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Abstract. The present paper deals with a generalization of the alternating-direction implicit
(ADI) method for the two-dimensional nonlinear Poisson equation in a rectangular domain with
integral boundary condition in one coordinate direction. The analysis of results of computational
experiments is presented.
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1 Introduction

In this paper, we consider finite-difference approximations for the following nonlinear
elliptic equation

−∂
2u

∂x2
− ∂2u

∂y2
= f(x, y, u), (x, y) ∈ Ω, (1)

with Dirichlet boundary conditions in one coordinate direction

u(x, 0) = µl(x), u(x, Ly) = µr(x), x ∈ [0, Lx], (2)

and with nonlocal integral conditions in another coordinate direction:

u(0, y) = γ0

Lx∫
0

u(x, y) dx+ νl(y), y ∈ [0, Ly], (3)

u(Lx, y) = γ1

Lx∫
0

u(x, y) dx+ νr(y), y ∈ [0, Ly], (4)
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where Ω = (0, Lx)× (0, Ly) is a rectangular domain, γ0 and γ1 are given constants.
The function f(x, y, u) satisfies the condition

∂f

∂u
6 0. (5)

The investigation of methods for solving an equation, commonly referred to as mildly
nonlinear, began long ago. One of the first articles where the finite difference method has
been studied is [1].

The finite difference scheme of high-order accuracy for the stationary problem with a
Dirichlet boundary condition was investigated in [2].

The purpose of this paper is to find numerical solution to this equation with special-
type nonlocal conditions. Nonlocal boundary conditions (3)–(4), which can be called
nonlocal conditions according to one variable, are that of the typical nonlocal conditions.
Currently, they are intensively researched. Theoretical investigation of problems with
different types of nonlocal boundary conditions is an actual problem, and recently much
attention has been paid to them in the scientific literature.

Elliptic equation with integral conditions of another type that of (3)–(4) is the object
of study in the works [3–12]. Various statements of different problems with nonlocal
conditions and research methods can be found in [11, 13–27].

The remaining part of this paper is organized as follows. In Section 2, we formulate
a difference problem and write the alternating-direction implicit method. In Sections 3
and 4, we present the analysis of convergence and the results of numerical experiments.
Section 5 contains some brief conclusions and comments.

2 Statement of a difference problem. ADI method

In the domain Ω we consider the grids:

ωh
x := {x0 = 0, x1, . . . , xn = Lx}, hx = xi − xi−1 = Lx/n,

ωh
y := {y0 = 0, y1, . . . , ym = Ly}, hy = yj − yj−1 = Ly/m,

ωh
x := {x1, . . . , xn−1}, ωh

y := {y1, . . . , ym−1}.

In the closed domain Ω we consider the rectangular grids ωh := ωh
x × ωh

y , ωh :=

ωh
x × ωh

y and ∂ωh := ωh r ωh.
If ω is one of these grids, we define the space of grid functions F(ω).
We introduce second order central difference operators δ2x and δ2y:

δ2xui j :=
ui−1,j − 2ui,j + ui+1,j

h2x
, δ2yui j :=

ui,j−1 − 2ui,j + ui,j+1

h2y
.

The function f is approximated by grid function fij on the grid ωh, functions νl, νr by
νlj , νrj on the grid ωh

y and functions µl, µr by µl
i, µ

r
i on the grid ωh

x.
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Equations (1)–(4) are replaced with finite-difference equations:

−
(
δ2x + δ2y

)
uij = fij(uij), (xi, yj) ∈ ωh, (6)

u0j = γ0hx

(
u0j + unj

2
+

n−1∑
i=1

uij

)
+ νlj , (7)

unj = γ1hx

(
u0j + unj

2
+

n−1∑
i=1

uij

)
+ νrj , (8)

ui0 = µl
i, uim = µr

i , xi ∈ ωh
x. (9)

Now we write the Peaceman–Rachford alternating-direction implicit method [28] for the
system (6)–(9) as follows:

u
k+1/2
ij − ukij
τk+1

= δ2xu
k+1/2
ij + δ2yu

k
ij + fij

(
ukij
)
, i = 1, . . . , n− 1, (10)

uk+1
ij − uk+1/2

ij

τk+1
= δ2xu

k+1/2
ij + δ2yu

k+1
ij + fij

(
u
k+1/2
ij

)
, j = 1, . . . ,m− 1, (11)

where τk+1 are parameters.
For each fixed value i = 1, . . . , n − 1, we solve equation (11) with boundary condi-

tions
u
k+1/2
i0 = µl

i, u
k+1/2
im = µr

i . (12)

For each fixed value j = 1, . . . ,m − 1, we solve equation (10) with nonlocal boundary
conditions

uk+1
0j = γ0hx

(
uk+1
0j + uk+1

nj

2
+

n−1∑
i=1

uk+1
ij

)
+ νlj , (13)

uk+1
nj = γ1hx

(
uk+1
0j + uk+1

nj

2
+

n−1∑
i=1

uk+1
ij

)
+ νrj . (14)

3 Analysis of the convergence

We investigate the convergence of the ADI method. Let us write the system of differ-
ence equations (6)–(9) in the matrix form. We consider two one-dimensional difference
problems with nonlocal or homogeneous Dirichlet conditions

vi−1 − 2vi + vi+1

h2x
= pi, i = 1, . . . , n− 1, (15)

v0 = γ0hx

(
v0 + vn

2
+

n−1∑
i=1

vi

)
, (16)

vn = γ1hx

(
v0 + vn

2
+

n−1∑
i=1

vi

)
(17)
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and

wj−1 − 2wj + wj+1

h2x
= qj , j = 1, . . . ,m− 1, (18)

w0 = 0, wm = 0, (19)

where pi, i = 1, . . . , n− 1 and qj , j = 1, . . . ,m− 1 are given values.
Let us interpret Eqs. (16)–(17) for each fixed value j = 1, . . . ,m − 1 as a system

of two equations with the unknown variables v0, vn. We express these variables in other
unknown variables:

v0 = a

n−1∑
i=1

vi, vn = b

n−1∑
i=1

vi, (20)

a =
γ0hx
D

, b =
γ1hx
D

, D = 1− (γ0 + γ1)hx
2

. (21)

If hx is small enough hx < 2/(γ0 + γ1), the determinant D 6= 0 and v0, vn are expressed
by formulas (20)–(21) uniquely.

So we can rewrite (15)–(17) in the matrix form

Λxv = p, (22)

where Λx is the (n− 1) order matrix

Λx =
1

h2x


−2 + a 1 + a a . . . a a

1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 . . . −2 1
b b b . . . 1 + b −2 + b

 . (23)

Rewriting the system (18)–(19) in the form

Λyw = q, (24)

we define Λy as an (m− 1)-order tridiagonal matrix

Λy =
1

h2y


−2 1 0 . . . 0 0
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 . . . −2 1
0 0 0 . . . 1 −2

 . (25)

Now we can define matricesA1,A2 and I of order (n−1)(m−1) using the Kronecker
(tensor) product of matrices:

A1 = −In−1 ⊗ Λx, A2 = −Λy ⊗ Im−1, I = Im−1 ⊗ In−1,
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where Ik is the identity matrix of order k.
Now the iteration method (10)–(11) with boundary conditions (12)–(14) is equivalent

to the following iteration method:(
I + τk+1A1

)
uk+1/2 =

(
I − τk+1A2

)
uk + τk+1f(uk), (26)(

I + τk+1A2

)
uk+1 =

(
I − τk+1A1

)
uk+1/2 + τk+1f(uk+1/2). (27)

Let us define u∗ = {u∗ij} as the exact solution of system (6)–(9) and

zk = u∗ − uk. (28)

According to (26)–(27) the following system of equations is true for the error zk(
I + τk+1A1

)
zk+1/2 =

(
I − τk+1A2

)
zk − τk+1D1z

k, (29)(
I + τk+1A2

)
zk+1 =

(
I − τk+1A1

)
zk+1/2 − τk+1D2z

k+1/2, (30)

where Dl, l = 1, 2 are diagonal matrices with diagonal elements

dl =
{
dlij
}

= −∂f
(
ũlij
)
/∂u, l = 1, 2,

and ũl is an intermediate point.
Let us indicate the basic properties of matrices Λx, Λy and A1, A2:

1. Λy is a symmetric matrix. All the eigenvalues of Λy are positive and distinct [29].
The eigenvalues of the matrix Λy are given by (see, [29]):

λj =
4

h2y
sin2 πjhy

2
, j = 1, . . . ,m− 1. (31)

2. Λx is a nonsymmetric matrix (it becomes symmetric iff γ0 = γ1 = 0, namely, if there
are no nonlocal conditions). Its eigenvalues are given in [30].

• If γ0 + γ1 = 0, then there exists one single eigenvalue λ = 0 and all the other
remaining eigenvalues are positive.

• If γ0 +γ1 > 2 and hx < 2/(γ0 +γ1), then there exists one single eigenvalue λ < 0

λ = − 4

h2x
sinh2 βhx

2
,

where β is the unique positive root of the equation

tanh
β

2
− 2

hx(γ0 + γ1)
tanh

βhx
2

= 0, (32)

and all the other eigenvalues are positive.
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• If γ0 + γ1 < 2, then all eigenvalues are positive

λi =
4

h2x
sinh2 αihx

2
, i = 1, . . . , n− 1,

where some of αi doesn’t depend on γ0 and γ1, i.e.,

αi = 2iπ, i = 1, . . . ,

[
n− 1

2

]
, (33)

and the other αi are the roots of the equation

tan
α

2
− 2

hx(γ0 + γ1)
tan

αhx
2

= 0 (34)

in the interval (0, nπ).

3. With all γ0, γ1 values the matrices A1 and A2 are commutative [9]

A1A2 = A2A1 = −Λy ⊗ Λx. (35)

4. With all γ0, γ1 values the matrices Λx, Λy are of simple structure. Therefore the
matrices A1, A2, A1 +A2, A1A2, A2A1 have the same system of eigenvectors [9].

Let us now write the iteration method (29)–(30) as a matrix equation:

zk+1 = Szk, (36)

where

S = (I+ τk+1A2)−1
(
I− τk+1(A1 +D2)

)
(I+ τk+1A1)−1

(
I− τk+1(A2 +D1)

)
. (37)

Theorem 1. If γ0 + γ1 < 2 and τk+1 > 0 are small enough numbers, then the iterative
method (10)–(11) is convergent.

Proof. In order to prove the convergence of the iterative method (10)–(11), it suffices to
prove that ‖zk‖ → 0 as k →∞.

Firstly, we consider the case f(x, y, u) = −Cu, where C > 0 is constant. Then D1

and D2 are diagonal matrices with element C on the diagonal. So we see that all the four
factors in the expression of matrix S (37) have the same system of eigenvectors. Thus,

λ(S) =
(1− τk+1(λ(A1) + C))(1− τk+1(λ(A2) + C))

(1 + τk+1λ(A1))(1 + τk+1λ(A2))
. (38)

If γ0 + γ1 < 2, then λ(A1) > 0, λ(A2) > 0. Therefore∣∣λ(S)
∣∣ < 1 (39)
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with τk+1 > 0 sufficiently small, namely,

τk+1 <
2

C
. (40)

Now we consider f(x, y, u) 6= −Cu, but ∂f/∂u 6 0. Since the eigenvalues of any
matrix are continuous functions of elements of the matrices, the inequalities λ(A1) > 0,
λ(A2) > 0, |λ(S)| < 1 are true for D1 = D2 = 0, hence there exists such a number
τ0 > 0 that inequality (39) is true for all τk+1 ∈ (0, τs]. The theorem is proved.

In practice, it is important to know what value τ0 takes and how fast the iterative
method (10)–(11) converges.

These questions are still uninvestigated theoretically. In the next section, we partially
answer these questions using computer simulation methods.

Let us denote the smallest and the largest eigenvalues of the matrices A1, A2 by
δ1,∆1, δ2,∆2. From the expressions of the eigenvalues of A1, A2 we obtain

δ1 =
4

h2x
min
k

sin2 αkhx
2

, ∆1 =
4

h2x
max

k
sin

αkhx
2

,

δ2 =
4

h2y
sin2 πhy

2
, ∆2 =

4

h2y
cos2

πhy
2
.

4 Numerical experiment

We consider a model problem (1)–(4) [31] in a unit square domain [0, 1]× [0, 1].
The right-hand side (RHS) function f(x, y, u) is given by

f(x, y, u) =
π2

4
u(1− u) + g(x, y), (41)

where

g(x, y) = 2 sin

(
π

2
y

)
+
π2

4

(
1− x2

)2
sin2

(
π

2
y

)
. (42)

The exact solution to this test problem is given by

u(x, y) =
(
1− x2

)
sin

(
π

2
y

)
. (43)

The initial and boundary conditions were prescribed to satisfy the exact solution (43).
We consider uniform grids with different mesh sizes h = hx = hy and analyze the

convergence and accuracy of the computed solution from the present ADI scheme. We
compute the maximum norm of the error of the numerical solution with respect to the
exact solution, which is defined as

εh = max
j=1,··· ,m

max
i=1,··· ,n

∣∣u(xi, yj)− uij
∣∣.
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We define the number p as
p =

ε2h
εh

,

which theoretically must be approximately p ≈ 4.
The results of the numerical test are listed in Table 1. Note that inequality (5) in the

neighborhood of the point x = 0, y = 1 is not satisfied.

Table 1. The errors for different γ0, γ1 in the case of the RHS function (41).

γ0 γ1 h εh p number of iter.
0.0 0.0 0.25 1.08749 · 10−3 10

0.125 2.90549 · 10−4 3.7429 15
0.06250 7.35617 · 10−5 3.9497 19
0.03125 1.85111 · 10−5 3.9736 24

1.0 −1.0 0.25 1.23522 · 10−3 10
0.125 3.23759 · 10−4 3.8152 15
0.06250 8.25150 · 10−5 3.9236 19
0.03125 2.07282 · 10−5 3.9808 24

1.0 1.0 0.25 2.00268 · 10−3 12
0.125 4.95807 · 10−4 4.0392 17
0.06250 1.25950 · 10−4 3.9365 21
0.03125 3.80358 · 10−5 3.3114 26

10.0 −10.0 0.25 6.69128 · 10−3 10
0.125 1.72136 · 10−3 3.8872 15
0.06250 4.34652 · 10−4 3.9603 19
0.03125 4.35843 · 10−4 0.9973 24

In the second test problem, we choose f(x, y, u) as

f(x, y, u) = −Cu+ sin

(
π

2
y

)(
2 +

(
1− x2

)π2

4

)
+ C

(
1− x2

)
sin

(
π

2
y

)
. (44)

The exact solution to this test problem is given by (43).
Table 2 presents the performance of the algorithm for various values of constant C.

Note that for large values of |γ0|, |γ1| the error increases. The function (41) holds the
condition (5) only in the part of the domain.

Table 2. The errors for different γ0, γ1 and C in the case of the RHS function (44).

γ0 γ1 h εh p number of iter.
C = 1

0.0 0.0 0.25 1.03612 · 10−3 10
0.125 2.84430 · 10−4 3.6428 15
0.06250 7.15912 · 10−5 3.9730 19
0.03125 1.80151 · 10−5 3.9740 24
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γ0 γ1 h εh p number of iter.
1.0 1.0 0.25 1.85253 · 10−3 12

0.125 4.63401 · 10−4 3.9977 17
0.06250 1.17050 · 10−4 3.9590 21
0.03125 2.92500 · 10−5 4.0017 26

1.5 1.5 0.25 8.88091 · 10−3 16
0.125 1.89226 · 10−3 4.0392 21
0.06250 4.56618 · 10−4 3.9365 25
0.03125 1.13603 · 10−4 3.3114 29

10.0 −10.0 0.25 6.99341 · 10−3 10
0.125 1.86917 · 10−3 3.7415 15
0.06250 4.70228 · 10−4 3.9750 19
0.03125 1.17831 · 10−4 3.9907 24

C = 20

1.0 1.0 0.25 6.79973 · 10−4 12
0.125 1.85998 · 10−4 3.6558 17
0.06250 4.58929 · 10−5 4.0529 21
0.03125 0.03125 · 10−5 3.9516 26

C = 40

1.0 1.0 0.25 3.93329 · 10−2 12
0.125 4.35797 · 10−3 9.0255 17
0.06250 2.37505 · 10−2 0.18349 21
0.03125 7.47679 · 10−3 3.1766 26

In both cases the set of optimal iterative parameters of the ADI method was chosen
according to the monograph [29] where symmetric matrices of an iterative process are
used.

5 Conclusions and remarks

The ADI method can be used for a mildly nonlinear Poisson equation. Nonlocal integral
conditions with γ0+γ1 < 2 never cause more problems than the classical conditions both
in the number of iterations and precision of the solution. But these conditions affect the
region of convergence of the method. The convergence domain depends essentially on
the coefficients of nonlocality. The values of parameters γ0 and γ1 in nonlocal boundary
conditions are essential for the stability of the ADI method. The results of the numer-
ical experiment are in good agreement with the existing theoretical results for a two-
dimensional Poisson equation in a rectangle domain with an integral boundary condition
in one coordinate direction [10].
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