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Abstract. The present paper deals with the problem of a predator-prey model
incorporating a prey refuge with disease in the prey-population. We assume the predator
population will prefer only infected population for their diet as those are more vulnerable.
Dynamical behaviours such as boundedness, permanence, local and global stabilities are
addressed. We have also studied the effect of discrete time delay on the model. The length
of delay preserving the stability is also estimated. Computer simulations are carried out
to illustrate our analytical findings.
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1 Introduction

The dynamic relationship between predator and their prey has long been and will continue
to be one of the dominant topics in both applied mathematics and theoretical ecology
due to its universal existence and importance. These problems may appear to be simple
mathematically at first sight, they are, in fact, often very challenging and complicated.

The formation of classical Lotka–Volterra [1, 2] model was a milestone progress in
the study of predator-prey interactions. Similarly, after the pioneering work of Kermack–
Mckendric [3], epidemiological studies also received special attention to the researchers.
Disease in ecological systems is an important issue. Anderson and May [4] were the
pioneers for formulating the mathematical model on this topic. A lot of research articles
have already been appeared on this subject [4, 5]. Most of the studies mainly focused on
parasite infection in prey population only [6–9]. The dynamics of predator-prey system
with infection in prey population is an important study from modelling point of view.
Most of predators preferentially consume diseased prey [10]. Predators harm parasite
directly by consuming infected prey and also harms parasites indirectly by reducing the
density of susceptible hosts. Predators behaviour can magnify this direct effect because
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predators often prefer infected prey over uninfected prey [11]. So that infectious disease
can be a factor to regulate human and animal population size.

The research of the hiding behaviour of preys has been incorporated as a new
ingredient of prey-predator models and its consequences on the dynamics of prey-predator
interactions can be recognized as one of the major issues in both applied mathematics
and theoretical ecology. In nature, prey populations often access to areas where they
are safe from their predators. Such refugia are usually playing two significant roles,
serving both to reduce the chance of extinction due to predation and to damp prey-
predator oscillations. These are therefore a potentially important means of increasing
species richness in natural communities and of stabilizing population sizes, biomass and
productivity. It is well known that many more attentions have paid on the effects of a prey
refuge for predator-prey system. Predator-prey interactions often exhibit spatial refuge
which afford the prey some degree of protection from predation and reduce the chance
of extinction due to predation [3, 12]. Hassel [13] showed that adding a large refuge
to a model, which exhibited divergent oscillations in the absence of refuge, replaced the
oscillatory behaviour with a stable equilibrium. These mathematical models and a number
of experiments indicate that refuge have a stabilizing effect on predator-prey interactions.

Time delays of one type or another have been incorporated into epidemiological
models by many authors [1, 2, 14]. In general, delay-differential equations exhibit much
more complicated dynamics than ordinary differential equations since a time-delay could
cause a stable equilibrium to become unstable and cause the populations to fluctuate.

In this paper, we have investigated the dynamical behaviour of a ratio-dependent
predator-prey systems with infection in prey population [9], and the effect of refuge in
the infected prey. Here we have studied the boundedness, permanence, local and global
stabilities of the non-equilibrium points of this system. We have also considered a discrete
time-delay in the interaction term of the predator equation.

The rest of the paper is structured as follows: In Section 2, we present a brief sketch
of the construction of the model, which may indicate the epidemiological relevance of it.
In Section 3, boundedness of the basic deterministic model (3) is discussed. Section 4
deals with the boundary equilibrium points and their stability. In Section 5, we find out
the condition for which system (3) is permanent. In Section 6, we find the necessary and
sufficient condition for the existence of the interior equilibrium point E∗(s∗, i∗, y∗) and
study its stability. Computer simulations of some solutions of the system (3) are presented
in Section 7. The effect of discrete time-delay on the system (3) is studied in Section 8.
In Section 9, we calculate the length of delay for which the system preserves stability.
Section 10 contains the general discussions of the paper.

2 The basic mathematical model

Xiao and Chen [9] have considered a predator-prey model with disease in the prey:

dS

dT
= r1S

(
1− S + I

K

)
− βSI, (1a)
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dI

dT
= βSI − cI − bIY

aY + I
, (1b)

dY

dT
= −dY +

pbIY

aY + I
(1c)

with initial data S(0) ≥ 0, I(0) ≥ 0, Y (0) ≥ 0.
They make the following assumptions in formulating the mathematical model of a

predator-prey system with disease in the prey population:

1. In the absence of disease, the prey population grows logistically with carrying
capacity K ∈ <+ and intrinsic birth rate r1 ∈ <+.

2. In the presence of virus, the prey population is divided into two groups, namely
susceptible prey denoted by S(T ) and infected prey denoted by I(T ). Therefore at
time T , the total population is N(T ) = S(T ) + I(T ).

3. The disease is not genetically inherited. The infected populations do not recover or
become immune. We assume that the disease transmission follows the simple law
of mass action βS(T )I(T ) with β as the transmission rate.

4. The infected prey I(T ) is removed by death (say, its death rate is positive con-
stant c) or by predation before having the possibility of reproducing. However,
the infected prey population I(T ) still contribute with S(T ) towards the carrying
capacity of the system.

5. The infected prey is more vulnerable than susceptible prey. We assume that the
predator population consumes only infected prey with ratio-dependent Michaelis–
Menten functional response function

η(I, Y ) =
IY

aY + I
(a > 0).

It is assumed that the predator has the death rate constant d (d > 0), and the
predation coefficient b (b > 0). The coefficient in conversing prey into predator
is p (0 < p ≤ 1).

This paper extends the above model by incorporating a refuge protecting mI of the
infected prey, where m ∈ [0, 1) is constant. This leaves (1 − m)I of the infected prey
available to the predator, and modifying system (1) accordingly yields the system:

dS

dT
= r1S(1− S + I

K
)− βSI, (2a)

dI

dT
= βSI − cI − b(1−m)IY

aY + (1−m)I
, (2b)

dY

dT
= −dY +

pb(1−m)IY

aY + (1−m)I
(2c)

with initial data S(0) ≥ 0, I(0) ≥ 0, Y (0) ≥ 0.
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The model we have just specified has nine parameters, which makes the analysis
difficult. To reduce the number of parameters and to determine which combinations of
parameters control the behaviour of the system, we nondimensionalize system (2). We
choose

s =
S

K
, i =

I

K
, y =

aY

K
, and t = βKT.

Then system (2) takes the form (after some simplification)

ds

dt
= rs{1− (s+ i)} − si, (3a)

di

dt
= si− b2i−

l(1−m)iy

y + (1−m)i
, (3b)

dy

dt
= −b1y +

pl(1−m)iy

y + (1−m)i
(3c)

with initial data s(0) ≥ 0, i(0) ≥ 0, y(0) ≥ 0, where r = r1
βK , b2 = c

βK , l = b
aβK ,

b1 = d
aβK .

3 Boundedness

In theoretical eco-epidemiology, boundedness of a system implies that the system is
biologically well behaved. The following theorem ensures the boundedness of system (3):

Theorem 1. All solutions of system (3) that start in <3
+ are uniformly bounded.

Proof. Let, (s(t), i(t), y(t)) be any solution of the system (3). Since, ds
dt ≤ rs(1 − s).

We have,

lim sup
t→∞

s(t) ≤ r.

Let, W = s
1+r + i+ y

p . Then,

dW

dt
=

r

1 + r
s(1− s)− b2i−

b1
p
y ≤ r

1 + r
s− b2i−

b1
p
y

≤ 2r

1 + r
− δW, where δ = min{1, b2, b1}.

Therefore

dW

dt
+ δW ≤ 2r

1 + r
.

Applying a theorem on differential inequalities [15], we obtain

0 ≤W (s, i, y) ≤ 2r

(1 + r)δ
+
W (s(0), i(0), y(0))

eδt
,
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and for t→∞

0 ≤W ≤ 2r

(1 + r)δ
.

Thus, all the solutions of (3) enter into the region

B =

{
(s, i, y): 0 ≤W ≤ 2r

(1 + r)δ
+ ε for any ε > 0

}
.

Hence the theorem.

4 Boundary equilibria and their stability

In this section, we study the stability of the boundary equilibrium points of the system (3).
In the following lemma we have mentioned the boundary equilibria of the system (3) and
the condition of their existence.

Lemma 1. System (3) always has two boundary equilibrium points, namely the trivial
equilibrium E0(0, 0, 0) and the axial equilibrium E1(1, 0, 0). The predator-free equilib-
rium point E2(ŝ, î, 0) exists if and only if b2 < 1. When this condition is satisfied, ŝ, î are
given by

ŝ = b2, î =
r(1− b2)

1 + r
.

In terms of original parameters of the system, the condition b2 < 1 becomes
c < βK. This implies that if the ratio of the death rate of the infected prey to the carrying
capacity (c/K) is less than the transmissiom rate (β), then the predator becomes extinct
and conversely.

The system (3) cannot be linearized at E0(0, 0, 0) and E1(1, 0, 0) and therefore
local stability of E0 and E1 cannot be studied [16]. Therefore, we are only interested in
the stability in the predator-free equilibrium point E2(ŝ, î, 0).

The variational matrix V (E2) at the equilibrium point E2 is given by

V (E2) =

−rŝ −(1 + r)ŝ 0

î 0 −l
0 0 −b1 + pl

 .
The characteristic equation of V (E2) is(
λ2 +Bλ+ C

)(
λ− pl + b1

)
= 0,

where B = rŝ > 0 and C = (1 + r)ŝ̂i > 0.
The eigen values are

λ1,2 =
−B ±

√
B2 − 4C

2
and λ3 = pl − b1.

Since, B > 0 and C > 0, therefore, the signs of the real parts of λ1, λ2 are negative. This
implies that E2 is locally asymptotically stable in the si-plane. Now E2 is asymptotically
stable in the y-direction if and only if pl − b1 < 0, i.e., b1 > pl.

477



A.K. Pal, G.P. Samanta

5 Permanence of the system

To prove the permanence of the system (3), we shall use the “Average Liapunov” func-
tions [17].

Theorem 2. System (3) is permanent if b1 > pl + α1r
2

α3(1+r)
.

Proof. We consider the average Liapunov function of the form V (s, i, y) = sα1iα2yα3

where each αi(i− 1, 2, 3) is assumed positive.
In the interior of <3

+, we have

V̇

V
= ψ(s, i, y) = α1

[
r
{

1− (s+ i)
}
− i
]

+ α2

[
s− b2 −

l(1−m)y

y + (1−m)i

]
+ α3

[
− b1 +

pl(1−m)i

y + (1−m)i

]
.

To prove the permanence of the system we shall have to show that ψ(s, i, y) > 0
for all boundary equilibria of the system. The following condition should be satisfied for
the equilibrium point E2,

α1r{1− (ŝ+ î)} − α1î+ α3(−b1 + pl) > 0

=⇒ α1

[
r

{
1−

(
b2 +

r(1− b2)

1 + r

)}
− r(1− b2)

1 + r

]
+ α3(pl − b1) > 0.

After some simple calculation, we can get

α1r
2

1 + r
< α3(b1 − pl).

Hence the theorem.

6 The interior equilibrium point: its existence and stability

First we consider the existence and uniqueness of the interior equilibrium point
E∗(s∗, i∗, y∗).

Lemma 2. The interior equilibrium point E∗(s∗, i∗, y∗) of the system (3) exists if and
only if the following two conditions are satisfied:

(i) pl > b1;

(ii) p(1− b2)− (1−m)(pl − b1) > 0.

Furthermore, s∗, i∗, y∗ are given by

s∗ =
pb2 + (1−m)(pl − b1)

p
, i∗ =

r

p(1 + r)

{
p(1− b2)− (1−m)(pl − b1)

}
,

y∗ =
r(1−m)(pl − b1)

b1p(1 + r)

{
p(1− b2)− (1−m)(pl − b2)

}
.
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In terms of original parameters of the system, the conditions (i) and (ii) respectively
become pb > d and ap(βK−c) > (1−m)(pb−d), which are the necessary and sufficient
conditions for the co-existence of the susceptible prey, infected prey and the predator.

From Lemma 2, we can observe that the interior equilibrium point E∗(s∗, i∗, y∗)
exists if and only if both the conditions (i) and (ii) are satisfied. If any one of the condition
is violated then E∗(s∗, i∗, y∗) does not exists. Now from condition (ii) of the Lemma 2,
we have,

p(1− b2)− (1−m)(pl − b1) > 0 =⇒ m > 1− p(1− b2)

(pl − b1)
.

Hence, to exists the interior equilibrium point E∗(s∗, i∗, y∗) the refuge constant m
should lies in the interval

1− p(1− b2)

(pl − b1)
< m < 1. (4)

Remark 1. It is to be noted that the existence of E∗ destabilizes E2.

6.1 Local stability analysis of E∗

The variational matrix of (3) at E∗ is given by

V (E∗) =

v11 v12 0
v21 v22 v23
0 v32 v33

 ,
where

v11 = −rs∗, v12 = −(1 + r)s∗,

v21 = i∗, v22 =
l(1−m)2i∗y∗

{y∗ + (1−m)i∗}2
, v23 = − l(1−m)2i∗

2

{y∗ + (1−m)i∗}2
,

v32 =
pl(1−m)y∗

2

{y∗ + (1−m)i∗}2
, v33 = − pl(1−m)i∗y∗

{y∗ + (1−m)i∗}2
.

The characteristic equation is

λ3 +A1λ
2 +A2λ+A3 = 0,

where

A1 = −tr
[
V (E∗)

]
= −v11 − v22 − v33 = rs∗ − l(1−m)(1−m− p)i∗y∗

{y∗ + (1−m)i∗}2

=
D

lp2
,

D = rlp2b2 + pb1(pl − b1) + (1−m)(pl − b1)(rpl − b1),
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A2 = v11v22 + v11v33 + v22v33 − v23v32 − v12v21

= i∗s∗
{

(1 + r)− rl(1−m)(1−m− p)y∗

{y∗ + (1−m)i∗}2

}
,

A3 = −det
[
V (E∗)

]
= v11v23v32 + v12v21v33 − v11v22v33

=
pl(1−m)(1 + r)s∗i∗

2

y∗

{y∗ + (1−m)i∗}2
.

Now

∆ = A1A2 −A3,

= −(v11)2v22 − (v11)2v33 + v11v12v21 − (v22)2v33 − v11(v22)2 − 2v11v22v33

+ v22v12v21 + v23v32v22 − v22(v33)2 − v11(v33)2 + v23v32v33

= s∗i∗
[
r(1 + r)s∗ − r2l(1−m)(1−m− p)s∗y∗

{y∗ + (1−m)i∗}2
− l(1 + r)(1−m)2i∗y∗

{y∗ + (1−m)i∗}2

+
rl2(1−m)2(1−m− p)2i∗y∗2

{y∗ + (1−m)i∗}4

]
.

Theorem 3. E∗ is locally asymptotically stable if and only if D > 0 and ∆ > 0.

Proof. We notice that
(i) D > 0 ⇔ A1 > 0,

(ii) A3 > 0 for all values of the parameters,
and

(iii) ∆ = A1A2 −A3 > 0.

Hence, the theorem follows from Routh Hurwitz criterion.

6.2 Global stability analysis of E∗

Now, we shall study the global dynamics of the system (3) around the positive equilibrium
E∗(s∗, i∗, y∗). We use Liapunov function to prove the global result.

Theorem 4. Existence of positive interior equilibrium of the system of equations (3)
implies its global stability around the positive interior equilibrium if the following two
conditions:

(i) i∗ < i < i∗y
y∗ or i∗y

y∗ < i < i∗ for all i;

(ii) y > max{y∗, iy
∗

i∗ } or y < min{y∗, iy
∗

i∗ } holds true.

Proof. Let us consider the following positive definite function about E∗:

J(s, i, y) =

(
s− s∗ − s∗ ln

s

s∗

)
+

(
i− i∗ − i∗ ln

i

i∗

)
+

(
y − y∗ − y∗ ln

y

y∗

)
.
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Differentiating J with respect to t along the solution of (3), we have (after some
calculation)

dJ

dt
= (s− s∗)

[
r
{

1− (s+ i)
}
− i
]

+
(
i− i∗

)[
s− b2 −

l(1−m)y

y + (1−m)i

]
+ (y − y∗)

[
− b1 +

pl(1−m)i

y + (1−m)i

]
= −r(s− s∗)2 − r(s− s∗)(i− i∗)

− l(1−m)2(i− i∗)(yi∗ − iy∗)
{y + (1−m)i}{y∗ + (1−m)i∗}

− pl(1−m)(y − y∗)(yi∗ − iy∗)
{y + (1−m)i}{y∗ + (1−m)i∗}

.

Therefore, dJ
dt is negative definite if the above conditions of the theorem are satisfied and

consequently, J is a Liapunov function with respect to all solutions in the interior of the
positive orthant, proving the theorem.

7 Numerical simulation

Analytical studies can never be completed without numerical verification of the results. In
this section we present computer simulation of some solutions of the system (3). Beside
verification of our analytical findings, these numerical solutions are very important from
practical point of view.

We choose the parameters of system (3) as r = 10.0, b2 = 0.48, l = 0.95, b1 =
0.02, p = 0.1 and (s(0), i(0), y(0)) = (0.5, 0.2, 0.2). Also we choose m = 0.42 which
satify the inequality (4). Then the conditions of Theorem 3 is satisfied asD = 0.0862>0,
∆ = 0.7523 > 0 and consequently E∗(s∗, i∗, y∗) = (0.9150, 0.0773, 0.1681) is locally
asymptotically stable. The phase diagram is shown in Fig. 1.
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Fig. 1. Phase portrait of the system (3) showing that E∗ is locally asymptotically stable.
Here s(0) = 0.5, i(0) = 0.2, y(0) = 0.2 and r = 10.0, b2 = 0.48, l = 0.95,

b1 = 0.02, p = 0.1, m = 0.42.
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The sy-plane and iy-plane projections of the solution are shown in Fig. 2(a) and
2(b) respectively. Clearly the solution is a stable spiral converging to E∗. Fig. 2(c) shows
that s, i and y populations approach their steady-state values s∗, i∗, and y∗ respectively,
in finite time.
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(c)

Fig. 2. Here s(0) = 0.5, i(0) = 0.2, y(0) = 0.2 and r = 10.0, b2 = 0.48, l = 0.95,
b1 = 0.02, p = 0.1, m = 0.42. (a) sy-plane projection of the solution; (b) iy-plane
projection of the solution; (c) Top curve depicts s(t), middle one depicts y(t) and the
bottom one depicts i(t). Clearly the s, i, y populations approach to their equilibrium

values in finite time.

8 Model with discrete delay

It is already mentioned that time-delay is an important factor in biological system. It is
also reasonable to assume that the effect of the infected prey on the predator population
will not be instantaneous, but mediated by some discrete time lag τ required for incuba-
tion. As a starting point of this section, we consider the following generalization of the
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model (3) involving discrete time-delay:

ds

dt
= rs

{
1− (s+ i)

}
− si, s(0) ≥ 0, (5a)

di

dt
= si− b2i−

l(1−m)iy

y + (1−m)i
, i(0) ≥ 0, (5b)

dy

dt
=

pl(1−m)i(t− τ)y(t− τ)

y(t− τ) + (1−m)i(t− τ)
− b1y, y(0) ≥ 0. (5c)

All parameters are the same as in system (3) except that the positive constant τ represents
the reaction time or gestation period of the predator y.

The system (5) has the same equilibria as in the previous case. The main purpose of
this section is to study the stability behaviour of E∗(s∗, i∗, y∗) in the presence of discrete
delay (τ 6= 0). We linearize system (5) by using the following transformation:

s = s∗ + s1, i = i∗ + i1, y = y∗ + y1.

Then linear system is given by

dU

dt
= AU(t) +BU(t− τ), (6)

where

U(t) = [s1 i1 y1]T , A = (aij)3×3, B = (bij)3×3

and

a11 = −rs∗, a12 = −(1 + r)s∗,

a21 = i∗, a22 =
l(1−m)2i∗y∗

{y∗ + (1−m)i∗}2
, a23 = − l(1−m)2i∗

2

{y∗ + (1−m)i∗}2
,

a33 = −b1 and all other aij = 0;

b32 =
pl(1−m)y∗

2

{y∗ + (1−m)i∗}2
,

b33 = − pl(1−m)2i∗
2

{y∗ + (1−m)i∗}2
and other bij = 0.

We look for the solution of the model (6) of the form U(t) = ρeλt, 0 6= ρ ∈ <. This leads
to the following characteristic equation:

λ3 + a1λ
2 + a2λ+ a3 +

(
a4λ

2 + a5λ+ a6
)
e−λτ = 0, (7)

where

a1 = −a11 − a22 − a33, a2 = a11a22 + a11a33 + a22a33 − a12a21,
a3 = a33(a12a21 − a11a22), a4 = −b33,
a5 = (a11 + a22)b33 − a23b32, a6 = a12a21b33 − a11(a22b33 − a23b32).
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It is well known that the signs of the real parts of the solutions of (7) characterize the
stability behaviour of E∗. Therefore, substituting λ = ξ + iη in (7) we obtain real and
imaginary parts, respectively as

ξ3 − 3ξη2 + a1ξ
2 − a1η2 + a2ξ + a3

+ e−ξτ
[{
a4
(
ξ2 − η2

)
+ a5ξ + a6

}
cos ητ + (2a4ξ + a5)η sin ητ

]
= 0 (8)

and

3ξ2η − η3 + 2a1ξη + a2η

+ e−ξτ
[
(2a4ξ + a5)η cos ητ −

{
a4
(
ξ2 − η2

)
+ a5ξ + a6

}
sin ητ

]
= 0. (9)

A necessary condition for a stability change of E∗ is that the characteristic equation (7)
should have purely imaginary solutions. Hence to obtain the stability criterion, we set
ξ = 0 in (8) and (9). Then we have,

a1η
2 − a3 =

(
a6 − a4η2

)
cos ητ + a5η sin ητ, (10)

−η3 + a2η =
(
a6 − a4η2

)
sin ητ − a5η cos ητ. (11)

Eliminating τ by squaring and adding (10) and (11), we get the equation for determining
η as

η6 + d1η
4 + d2η

2 + d3 = 0, (12)

where

d1 = a21 − 2a2 − a24, d2 = a22 − 2a1a3 + 2a4a6 − a25, d3 = a23 − a26.

Substituting η2 = σ in (12), we get a cubic equation given by

h(σ) = σ3 + d1σ
2 + d2σ + d3 = 0. (13)

Since d3 = a23 − a26 > 0 for the parameter values given in previous case, we assume that
d3 ≥ 0 and have the following claim.

Claim 1. If

d3 ≥ 0 and d2 > 0, (14)

then equation (13) has no positive real roots.

In fact, notice that

dh(σ)

dσ
= 3σ2 + 2d1σ + d2.

Set,

3σ2 + 2d1σ + d2. (15)
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Then the roots of equation (15) can be expressed as

σ1,2 =
−d1 ±

√
d21 − 3d2

3
. (16)

If d2 > 0, then d21 − 3d2 < d21; that is
√
d21 − 3d2 < d1. Hence neither σ1 nor σ2 is

positive. Thus equation (8.12) does not have positive roots. Since h(0) = d3 ≥ 0, it
follows that the equation (8.9) has no positive roots.

Claim 1 thus implies that there is no η such that iη is an eigen value of the charac-
teristic equation (7). Therefore, the real parts of all the eigen values of (7) are negative
for all delay τ ≥ 0. Summarizing the above analysis, we have the following proposition:

Proposition 1. Suppose that

(i) a1 + a4 > 0, a3 + a6 > 0, (a1 + a4)(a2 + a5)− (a3 + a6) > 0;

(ii) d3 ≥ 0 and d2 > 0.

Then the equilibrium point E∗ of the delay model (5) is absolutely stable; that is E∗ is
asymptotically stable for all τ ≥ 0.

Remark. Proposition 1 indicates that if the parameters satisfy the conditions (i) and (ii),
then the steady state of the delay model (5) is asymptotically stable for all delay values;
that is, independent of the delay. However, we should point out that if the conditions
(condition (ii)) in Proposition 1 are not satisfied, then the stability of the steady state
depends on the delay value and the delay could even induce oscillation.

For example, if (a) d3 < 0, then from equation (13) we have h(0) < 0 and
limσ→∞ h(σ) = ∞. Thus equation (13) has at least one positive root, say σ0. Con-
sequently, equation (12) has at least one positive root, denoted by η0.

If (b) d2 < 0, then
√
d21 − 3d2 > d1. By (16), σ1 = 1

3 (−d1 +
√
d21 − 3d2) > 0. It

follows that equation (13), hence equation (12), has a positive root η0. This implies that
the characteristic equation (7) has a pair of purely imaginary roots ±iη0.

Let λ(τ) = ξ(τ) + iη(τ) be the eigenvalues of equation (7) such that ξ(τ0) = 0,
η(τ0) = η0. From (10) and (11) we have,

τj =
1

η0
arccos

(
(a5 − a1a4)η4 + (a3a4 + a1a6 − a2a5)η2 − a3a6

(a4η2 − a6)2 + a25η
2

)
+

2jπ

η0
,

j = 0, 1, 2, . . . .

Also, we can verify that the following transversality conditions:

d

dτ
Reτ=τ0 =

d

dτ
ξ(τ)|τ=τ0 > 0

that is

η
[{(

a2 − 3η2
)(
a6 − a4η2

)
+ 2a1a5η

2
}

sin ητ + η
{

2a1
(
a6 − a4η2

)
− a5

(
a2 − 3η2)

}
cos ητ + 2a4η

(
a6 − a4η2

)
− a5η

]
> 0 (17)

holds.
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By continuity, the real part of λ(τ) becomes positive when τ > τ0 and the steady
state becomes unstable. Moreover, a Hopf bifurcation occurs when τ passes through the
critical value τ0. The above analysis can be summerized into the following proposition.

Proposition 2. Suppose that

(i) a1 + a4 > 0, a3 + a6 > 0, (a1 + a3)(a2 + a5)− (a3 + a6) > 0.

If either

(ii) d3 < 0 or (iii) d3 ≥ 0 and d2 < 0

is satisfied, then the steady state E∗ of the delay model (5) is asymptotically stable when
0 ≤ τ < τ0 and unstable when τ > τ0, where

τ0 =
1

η0
arccos

(
(a5 − a1a4)η4 + (a3a4 + a1a6 − a2a5)η2 − a3a6

(a4η2 − a6)2 + a25η
2

)
when τ = τ0, a Hopf bifurcation occurs; that is, a family of periodic solutions bifurcates
from E∗ as τ passes through the critical value τ0.

Proposition 2 indicates that the delay model could exhibit Hopf bifurcation at cer-
tain value of the delay if the parameters satisfy the conditions in (ii) and (iii). However,
for the parameter values given in Section 7, neither (ii) nor (iii) holds.

9 Estimation of the length of delay to preserve stability

We consider the system (3) and the space of all real valued continuous functions defined
on [−τ,∞] satisfying the initial conditions on [−τ, 0]. We linearize the system (3) about
its interior equilibrium E∗(s∗, i∗, y∗) and get

ds1
dt

= −rs∗s1 − (1 + r)s∗i1, (18a)

di1
dt

= i∗s1 +
l(1−m)2i∗y∗

{y∗ + (1−m)i∗}2
i1 −

l(1−m)2i∗
2

{y∗ + (1−m)i∗}2
y1, (18b)

dy1
dt

=
pl(1−m)y∗

2

{y∗ + (1−m)i∗}2
i1(t−τ)− b1y1 −

pl(1−m)i∗y∗

{y∗+(1−m)i∗}2
y1(t−τ), (18c)

where

s(t) = s∗ + s1(t), i(t) = i∗ + i1(t) and y(t) = y∗ + y1(t).
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Taking Laplace transform of the system given by (18), we get,

(α+ rs∗)s1(α) = −(r + 1)s∗i1(α) + s1(0),(
α− l(1−m)2i∗y∗

{y∗ + (1−m)i∗}2

)
i1(α) = i∗s1(α)− l(1−m)2i∗

2

{y∗+(1−m)i∗}2
y1(α) + i1(0),

(α+ b1)y1(α) =
pl(1−m)y∗

2

{y∗+(1−m)i∗}2
e−ατ i1(α) +

pl(1−m)y∗
2

{y∗+(1−m)i∗}2
e−ατK1(α)

− pl(1−m)i∗y∗

{y∗+(1−m)i∗}2
e−ατy1(α)− pl(1−m)i∗y∗

{y∗+(1−m)i∗}2
e−ατK2(α) + y1(0),

where

K1(α) =

0∫
−τ

e−αti1(t) dt and K2(α) =

0∫
−τ

e−αty1(t) dt,

and s1(α), i1(α) and y1(α) are the laplace transform of s1(t), i1(t) and y1(t) respectively.
From [7] and using Nyquist criterion (see Appendix), it can be shown that the

conditions for local asymptotic stability of E∗(s∗, i∗, y∗) are given by [19]

ImH(iη0) > 0, (19)
ReH(iη0) = 0, (20)

where H(α) = α3 + a1α
2 + a2α+ a3 + e−ατ (a4α

2 + a5α+ a6) and η0 is the smallest
positive root of equation (20).

We have already shown that E∗(s∗, i∗, y∗) is stable in absence of delay. Hence, by
continuity, all eigenvalues will continue to have negative real parts for sufficiently small
τ > 0 provided one can gurantee that no eigenvalues with positive real parts bifurcates
from infinity as τ increases from zero. This can be proved by using Butler’s lemma [19].

In this case, (19) and (20) gives

a2η0 − η30 > (a6 − a4η20) sin(η0τ)− a5η0 cos(η0τ), (21)

a3 − a1η20 = −a5η0 sin(η0τ)−
(
a6 − a4η20

)
cos(η0τ). (22)

(21) and (22), if satisfied simultaneously, are sufficient conditions to gurantee stability.
We shall utilize them to get an estimate on the length of delay. Our aim is to find an upper
bound η+ on η0, independent of τ so that (9.5) holds for all values of η, 0 ≤ η ≤ η+ and
hence in particular at η = η0.

We rewrite (22) as

a1η
2
0 = a3 + a5η0 sin(η0τ) +

(
a6 − a4η20

)
cos(η0τ). (23)

Maximizing a3 + a5η0 sin(η0τ) + (a6 − a4η
2
0) cos(η0τ) subject to | sin(η0τ)| ≤ 1,

| cos(η0τ)| ≤ 1.
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We obtain

a1η
2
0 ≤ a3 + |a5|η0 + |a6|+ |a4|η20 . (24)

Hence, if

η+ =
1

2(a1 − |a4|)

[
|a5|+

√
a25 + 4

(
a1 − |a4|

)
(a3 + |a6|)

]
(25)

then cleary from (24) we have η0 ≤ η+
From the inequality (21) we get

η20 < a2 + a5 cos(η0τ)− (a6 − a4η20)

η0
sin(η0τ). (26)

As E∗(s∗, i∗, y∗) is locally asymptotically stable for τ = 0, therfore, for sufficiently
small τ > 0, (26) will continue to hold. Substituting (23) in (26) and rearranging we get,(

a6 − a1a5 − a4η20
)[

cos(η0τ)− 1
]

+

{
a5η0 +

a1(a6 − a4η20)

η0

}
sin(η0τ)

< a1a2 + a1a5 + a4η
2
0 − a6 − a3. (27)

Using the bounds(
a6 − a1a5 − a4η20

)[
1− cos(η0τ)

]
=
(
a6 − a4η20 − a1a5

)
2 sin2

(
η0τ

2

)
≤ 1

2

∣∣a6 − a4η2+ − a1a5∣∣η2+τ2
and [

a5η0 +
a1(a6 − a4η20)

η0

]
sin(η0τ) ≤

[
(a5 − a1a4)η2+ + a1|a6|

]
τ.

So we obtain from (27),

k1τ
2 + k2τ < k3,

where

k1 =
1

2

∣∣a6 − a4η2+ − a1a5∣∣η2+, (28)

k2 =
(
(a5 − a1a4)η2+ + a1|a6|

)
, (29)

k3 = a1a2 + a1a5 + a4η
2
0 − a6 − a3. (30)

Hence, if

τ+ =
1

2k2

[
− k2 +

√
k22 + 4k1k2

]
(31)

then stability is preserved for 0 ≤ τ < τ+.
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Appendix

Nyquist criterion. If L be the length of a curve encircling the right half-plane, the curve
x1(L) will encircle the origin a number of times equal to the difference between the
number of poles and the number of zeroes of x1(L) in the right half-plane.

10 Discussion

In this paper, we have studied an eco-epidemiological model incorporating an prey refuge
with disease in the prey population which is governed by modified logistic equation
[18]. Incorporating a refuge into system (1) provides a more realistic model. A refuge
can be important for the biological control of a pest, however, increasing the amount
of refuge can increase prey densities and lead to population outbreaks. It is shown
(in Theorem 1) that the non-dimensionalized system (3) is uniformly bounded, which
in turn, implies that the system is biologically well behaved. The condition for which
all three species will persist are worked out. In deterministic situation, theoretical epi-
demiologists are usually guided by an implicit assumption that most epidemic models
we observe in nature correspond to stable equilibria of the models. From this viewpoint,
we have presented the most important equilibrium point E∗(s∗, i∗, y∗). The stability
criteria given in Lemma 2 and Theorem 3 are the conditions for stable coexistence of the
susceptible prey population, infected prey population and predator population.

Now we observe that the size of the susceptible prey (s) in the absence and presence
of infected prey (i) are ŝ = b2 and s∗ = pb2+(1−m)(pl−b1)

p , respectively, so that s∗ − ŝ =

(1 − m)(pl − b1 > 0 whenever pl > b1. This indicates that if the force of infection is
high then predator attack causes enhancement of the susceptible preys.

It is mentioned by several researchers that the effect of time-delay must be taken
into account to have a epidemiologically useful mahtematical model [1, 2, 14]. From this
viewpoint, we have formulated (5) where the delay may be looked upon as the gestation
period or reaction time of the predator. Then a rigorous analysis leads us to Proposition 1
and Proposition 2 which mentions that the stability criteria in absence of delay is no longer
enough to gurantee the stability in the presence of delay, rather there is a value τ0 of the
delay τ such that the system is stable for τ < τ0 and become unstable for τ > τ0.

All our important mathematical findings without time-delay are numerically veri-
fied and graphical representation of a variety of solutions of system (3) are depicted using
MATLAB. Though the parameter values in Section 7 gave us a stable state independent
of the delay, the delay model (5) itself could exhibit rich dynamics. Under another set of
assumptions on the parameters, the stability of the steady state depends on the delay and
even delay-induced oscillations could occur via instability.

Finally, our model can be generalized in obvious ways to food chains and competi-
tive systems.
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