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Taylor–Couette flow of a fractional second grade fluid
in an annulus due to a time-dependent couple
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Abstract. Exact solutions for the velocity field and the associated shear stress, corresponding to
the flow of a fractional second grade fluid between two infinite coaxial cylinders, are determined by
means of Laplace and finite Hankel transforms. The motion is produced by the inner cylinder which
is rotating about its axis due to a time-dependent torque per unit length 2πR1ft

2. The solutions that
have been obtained satisfy all imposed initial and boundary conditions. For β → 1, respectively
β → 1 and α1 → 0, the corresponding solutions for ordinary second grade fluids and Newtonian
fluids, performing the same motion, are obtained as limiting cases.
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1 Introduction

The governing equation that describes the flow of a Newtonian fluid is the Navier–Stokes
equation. However, some materials such as clay coatings, drilling muds, suspensions,
certain oils and greases, polymer melts, elastomers, many emulsions have been treated as
non-Newtonian fluids and they cannot be described by the Navier–Stokes equation. For
this reason, many non-Newtonian models or constitutive equations have been proposed
and most of them are empirical or semi-empirical. One of the most popular models for
non-Newtonian fluids is the model that is called the second grade fluid or fluid of second
grade. It is reasonable to use the second grade fluid model to do numerical calculations.
This is particularly so due to the fact that the calculations will generally be simpler. The
constitutive equation of a second grade fluid is a linear relation between the stress and
the square of the first Rivlin–Ericksen tensor and the second Rivlin–Ericksen tensor [1].
This constitutive equation has three coefficients. There are some restrictions on these
coefficients due to the Clausius–Duhem inequality and also due to the assumption that
Helmoltz free energy is minimum in equilibrium. A comprehensive discussion on the
restrictions for these coefficients has been given by Dunn and Fosdick [2] and Dunn
and Rajagopal [3]. The restrictions on the two coefficients have not been confirmed by
experiments and the sign of the moduli is the subject of much controversy.
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During the last years, the fractional calculus has achieved a great success in the
description of the complex dynamics. In particular it has been found to be quite flexible
in describing the viscoelastic behavior [4, 5]. A very good fit of the experimental data
was achieved when the Maxwell model was used with its first-order derivatives replaced
by fractional-order derivatives [6]. Especially, the rheological constitutive equations with
fractional derivatives play an important role in the description of the behavior of polymer
solutions and melts. In other cases, it has been shown that the constitutive equations
employing fractional derivatives are linked to molecular theories [7]. The list of their
applications is quite long, it including fractal media, fractional wave diffusion, fractional
Hamiltonian dynamics as well as many other topics in physics [8]. In the last time, a lot
of papers regarding these fluids have been published but we remember here only a part of
those concerning generalized second grade fluids [9–19].

Here, the velocity field and the adequate shear stress, corresponding to the flow
of a second grade fluid with fractional model in an annular region between two infinite
coaxial cylinders, are determined by means of Laplace and the finite Hankel transforms.
The motion is produced by the inner cylinder which is moving about its axis due to a
time-dependent torque. The solutions that have been obtained satisfy all imposed initial
and boundary conditions. For β → 1, respectively β → 1 and α1 → 0, the corresponding
solutions for ordinary second grade and Newtonian fluids, performing the same motion,
are obtained as limiting cases

2 Governing equations

The flows to be here considered have the velocity field of the form [20–22]

v = v(r, t) = w(r, t) eθ, (1)

where eθ is the unit vector along the θ-direction of the cylindrical coordinate system r, θ
and z. For such flows the constraint of incompressibility is automatically satisfied. The
non-trivial shear stress τ(r, t) = Srθ(r, t) corresponding to such a motion of a second
grade fluid is given by [23]

τ(r, t) =

(
µ+ α1

∂

∂t

)[
∂w(r, t)

∂r
− w(r, t)

r

]
, (2)

where µ is the viscosity and α1 ia a material modulus. In the absence of a pressure gradi-
ent in the flow direction and neglecting body forces, the balance of the linear momentum
leads to the relevant equation [24, 25]

ρ
∂w(r, t)

∂t
=

(
∂

∂r
+

2

r

)
τ(r, t). (3)

Eliminating τ(r, t) between Eqs. (2) and (3), we get the governing equation

∂w(r, t)

∂t
=

(
ν + α

∂

∂t

)(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, t), (4)
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where ν = µ/ρ is the kinematic viscosity of the fluid, ρ is its constant density and
α = α1/ρ.

Generally, the governing equations for a fractional second grade fluid (FSGF) are
derived from those of the ordinary fluids by replacing the inner time derivatives of an
integer order with the so called Riemann–Liouville operator [26]

Dβ
t f(t) =

1

Γ(1− β)

d

dt

t∫
0

f(τ)

(t− τ)β
dτ, 0 ≤ β < 1,

where Γ(·) is the Gamma function.
Consequently, the governing equations corresponding to the motion (1) of a FSGF

are (cf. [21, Eqs. (2) and (4)] with λ = 0)

∂w(r, t)

∂t
=
(
ν + αDβ

t

)( ∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, t); (5)

τ(r, t) =
(
µ+ α1D

β
t

)( ∂

∂r
− 1

r

)
w(r, t), (6)

where the new material constant α1 (for simplicity, we are keeping the same notation)
goes to the initial α1 for β → 1.

In this paper, we are interested into the motion of a FSGF whose governing equa-
tions are given by Eqs. (5) and (6). The fractional partial differential equations (6), with
adequate initial and boundary conditions, can be solved in principle by several methods,
the integral transforms technique representing a systematic, efficient and powerful tool.
The Laplace transform will be used to eliminate the time variable and the finite Hankel
transform to remove the spatial variable. However, in order to avoid the lengthy calcu-
lations of residues and contour integrals, the discrete inverse Laplace transform will be
used.

3 Rotational flow between two infinite cylinders

Consider an incompressible FSGF at rest in the annular region between two infinitely co-
axial cylinders. At time t = 0+ let the inner cylinder of radius R1 be set in rotation about
its axis by a time dependent torque per unit length 2πR1ft

2, while the outer cylinder of
radius R2 is held stationary. Owing to the shear, the fluid between cylinders is gradually
moved, its velocity being of the form (1). The governing equations are given by Eqs. (5)
and (6) and the appropriate initial and boundary conditions are (see [20, Eqs. (5.2), (5.3)])

w(r, 0) = 0; r ∈
[
R1, R2

]
, (7)

τ(R1, t) =
(
µ+ α1D

β
t

)(∂w(r, t)

∂r
− w(r, t)

r

)∣∣∣∣
r=R1

= ft2;

(8)
w(R2, t) = 0; t ≥ 0,

where f is a constant.
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3.1 Calculation of the velocity field

Applying the Laplace transform to the equations (5) and (8) and using the initial condition
(7), we get

qw(r, q) =
(
ν + αqβ

)( ∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, q); r ∈ (R1, R2), (9)

τ(R1, q) =
(
µ+ α1q

β
)( ∂

∂r
− 1

r

)
w(r, q)|r=R1 =

2f

q3
; w(R2, q) = 0, (10)

where w(r, q) and τ(R1, q) are the Laplace transforms of the functions w(r, t) and
τ(R1, t), respectively. We denote by [21, Eq. (32)]

wH(rn, q) =

R2∫
R1

rw(r, q)B(r, rn) dr, (11)

the finite Hankel transform of the function w(r, q), where

B(r, rn) = J1(rrn)Y2(R1rn)− J2(R1rn)Y1(rrn), (12)

rn being the positive roots of the equation B(R2, r) = 0 and Jp(·), Yp(·) are the Bessel
functions of the first and second kind of order p.

The inverse Hankel transform of wH(rn, q) is given by [21, Eq. (35)]

w(r, q) =
π2

2

∞∑
n=1

r2nJ
2
1 (R2rn)B(r, rn)

J2
2 (R1rn)− J2

1 (R2rn)
wH(rn, q). (13)

By means of Eq. (10)2 and of the identity

J1(z)Y2(z)− J2(z)Y1(z) = − 2

πz
,

we can easily prove that

R2∫
R1

r

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, q)B(r, rn) dr

= −r2nwH(rn, q) +
2

πrn

(
∂

∂r
− 1

r

)
w(r, q)

∣∣∣
r=R1

. (14)

Multiplying Eq. (9) by rB(r, rn) and integrating the result with respect to r from
R1 to R2 and using Eqs. (10) and (14), we find that

wH(rn, q) =
4f

πrn

1

q3
1

ρq + α1qβr2n + µr2n
. (15)
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Writing wH(rn, q) under the equivalent forms

wH(rn, q) =
4f

µπr3n

[
1

q3
− 1 + αr2nq

β−1

q2{q + (ν + αqβ)r2n}

]
=

4f

µπr3n

[
1

q3
− q−β−2 + αr2nq

−3

(q1−β + αr2n) + νr2nq
−β

]
, (16)

and applying the Hankel transform to Eq. (16) and using the identities

1

(q1−β + αr2n) + νr2nq
−β =

∞∑
k=0

(−νr2n)kq−βk

(q1−β + αr2n)k+1
, (17)

π

∞∑
n=1

J2
1 (R2rn)B(r, rn)

rn[J2
2 (R1rn)− J2

1 (R2rn)]
=

1

2

(
R1

R2

)2(
r − R2

2

r

)
, (18)

we find that

w(r, q) =
f

µ

(
R1

R2

)2(
r − R2

2

r

)
1

q3
− 2πf

µ

∞∑
n=1

J2
1 (R2rn)B(r, rn)

rn[J2
2 (R1rn)−J2

1 (R2rn)]

×
∞∑
k=0

(−νr2n)k

(q1−β+αr2n)k+1

[
q−βk−β−2 + αr2nq

−βk−3]. (19)

Now applying the inverse Laplace transform to Eq. (19), we find for the velocity field the
suitable expression [18]

w(r, t) =
f

2µ

(
R1

R2

)2(
r − R2

2

r

)
t2 − 2πf

µ

∞∑
n=1

J2
1 (R2rn)B(r, rn)

rn[J2
2 (R1rn)− J2

1 (R2rn)]

×
∞∑
k=o

(
−νr2n

)k[
G1−β,−βk−β−2,k+1

(
−αr2n, t

)
+ αr2nG1−β,−βk−3,k+1

(
−αr2n, t

)]
, (20)

where the generalized function Ga,b,c(d, t) is defined by [27, Eqs. (97) and (101)]

Ga,b,c(d, t) = L−1
{

qb

(qa − d)c

}
=

∞∑
j=0

djΓ(c+ j)

Γ(c)Γ(j + 1)

t(c+j)a−b−1

Γ[(c+ j)a− b]
; (21)

Re(ac− b) > 0,

∣∣∣∣ dqa
∣∣∣∣ < 1.

3.2 Calculation of the shear stress

Applying the Laplace transform to Eq. (6), we find that

τ(r, q) =
(
µ+ α1q

β
)( ∂

∂r
− 1

r

)
w(r, q). (22)
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In order to get a suitable form for τ(r, t), we rewrite Eq. (15) under the equivalent form

wH(rn, q) =
4f

πr3n

1

q3
(
µ+ α1qβ

) − 4f

πr3n

1

q2(µ+ α1qβ)(q + αqβr2n + νr2n)
. (23)

Applying the inverse Hankel transform to Eq. (23) and using Eq. (13) and the
identity (18), we find that

w(r, q) = f

(
R1

R2

)2(
r−R

2
2

r

)
1

q3(µ+α1qβ)
− 2πf

∞∑
n=1

J2
1 (R2rn)B(r, rn)

rn[J2
2 (R1rn)−J2

1 (R2rn)]

× 1

q2(µ+α1qβ)(q+αqβr2n+νr2n)
. (24)

Introducing Eq. (24) into Eq. (22), it results that

τ(r, q) =

(
R1

r

)2

f
2

q3
+ 2πf

∞∑
n=1

J2
1 (R2rn)B1(r, rn)

J2
2 (R1rn)−J2

1 (R2rn)

1

q2(q+αqβr2n+νr2n)
, (25)

or equivalently (see also Eq. (17))

τ(r, q) =

(
R1

r

)2

f
2

q3
+ 2πf

∞∑
n=1

J2
1 (R2rn)B1(r, rn)

J2
2 (R1rn)−J2

1 (R2rn)

×
∞∑
k=0

(−νr2n)kq−βk−β−2

(q1−β+αr2n)k+1
, (26)

where B1(r, rn) = J2(rrn)Y2(R1rn)− J2(R1rn)Y2(rrn).
Now taking the inverse Laplace transform of both sides of Eq. (26), we get for the

shear stress τ(r, t) the expression

τ(r, t) =

(
R1

r

)2

ft2 + 2πf
∞∑
n=1

J2
1 (R2rn)B1(r, rn)

J2
2 (R1rn)−J2

1 (R2rn)

×
∞∑
k=0

(
−νr2n

)k
G1−β,−βk−β−2,k+1

(
−αr2n, t

)
. (27)

4 The special case β → 1 (second grade fluid)

Making β → 1 into Eqs. (20) and (27), we obtain the similar solutions

w
SG

(r, t) =
f

2µ

(
R1

R2

)2(
r−R

2
2

r

)
t2 − 2πf

µ

∞∑
n=1

J2
1 (R2rn)B(r, rn)

rn[J2
2 (R1rn)− J2

1 (R2rn)]

×
(
1 + αr2n

) ∞∑
k=0

(−νr2n)kG0,−k−3,k+1

(
−αr2n, t

)
, (28)
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and

τ
SG

(r, t) =

(
R1

r

)2

ft2 + 2πf

∞∑
n=1

J2
1 (R2rn)B1(r, rn)

J2
2 (R1rn)− J2

1 (R2rn)

×
∞∑
k=0

(
− νr2n

)k
G0,−k−3,k+1

(
− αr2n, t

)
, (29)

corresponding to a second grade fluid.
Now, in view of the identity

∞∑
k=0

(
−νr2n

)k
G0,−(k+3),k+1

(
−αr2n, t

)
=

1 + αr2n
(νr2n)2

[
exp

(
− νr2nt

1 + αr2n

)
+

νr2nt

1 + αr2n
− 1

]
,

Eqs. (28) and (29) can be written under the simplest forms

w
SG

(r, t) =
f

2µ

(
R1

R2

)2(
r − R2

2

r

)(
t2 − 2α1

µ
t

)
− 2πf

µν

∞∑
n=1

J2
1 (R2rn)B(r, rn)

r3n[J2
2 (R1rn)− J2

1 (R2rn)]

×
{
t− (1 + αr2n)2

νr2n

(
1− exp

(
−νr2nt

1 + αr2n

))}
, (30)

and

τ
SG

(r, t) =

(
R1

r

)2

ft2 +
2πf

ν

∞∑
n=1

J2
1 (R2rn)B1(r, rn)

r2n[J2
2

(
R1rn)− J2

1 (R2rn)]

×
{
t− 1 + αr2n

νr2n

(
1− exp

(
−νr2nt

1 + αr2n

))}
. (31)

5 Newtonian case

Making α1 and then α→ 0 into Eqs. (30) and (31), the velocity field

wN (r, t) =
f

2µ

(
R1

R2

)2(
r − R2

2

r

)
t2 − 2πf

µν

∞∑
n=1

J2
1 (R2rn)B(r, rn)

r3n[J2
2 (R1rn)− J2

1 (R2rn)]

×
{
t− 1

νr2n

(
1− e−νr

2
nt
)}
, (32)
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and the associated shear stress

τN (r, t) =

(
R1

r

)2

ft2 +
2πf

ν

∞∑
n=1

J2
1 (R2rn)B1(r, rn)

r2n[J2
2 (R1rn)− J2

1 (R2rn)]

×
{
t− 1

νr2n

(
1− e−νr

2
nt

)}
, (33)

corresponding to a Newtonian fluid are obtained.

6 Conclusions

The purpose of this note is to provide exact analytic solutions for the velocity field w(r, t)
and the shear stress τ(r, t) corresponding to the unsteady rotational flow of a fractional
second grade fluid between two infinite coaxial cylinders, the inner cylinder being set in
rotation about its axis by a time-dependent shear. The solutions that have been obtained,
presented under series form in terms of usual Bessel (J1(·) and J2(·)) and generalized
Ga,b,c(·, t) functions, satisfy all imposed initial and boundary conditions. They can be
easily specialized to give the similar solutions for ordinary second grade and Newtonian
fluids.

The large time solutions corresponding to second grade fluids (see Eqs. (30) and
(31))

w
LSG

(r, t) =
f

2µ

(
R1

R2

)2(
r − R2

2

r

)(
t2 − 2α1

µ
t

)
− 2πf

µν

∞∑
n=1

J2
1 (R2rn)B(r, rn)

r3n[J2
2 (R1rn)−J2

1 (R2rn)]

{
t− (1 + αr2n)2

νr2n

}
, (34)

τ
LSG

(r, t) =

(
R1

r

)2

ft2 +
2πf

ν

∞∑
n=1

J2
1 (R2rn)B1(r, rn)

r2n[J2
2 (R1rn)−J2

1 (R2rn)]

×
{
t− 1 + αr2n

νr2n

}
, (35)

are different of those corresponding to Newtonian fluids.
In order to reveal some relevant physical aspects of the obtained results, the dia-

grams of the velocity w(r, t) and the shear stress τ(r, t) given by Eqs. (20) and (27), have
been drawn against r for different values of the time t and of the material parameters.
Figs 1(a) and 1(b). show the influence of time on the fluid motion. From these figures it
is clearly seen that the velocity as well as the shear stress in absolute value are increasing
functions of t. In Figs. 2(a) and 2(b), it is shown the influence of the kinematic viscosity ν
on the fluid motion. It is clearly seen from these figures that the velocity and shear stress
(in absolute value) are increasing functions of ν. The influence of the material parameter
α on the fluid motion is shown by Figs 3. It shows that the velocity is an increasing
function, while the shear stress (in absolute value) is a decreasing function with respect
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to α. In Figs. 4(a) and 4(b) it is shown the influence of the fractional parameter β on
the fluid motion. It is clearly seen from these figures that both the velocity and the shear
stress (in absolute value) are increasing functions of β.

Finally, for comparison, the diagrams of w(r, t) and τ(r, t) corresponding to the
fractional second grade, ordinary second grade and Newtonian fluids are presented in
Figs. 5 for the same values of the common material constants and the time t. In all cases
the velocity of the fluid is a decreasing function with respect to r. From these figures, it
is clearly seen that, as expected, the Newtonian fluid is the swiftest while the fractional
second grade fluid is the slowest. One thing is of worth mentioning that units of the
material constants are IS units in all figures and the roots rn have been approximated by
(2n− 1)π/[2(R2 −R1)].

a. b.

r r
(a) (b)

Fig. 1. Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (20) and
(27) for R1 = 0.3, R2 = 0.5, f = −2, ν = 0.003, µ = 10, α = 0.003, β = 0.6 and

different values of t.

r r
(a) (b)

Fig. 2. Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (20) and
(27) for t = 12 s, R1 = 0.3, R2 = 0.5, f = −2, µ = 35, α = 0.03, β = 0.4 and

different values of ν.
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r r
(a) (b)

Fig. 3. Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (20) and
(27) for t = 17 s, R1 = 0.3, R2 = 0.5, f = −2, ν = 0.0015, µ = 30, β = 0.4 and

different values of α.

r r
(a) (b)

Fig. 4. Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (20) and
(27) for t = 14 s, R1 = 0.3, R2 = 0.5, f = −2, ν = 0, 0015, µ = 40, α = 0.07 and

different values of β.

r r
(a) (b)

Fig. 5. Profiles of the velocity w(r, t) and shear stress τ(r, t) corresponding to
the Newtonian, ordinary second grade, fractional second grade fluids, for t = 5 s,

R1 = 0.3, R2 = 0.5, f = −2, ν = 0.002, µ = 30, α = 0.04 and β = 0.5.
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