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Abstract. In this paper, the Soret and Dufour effects on the steady, laminar mixed convection heat
and mass transfer along a semi-infinite vertical plate embedded in a non-Darcy porous medium
saturated with micropolar fluid are studied. The governing partial differential equations are
transformed into ordinary differential equations. The local similarity solutions of the transformed
dimensionless equations for the flow, microrotation, heat and mass transfer characteristics are
evaluated using Keller-box method. Numerical results are presented in the form of velocity,
microrotation, temperature and concentration profiles within the boundary layer for different
parameters entering into the analysis. Also the effects of the pertinent parameters on the local skin
friction coefficient and rates of heat and mass transfer in terms of the local Nusselt and Sherwood
numbers are also discussed.

Keywords: mixed convection, non-Darcy porous medium, micropolar fluid, Soret and Dufour
effects.

1 Introduction

A situation where both the forced and free convection effects are of comparable order
is called mixed or combined convection. The analysis of mixed convection boundary
layer flow along a vertical plate embedded in a fluid saturated porous media has received
considerable theoretical and practical interest. The phenomenon of mixed convection
occurs in many technical and industrial problems such as electronic devices cooled by
fans, nuclear reactors cooled during an emergency shutdown, a heat exchanger placed
in a low-velocity environment, solar collectors and so on. Several authors have studied
the problem of mixed convection about different surface geometries. The analysis of
convective transport in a porous medium with the inclusion of non-Darcian effects has
also been a matter of study in recent years. The inertia effect is expected to be important
at a higher flow rate and it can be accounted for through the addition of a velocity squared
term in the momentum equation, which is known as the Forchheimer’s extension of the
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Darcy’s law. A detailed review of convective heat transfer in Darcy and non-Darcy porous
medium can be found in the book by Nield and Bejan [1].

When heat and mass transfer occur simultaneously in a moving fluid, the relations
between the fluxes and the driving potentials are of a more intricate nature. It has been
observed that an energy flux can be generated not only by temperature gradients but
also by concentration gradients. The energy flux caused by a concentration gradient
is termed the diffusion-thermo (Dufour) effect. On the other hand, mass fluxes can
also be created by temperature gradients and this embodies the thermal-diffusion (Soret)
effect. In most of the studies related to heat and mass transfer process, Soret and Dufour
effects are neglected on the basis that they are of a smaller order of magnitude than the
effects described by Fourier’s and Fick’s laws. But these effects are considered as second
order phenomena and may become significant in areas such as hydrology, petrology,
geosciences, etc. The Soret effect, for instance, has been utilized for isotope separation
and in mixture between gases with very light molecular weight and of medium molecular
weight. The Dufour effect was recently found to be of order of considerable magnitude
so that it cannot be neglected (Eckert and Drake [2]). Dursunkaya and Worek [3] studied
diffusion-thermo and thermal-diffusion effects in transient and steady natural convection
from a vertical surface, whereas Kafoussias and Williams [4] presented the same effects
on mixed convective and mass transfer steady laminar boundary layer flow over a vertical
flat plate with temperature dependent viscosity. Postelnicu [5] studied numerically the
influence of a magnetic field on heat and mass transfer by natural convection from vertical
surfaces in porous media considering Soret and Dufour effects. Both free and forced
convection boundary layer flows with Soret and Dufour effects have been addressed by
Abreu et al. [6]. Alam and Rahman [7] have investigated the Dufour and Soret effects on
mixed convection flow past a vertical porous flat plate with variable suction. Recently,
the effect of Soret and Dufour parameters on free convection heat and mass transfers
from a vertical surface in a doubly stratified Darcian porous medium has been reported
by Lakshmi Narayana and Murthy [8].

The study of non-Newtonian fluid flows has gained much attention from the re-
searchers because of its applications in biology, physiology, technology and industry. In
addition, the effects of heat and mass transfer in non-Newtonian fluid also have great
importance in engineering applications like the thermal design of industrial equipment
dealing with molten plastics, polymeric liquids, foodstuffs, or slurries. Several investi-
gators have extended many of the available convection heat and mass transfer problems
to include the non Newtonian effects. Many of the non-Newtonian fluid models describe
the nonlinear relationship between stress and the rate of strain. But the micropolar fluid
model introduced by Eringen [9] exhibits some microscopic effects arising from the local
structure and micro motion of the fluid elements. Further, the micropolar fluid can sustain
couple stresses and include classical Newtonian fluid as a special case. The model of
micropolar fluid represents fluids consisting of rigid, randomly oriented (or spherical)
particles suspended in a viscous medium where the deformation of the particles is ignored.
Micropolar fluids have been shown to accurately simulate the flow characteristics of
polymeric additives, geomorphological sediments, colloidal suspensions, haematological
suspensions, liquid crystals, lubricants etc. The mathematical theory of equations of
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micropolar fluids and applications of these fluids in the theory of lubrication and porous
media are presented by Lukaszewicz [10]. The heat and mass transfer in micropolar fluids
is also important in the context of chemical engineering, aerospace engineering and also
industrial manufacturing processes. The problem of mixed convection heat and mass
transfer in the boundary layer flow along a vertical surface submerged in a micropolar
fluid has been studied by a number of investigators. Ahmadi [11] studied the boundary
layer flow of a micropolar fluid over a semi-infinite plate. Laminar mixed convection
boundary layer flow of a micropolar fluid from an isothermal vertical flat plate has been
considered by Jena and Mathur [12]. Asymptotic boundary layer solutions are presented
to study the combined convection from a vertical semi-infinite plate to a micropolar fluid
by Gorla et al. [13]. Tian-Yih Wang [14] examined the effect of wall conduction on
laminar mixed convection heat transfer of micropolar fluids along a vertical flat plate.
Although the Soret and Dufour effects of the medium on the heat and mass transfer in a
micropolar fluid are important, very little work has been reported in the literature. Beg et
al. [15] discussed the steady double-diffusive free convective heat and mass transfer of a
chemically-reacting micropolar fluid flowing through a Darcian porous regime adjacent
to a vertical stretching plane. Beg et al. [16] analyzed the two dimensional coupled heat
and mass transfer of an incompressible micropolar fluid past a moving vertical surface
embedded in a Darcy–Forchheimer porous medium in the presence of Soret and Dufour
effects. A mathematical model for the steady thermal convection heat and mass transfer in
a micropolar fluid saturated Darcian porous medium in the presence of Dufour and Soret
effects and viscous heating is presented by Rawat and Bhargava [17].

The present paper deals with Soret and Dufour effects on the mixed convection
from a semi-infinite vertical plate embedded in a stable, non-Darcy micropolar fluid with
uniform wall temperature and concentration. The Keller-box method given in Cebeci
and Bradshaw [18] is employed to solve the nonlinear system in the problem. The
effects of micropolar parameter, non-Darcy parameter, X-location, Prandtl number, Soret
and Dufour numbers are examined and are displayed through graphs. The results are
compared with relevant results in the existing literature and are found to be in good
agreement.

2 Mathematical formulation

Consider a steady, laminar, incompressible, two-dimensional mixed convective heat and
mass transfer along a semi-infinite vertical plate embedded in a free stream of micropolar
fluid saturated non-Darcy porous medium. The free stream velocity which is parallel
to the vertical plate is u∞, temperature is T∞ and concentration is C∞. Assume that
the fluid and the porous medium have constant physical properties. The fluid flow is
moderate and the permeability of the medium is low so that the Forchheimer flow model
is applicable and the boundary effect is neglected. The fluid and the porous medium are
in local thermodynamical equilibrium. Choose the coordinate system such that x-axis is
along the vertical plate and y-axis normal to the plate. The physical model and coordinate
system are shown in Fig. 1. The plate is maintained at uniform wall temperature and
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concentration Tw and Cw respectively. These values are assumed to be greater than
the ambient temperature T∞ and concentration C∞ at any arbitrary reference point in
the medium (inside the boundary layer). In addition, the Soret and Dufour effects are
considered.

Fig. 1. Physical model and coordinate system.

Assuming that the Boussinesq and boundary-layer approximations hold and using
the Darcy–Forchheimer model and Dupuit–Forchheimer relationship [1], the governing
equations for the micropolar fluid are given by
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where u and v are Darcy velocity components in x and y directions respectively, ω is
the component of microrotation whose direction of rotation lies in the xy-plane, T is
the temperature, C is the concentration, g∗ is the acceleration due to gravity, ρ is the
density, b is the Forchheimer constant, Kp is the permeability, ε is the porosity, µ is the
dynamic coefficient of viscosity, βT is the coefficient of thermal expansion, βC is the
coefficient of solutal expansions, κ is the vortex viscosity, j is the micro-inertia density,
γ is the spin-gradient viscosity, α is the effective thermal diffusivity, D is the effective
solutal diffusivity of the medium, Cp is the specific heat capacity, Cs is the concentration
susceptibility, Tm is the mean fluid temperature andKT is the thermal diffusion ratio. The
last two terms on the right hand side of Eq. (2) stand for the first-order (Darcy) resistance
and second-order porous inertia resistance, respectively. The microrotation represents the
rotation in an average sense of the rigid particles centered in a small volume element about
the centroid of the element.

The boundary conditions are

u = 0, v = 0, ω = 0, T = Tw, C = Cw at y = 0, (6a)
u = u∞, ω = 0, T = T∞, C = C∞ as y →∞, (6b)

where the subscripts w and ∞ indicate the conditions at the wall and at the outer edge
of the boundary layer respectively and k is the thermal conductivity of the fluid. The
boundary condition ω = 0 in Eq. (6a), represents the case of concentrated particle flows
in which the micro-elements close to the wall are not able to rotate.

In view of the continuity Eq. (1), we introduce the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (7)

Substituting Eq. (7) in Eqs. (2)–(5) and then using the following local similarity transfor-
mations
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where Rex = u∞x/ν is the local Reynolds number, we get the following nonlinear
system of differential equations.
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where the primes indicate partial differentiation with respect to η alone,
ν is the kinematic viscosity,
L is the characteristic length,
X = x/L is the dimensionless coordinate along the plate,
Gr = g∗βT (Tw − T∞)L3/ν2 is the thermal Grashof number,
Gc = g∗βC(Cw − C∞)L3/ν2 is the solutal Grashof number,
Re = u∞L/ν is the Reynolds number,
gs = Gr/Re2 is the temperature buoyancy parameter,
gc = Gc/Re2 is the mass buoyancy parameter,
Pr = ν/α is the Prandtl number,
Sc = ν/D is the Schmidt number,
Da = Kp/L

2 is the Darcy number,
Fs = b/L is the Forchheimer number,
J = νL/(ju∞) is the micro-inertia density parameter,
λ = γ/(jρν) is the spin-gradient viscosity parameter,
N = κ/(µ+ κ) (0 ≤ N < 1) is the Coupling number [19],
Df = DKT (Cw − C∞)/(CsCpν(Tw − T∞)) is the Dufour number,
Sr = DKT (Tw − T∞)/(Tmν(Cw − C∞)) is the Soret number.

A close look at Eqs. (9) and (10) reveals that, in mixed convection due to micropolar
fluid saturated non-Darcy porous medium, the velocity and angular momentum profiles
are not similar because the x-coordinate cannot be eliminated from these equations. Al-
though local non-similarity solutions have been found for some boundary layer flows
dealing with viscous fluids, the technique is hard to extend to micropolar fluids. Thus,
for ease of analysis, it was decided to proceed with finding local similarity solutions for
the governing equation, Eqs. (9) and (12). Now, one can still study the effects of various
parameters on different profiles at any given X-location.

Boundary conditions (6) in terms of f , g, θ and φ become

η = 0: f(0) = 0, f ′(0) = 0, g(0) = 0, θ(0) = 1, φ(0) = 1, (13a)
η →∞: f ′(∞) = 1, g(∞) = 0, θ(∞) = 0, φ(∞) = 0. (13b)

If Da → ∞, X = 1, ε = 1, Df = 0 and Sr = 0, the problem reduces to mixed
convection heat and mass transfer in a micropolar fluid without Soret and Dufour effects.
In the limit, as N → 0, the governing Eqs. (1)–(5) reduce to the corresponding equations
for a mixed convection heat and mass transfer in a viscous fluids. Hence, the case of
combined free-forced convective and mass transfer flow past a semi-infinite vertical plate
of Kafoussias [20] can be obtained by taking N = 0, Da → ∞, ε = 1, X = 1, Df = 0
and Sr = 0.
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The wall shear stress, heat and mass transfers from the plate respectively are given
by
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3 Results and discussions

The system of non-linear ordinary differential equations (9)–(12) together with the bound-
ary conditions (13) are locally similar and solved numerically using Keller-box implicit
method discussed in [18]. The method has the following four main steps:

1. Reduce the system of Eqs. (9) to (12) to a first order system;
2. Write the difference equations using central differences;
3. Linearize the resulting algebraic equations by Newton’s method and write them in

matrix-vector form;
4. Use the block-tridiagonal-elimination technique to solve the linear system.

This method has been proven to be adequate and give accurate results for boundary
layer equations. A uniform grid was adopted, which is concentrated towards the wall. The
calculations are repeated until some convergent criterion is satisfied and the calculations
are stopped when δf ′′0 ≤ 10−8, δg′0 ≤ 10−8, δθ′0 ≤ 10−8 and δφ′0 ≤ 10−8. In the present
study, the boundary conditions for η at ∞ are replaced by a sufficiently large value of
η where the velocity approaches one and microrotation, temperature and concentration
approach zero. In order to see the effects of step size (∆η) we ran the code for our model
with three different step sizes as ∆η = 0.001, ∆η = 0.01 and ∆η = 0.05 and in each
case we found very good agreement between them on different profiles. After some trials
we imposed a maximal value of η at∞ of 10 and a grid size of η as 0.01.

The dimensionless parameter gs = Gr/Re2 is used to represent the free, forced
and combined (free-forced) convection regimes. The case gs � 1 corresponds to pure
forced convection, gs = 1 corresponds to combined free-forced convection and gs � 1
corresponds to pure free convection. As the mass Grashof number Gc is a measure of the
buoyancy forces (due not to temperature but to concentration differences) to the viscous
forces, the dimensionless parameter gc has the same meaning as the parameter gs. The
dimensionless parameter gs takes the values 0.1, 1 and 10 which correspond to three
different flow regimes as already mentioned above. The corresponding parameter gc takes
the values 0.05, 0.10 and 0.20. The values of Soret number Sr and Dufour number Df
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are to be chosen in such a way that their product is constant according to their definition,
provided that the mean temperature Tm is constant.

The coupling number N characterizes the coupling of linear and rotational motion
arising from the micromotion of the fluid molecules. Hence N signifies the coupling
between the Newtonian and rotational viscosities. With a large value of N the effect of
microstructure becomes significant, whereas with a small value of N the individuality of
the substructure is much less pronounced. As κ tends to zero, N also tends to zero, the
micro-polarity is lost and the fluid behaves as non-polar fluid.

In the absence of coupling number N , Soret number Sr and Dufour number Df

with Da → ∞, X = 1, ε = 1, J = 0, λ = 0, Pr = 0.73 and Sc = 0.24 for different
values of buoyancy parameters gs and gc, the results have been compared with the case
Kafoussias [20] and found that they are in good agreement, as shown in Table 1.

Table 1. Comparison of results for a vertical plate in viscous fluids without Soret and
Dufour effects case [20].

f ′′(0) −θ′(0)
gs gc Kafoussias [20] Present Kafoussias [20] Present
0.1 0.05 0.5538 0.5538 0.3296 0.3296
0.1 0.10 0.6317 0.6317 0.3404 0.3404
0.1 0.20 0.7776 0.7776 0.3589 0.3589
1.0 0.05 1.4452 1.4452 0.4129 0.4129
1.0 0.10 1.5007 1.5007 0.4179 0.4179
1.0 0.20 1.6096 1.6096 0.4274 0.4274

10.0 0.05 6.8389 6.8389 0.6449 0.6449
10.0 0.10 6.8715 6.8714 0.6461 0.6462
10.0 0.20 6.9366 6.9363 0.6487 0.6488

In the present study we have adopted the following default parameter values for
the numerical computations: Pr = 0.71, Sc = 0.22, Re = 200, ε = 0.3, Da = 1.0,
gs = 1.0, gc = 0.1. The values J = 0.1 and λ = 1.0 are chosen so as to satisfy
the thermodynamic restrictions on the material parameters given by Eringen [9]. These
values are used throughout the computations, unless otherwise indicated.

In Figs. 2(a)–2(d), the effects of the coupling number N on the dimensionless
velocity, microrotation, temperature and concentration are presented for fixed values of
Forchheimer, Soret and Dufour numbers and X-location. As N increases, it can be ob-
served from Fig. 2(a) that the maximum velocity decreases in amplitude and the location
of the maximum velocity moves farther away from the wall. SinceN → 0 corresponds to
viscous fluid, the velocity in case of micropolar fluid is less compared to that of viscous
fluid case. From Fig. 2(b), we observe that the microrotation is completely negative within
the boundary layer. It is clear from Fig. 2(c) that the temperature increases with the
increase of coupling number N . It can be seen from Fig. 2(d) that the concentration
of the fluid increases with the increase of coupling number N . The temperature and
concentration in case of micropolar fluids is more than that of the Newtonian fluid case.
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(d) Concentration profile

Fig. 2. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for
various values of N .

The dimensionless velocity component for different values of Forchheimer number
Fs with N = 0.3, X = 0.5, Sr = 2.0 and Df = 0.03 is depicted in Fig. 3(a). It shows
the effects of Forchheimer (inertial porous) number on the velocity. In the absence of
Forchheimer number (i.e., when Fs = 0), the present investigation reduces to a mixed
convection heat and mass transfer in a micropolar fluid saturated porous medium with
Soret and Dufour effects. It is observed from Fig. 3(a) that velocity of the fluid decreases
with increase in the value of the non-Darcy parameter Fs . The increase in non-Darcy
parameter implies that the porous medium is offering more resistance to the fluid flow.
This results in reduction of the velocity profile. From Fig. 3(b), it can be observed
that the microrotation changes in sign from negative to positive within the boundary
layer. The dimensionless temperature for different values of Forchheimer number Fs
for N = 0.3, X = 0.5, Sr = 2.0 and Df = 0.03, is displayed in Fig. 3(c). An
increase in Forchheimer number Fs , increase temperature values, since as the fluid is
decelerated, energy is dissipated as heat and serves to increase temperatures. As such
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the temperature is minimized for the lowest value of Fs and maximized for the highest
value of Fs as shown in Fig. 3(c). Fig. 3(d) demonstrates the dimensionless concentration
for different values of Forchheimer number with N = 0.3, X = 0.5, Sr = 2.0 and
Df = 0.03. It is clear that the concentration of the fluid increases with the increase of
Forchheimer number. The increase in non-Darcy parameter reduces the intensity of the
flow and increases the thermal and concentration boundary layer thickness.
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Fig. 3. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for
various values of Fs .

Fig. 4(a) displays the non-dimensional velocity for different values of Soret number
Sr and Dufour numberDf with fixed values of coupling numberN , Forchheimer number
Fs and X-location. It is observed that the velocity of the fluid increases with the increase
of Dufour number (or decrease of Soret number). From Fig. 4(b), it can be noted that
the microrotation changes sign from negative to positive within the boundary layer. The
dimensionless temperature for different values of Soret number Sr and Dufour number
Df for N = 0.3, Fs = 0.5 and X = 0.5, is shown in Fig. 4(c). It is clear that
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the temperature of the fluid increases with the increase of Dufour number (or decrease
of Soret number). Fig. 4(d) demonstrates the dimensionless concentration for different
values of Soret number Sr and Dufour number Df for N = 0.3, Fs = 0.5 and X = 0.5.
It is seen that the concentration of the fluid decreases with increase of Dufour number (or
decrease of Soret number).
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Fig. 4. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for
various values of Sr and Df .

In Figs. 5(a)–5(d), the effects of the X-location on the dimensionless velocity,
microrotation, temperature and concentration are presented for fixed values of Coupling,
Forchheimer, Soret and Dufour numbers. From the Fig. 5(a), it is noticed that the ve-
locity increases with increase in the value of X in the momentum boundary layer. From
Fig. 5(b), we observe that the microrotation is decreasing near the plate and increasing
away from the plate within the boundary layer. It is clear from Fig. 5(c) that the thermal
boundary layer thickness decreases with the increase of X . It can be seen from Fig. 5(d)
that the solutal boundary layer thickness of the fluid decreases with the increase of X .
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Fig. 5. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for
various values of X-location.

The effects of the Pr on the dimensionless velocity, microrotation, temperature and
concentration are depicted for fixed values of N , Fs , Sr and Df and X-location in the
Figs. 6(a)–6(d). Pr encapsulates the ratio of momentum diffusivity to thermal diffusivity.
Larger Pr values imply a thinner thermal boundary layer thickness and more uniform
temperature distributions across the boundary layer. Hence the thermal boundary layer
will be much less in thickness than the hydrodynamic boundary layer. Pr = 1 implies
that the thermal and velocity boundary layers are approximately equal [21]. Smaller Pr
fluids have higher thermal conductivities so that heat can diffuse away from the vertical
plate faster than for higher Pr fluids (thicker boundary layers). As Pr enhances, it can
be seen from Fig. 6(a) that the velocity reduces since the fluid is increasingly viscous as
Pr rises. Hence the micropolar fluid is decelerated with a rise in Pr . From Fig. 6(b),
we observe that the microrotation is changes the sign from negative to positive within the
boundary layer. Fig. 6(c) indicates that a rise in Pr substantially reduces the temperature
in the micropolar fluid saturated porous regime. It can be found from Fig. 5(d) that the
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solutal boundary layer thickness of the fluid enhances with the enhance of Pr near the
plate and opposite behavior observed far away from the plate.
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Fig. 6. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for
various values of Pr.

The variations of f ′′(0), −θ′(0) and −φ′(0) which are proportional to the local
skin-friction coefficient, rate of heat and mass transfers are shown in Table 2 for different
values of the coupling number with fixed Forchheimer, Soret and Dufour numbers and
X-location. From this table, it is observed that the the value of f ′′(0) decreases with the
increasing values of coupling number. Also, these values(local viscous drag) are higher
for the Newtonian fluid (N = 0) than the micropolar fluid (N 6= 0). The heat and mass
transfer rates decrease with the increasing values of coupling number. From this data, it is
obvious that micropolar fluids presented lower heat and mass transfer values than those of
Newtonian fluids. Since the skin-friction coefficient as well as heat and mass transfers are
lower in the micropolar fluid comparing to the Newtonian fluid, which may be beneficial
in flow, temperature and concentration control of polymer processing. Also, it can be
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observed from this table that, for fixed values of N , X-location, Sr and Df , the velocity,
heat and mass transfer coefficients are reducing with the increasing values of Forchheimer
number Fs . Hence, the inertial effects in micropolar fluid saturated non-Darcy porous
medium reduce the skin friction and heat and mass transfer coefficients. It is observed
from this table that the skin friction and heat and mass transfer coefficients enhances as
X increases with fixed values of N , Fs , Sr and Df . The effect of increasing the value
of Pr is to decrease the skin friction coefficient and mass transfer rate but increase heat
transfer rate with fixed values of N , Fs , X , Sr and Df . Finally, the effects of Dufour and
Soret number on the local skin-friction coefficient and the rate of heat and mass transfer
are shown in this table. The behavior of these parameters is self-evident from the Table 2
and hence are not discussed for brevity.

Table 2. Effects of skin friction, heat and mass transfer coefficients for varying values
of coupling, Forchheimer, Prandtl, Soret and Dufour numbers, X-location.

N Fs Sr Df X Pr f ′′(0) −θ′(0) −φ′(0)

0.1 0.5 2.0 0.03 0.5 0.71 0.93617 0.37505 0.13923
0.2 0.5 2.0 0.03 0.5 0.71 0.87725 0.36979 0.13880
0.3 0.5 2.0 0.03 0.5 0.71 0.81437 0.36376 0.13825
0.4 0.5 2.0 0.03 0.5 0.71 0.74654 0.35675 0.13752
0.5 0.5 2.0 0.03 0.5 0.71 0.67227 0.34845 0.13654
0.6 0.5 2.0 0.03 0.5 0.71 0.58932 0.33835 0.13518
0.7 0.5 2.0 0.03 0.5 0.71 0.49397 0.32565 0.13323
0.8 0.5 2.0 0.03 0.5 0.71 0.37997 0.30874 0.13028
0.9 0.5 2.0 0.03 0.5 0.71 0.23663 0.28268 0.12499

0.3 0.1 2.0 0.03 0.5 0.71 0.68269 0.34864 0.13510
0.3 0.3 2.0 0.03 0.5 0.71 0.75113 0.35671 0.13676
0.3 0.7 2.0 0.03 0.5 0.71 0.87326 0.37000 0.13960
0.3 1.0 2.0 0.03 0.5 0.71 0.95477 0.37815 0.14141

0.3 0.5 2.0 0.03 0.1 0.71 0.57607 0.33802 0.13397
0.3 0.5 2.0 0.03 0.4 0.71 0.75915 0.33820 0.13730
0.3 0.5 2.0 0.03 0.7 0.71 0.91825 0.37366 0.13999
0.3 0.5 2.0 0.03 1.0 0.71 1.06085 0.38620 0.14225

0.3 0.5 2.0 0.03 0.5 0.1 0.85886 0.16720 0.20700
0.3 0.5 2.0 0.03 0.5 0.5 0.82232 0.31732 0.15527
0.3 0.5 2.0 0.03 0.5 1.0 0.80689 0.41451 0.11902
0.3 0.5 2.0 0.03 0.5 5.0 0.77567 0.75023 0.01801

0.3 0.5 2.0 0.03 0.5 0.71 0.81437 0.36376 0.13825
0.3 0.5 1.6 0.0375 0.5 0.71 0.81408 0.36339 0.15590
0.3 0.5 1.2 0.05 0.5 0.71 0.81383 0.36280 0.17355
0.3 0.5 1.0 0.06 0.5 0.71 0.81374 0.36234 0.18237
0.3 0.5 0.8 0.075 0.5 0.71 0.81370 0.36167 0.19120
0.3 0.5 0.5 0.12 0.5 0.71 0.81383 0.35971 0.20445
0.3 0.5 0.2 0.3 0.5 0.71 0.81518 0.35196 0.21779
0.3 0.5 0.1 0.6 0.5 0.71 0.81780 0.33906 0.22241
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4 Conclusions

In this paper, a boundary layer analysis for mixed convection heat and mass transfer in
a non-Darcy micropolar fluid over a vertical plate with uniform wall temperature and
concentration conditions in the presence of Soret and Dufour effects is considered. Using
the similarity variables, the governing equations are transformed into a set of non-similar
parabolic equations where numerical solution has been presented for different values of
parameters. The higher values of the coupling number N (i.e., the effect of microrotation
becomes significant) result in lower velocity distribution but higher wall temperature; wall
concentration distributions in the boundary layer compared to the Newtonian fluid case.
The numerical results indicate that the skin friction coefficient as well as rate of heat and
mass transfers in the micropolar fluid are lower compared to that of the Newtonian fluid.
The higher values of the Forchheimer number Fs indicate lower velocity, skin friction
coefficient as well as rate of heat and mass transfers but higher wall temperature and
wall concentration distributions. The Velocity, skin friction coefficient as well as rate of
heat and mass transfers increase where as the wall temperature and wall concentration
distributions decrease with increase in the value of X in the boundary layer. Increasing
the Prandtl number substantially decreases the velocity, skin friction coefficient, mass
transfer rate and the temperature profile where as increase the rate of heat transfer. Micro-
rotation is however increased at the wall with a rise in Prandtl number but reduced further
from the wall as we approach the free stream. The present analysis has also shown that
the flow field is appreciably influenced by the Dufour and Soret effects.
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