(7). If λkl = 0, then the equations (13) and (14) imply that ηk = −(πl)2. However,
the negative eigenvalue of the problem (11) has the form ηk = −α2, where α is a positive
root of the equation (8). Since the equation (8) has a unique positive root, λkl = 0
provided that α = πl. The number α = πl is a root of the equation (8) if γ = cosh (πl).
We can prove the following

Proposition 6. If γl = cosh (πl), l ∈ N, then, for each l ∈ N, the problem (4)–(7) has an
algebraically simple eigenvalue λkl = 0.

If γ = cosh (πs), then the problem (11) has a negative eigenvalue ηs = −(πs)2.
Hence, problem (4)–(7) has s− 1 negative eigenvalues,

λsl = −(πs)2 + (πl)2, l = 1, 2, . . . , s− 1,

and an algebraically simple eigenvalue λss = 0.

Proposition 7. The number of negative eigenvalues of the problem (4)–(7) depends
on γ. If

cosh (πs) < γ < cosh (π(s+ 1)),

where s ∈ N, then there exist exactly s negative eigenvalues of the problem (4)–(7).
Consequently, when γ < coshπ ≈ 11.59195 . . . , then all real eigenvalues of the problem
(4)–(7) are positive.
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4 Concluding remarks

The qualitative information about the spectral structure of differential operator and es-
pecially its finite-difference counterpart is useful, for example, in order to analyse the
stability of finite-difference schemes [5–15] or justify the convergence of iterative meth-
ods for finite-difference equations [16–18].

As a rule, any nonlocal condition, implies that, depending on nonlocal condition
parameters, both real numbers (positive or non-positive) and complex numbers (with
positive or non-positive real parts) can be the eigenvalues of the corresponding differential
problem. Using the quite simple technique allow us to investigate the qualitative structure
of the spectra of the differential problems (1)–(3) and (4)–(7).
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