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Abstract. The first integral method is an efficient method for obtaining exact solutions of some
nonlinear partial differential equations. In this paper, the first integral method is used to
construct exact solutions of the perturbed nonlinear Schrödinger’s equation (NLSE) with Kerr law
nonlinearity. It is shown that the proposed method is effective and general.
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1 Introduction

The nonlinear equations of mathematical physics are major subjects in physical scien-
ce [1]. Recently many new approaches for finding the exact solutions to nonlinear wave
equations have been proposed, for example, tanh-sech method [2–4], extended tanh
method [5–7], sine-cosine method [8–10], homogeneous balance method [11, 12], Jacobi
elliptic function method [13–16], F -expansion method [17–19], exp-function method
[20, 21], trigonometric function series method [22], (G′/G)-expansion method [23, 24]
and so on. All methods mentioned above have limitation in their applications. The first
integral method was first proposed by Feng [25] in solving Burgers-KdV equation which
is based on the ring theory of commutative algebra. Recently, this useful method is widely
used by many such as in [26, 27] and by the reference therein.

In this paper, we will consider the perturbed NLSE with Kerr law nonlinearity [28]
with following form:

iut + uxx + α|u|2u+ i
[
γ1uxxx + γ2|u|2ux + γ3

(
|u|2
)
x
u
]
= 0, (1)
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where γ1 is third order dispersion, γ2 is the nonlinear dispersion, while γ3 is a also
a version of nonlinear dispersion [29, 30]. Eq. (1) describes the propagation of opti-
cal solitons in nonlinear optical fibers that exhibits a Kerr law nonlinearity. Eq. (1) has
important application in various fields, such as semiconductor materials, optical fiber
communications, plasma physics, fluid and solid mechanics. More details are presented
[29, 31]. In this paper, we would like to obtain the exact solution of Eq. (1) by using the
first integral method.

The rest of this paper is organized as follows. In Section 2, we give the description
of the first integral method in Section 3, we apply this method to Eq. (1). Concluding
remarks are given in Section 4.

2 The first integral method

Let us consider the nonlinear partial differential equation:

F (u, ux, ut, uxx, uxt, . . .) = 0. (2)

We use the transformations
u(x, t) = f(ξ), (3)

where ξ = x− ct. Based on this we obtain

∂

∂t
(.) = −c ∂

∂ξ
(.),

∂

∂x
(.) =

∂

∂ξ
(.),

∂2

∂x2
(.) =

∂2

∂ξ2
(.), . . . . (4)

We use (4) to change the nonlinear partial differential equation (2) to nonlinear ordinary
differential equation

G

(
f(ξ),

∂f(ξ)

∂ξ
,
∂2f(ξ)

∂ξ2
, . . .

)
= 0. (5)

Next, we introduce a new independent variable

X(ξ) = f(ξ), Y (ξ) =
∂f(ξ)

∂ξ
, (6)

which leads a system of nonlinear ordinary differential equations

∂X(ξ)

∂ξ
= Y (ξ),

∂Y (ξ)

∂ξ
= F1

(
X(ξ), Y (ξ)

)
.

(7)

By the qualitative theory of ordinary differential equations [23], if we can find the integrals
to Eq. (7) under the same conditions, then the general solutions to Eq. (7) can be solved
directly. However, in general, it is really difficult for us to realize this even for one first
integral, because for a given plane autonomous system, there is no systematic theory that
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can tell us how to find its first integrals, nor is there a logical way for telling us what
these first integrals are. We will apply the Division theorem to obtain one first integral to
Eq. (7) which reduces Eq. (7) to a first order integrable ordinary differential equation. An
exact solution to Eq. (2) is then obtained by solving this equation. Now, let us recall the
Division theorem:

Division theorem. Suppose that P (w, z) and Q(w, z) are polynomials in C[w, z]; and
P (w, z) is irreducible in C[w, z]. If Q(w, z) vanishes at all zero points of P (w, z), then
there exists a polynomial G(w, z) in C[w, z] such that

Q(w, z) = P (w, z)G(w, z).

3 The NLSE with Kerr law nonlinearity equation

In this section we consider the NLSE with Kerr law nonlinearity equation (1).
We seek its traveling wave solution of the form [28]:

u(x, t) = φ(ξ) exp
(
i(Kx−Ωt)

)
, ξ = x− ct. (8)

Substituting equation (8) into equation (1), we have

i
(
γ1φ
′′′ − 3γ1K

2φ′ + γ2φ
2φ′ + 2γ3φ

2φ′ − cφ′ + 2Kφ′
)

+
(
Ωφ+ φ′′ −K2φ+ αφ3 + 3γ1Kφ

′′ + γ1K
3φ− γ2Kφ3

)
= 0, (9)

where γi (i = 1, 2, 3), α are positive constants and prime meaning differentiation with
respect to ξ. Then we have [28]:

Aφ′′(ξ) +Bφ(ξ) + Cφ3(ξ) = 0. (10)

Where A = γ1, B = 2K − c− 3γ1K
2, C = 1

3γ2 +
2
3γ3.

Using (6) and (7), we get

Ẋ(ξ) = Y (ξ), (11)

Ẏ (ξ) = −B
A
X(ξ)− C

A
X3(ξ). (12)

According to the first integral method, we suppose the X(ξ) and Y (ξ) are nontrivial
solutions of (11) and (12), also

Q(X,Y ) =

m∑
i=0

ai(X)Y i = 0,

is an irreducible polynomial in the complex domain C[X,Y ] such that

Q(X(ξ), Y (ξ)) =

m∑
i=0

ai
(
X(ξ)

)
Y i(ξ) = 0, (13)
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where ai(X) (i = 0, 1, . . . ,m), are polynomials of X and am(X) 6= 0. Eq. (13) is called
the first integral to (11), (12). Due to the Division theorem, there exists a polynomial
g(X) + h(X)Y , in the complex domain C[X,Y ] such that

dQ

dξ
=

dQ

dX

dX

dξ
+

dQ

dY

dY

dξ
=
(
g(X) + h(X)Y

) m∑
i=0

ai(X)Y i. (14)

In this example, we take two different cases, assuming that m = 1 and m = 2 in (13).
Case A. Suppose that m = 1, by comparing with the coefficients of Y i (i = 2, 1, 0) on
both sides of (14), we have

ȧ1(X) = h(X)a1(X), (15)

ȧ0(X) = g(X)a1(X) + h(X)a0(X), (16)

a1(X)

[
−B
A
X − C

A
X3

]
= g(X)a0(X). (17)

Since ai(X) (i = 0, 1) are polynomials, then from (15) we deduce that a1(X) is constant
and h(X) = 0. For simplicity, take a1(X) = 1. Balancing the degrees of g(X) and
a0(X), we conclude that deg(g(X)) = 1 only. Suppose that g(X) = A1X + B0, then
we find a0(X).

a0(X) = A0 +B0X +
1

2
A1X

2, (18)

where A0 is arbitrary integration constant.
Substituting a0(X) and g(X) into (17) and setting all the coefficients of powers X to

be zero, then we obtain a system of nonlinear algebraic equations and by solving it, we
obtain

B0 = 0, A1 =
1

3γ1

√
−6γ1(γ2 + 2γ3),

(19)
c = 2K − 3γ1K

2 +
A0

3

√
−6γ1(γ2 + 2γ3),

B0 = 0, A1 = − 1

3γ1

√
−6γ1(γ2 + 2γ3),

(20)
c = 2K − 3γ1K

2 − A0

3

√
−6γ1(γ2 + 2γ3),

where A0 is arbitrary constant.
Using the conditions (19) in (13), we obtain

Y (ξ) = − 1

6γ1

√
−6γ1(γ2 + 2γ3)X

2(ξ)−A0. (21)

Combining (21) with (11), we obtain the exact solution to equation (10) and then the exact
solution to Eq. (1) can be written as
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u(x, t) = −

{√
6A0γ1√

−6γ1(γ2 + 2γ3)
tan

[√
A0

√
−6γ1(γ2 + 2γ3)

6γ1

×
(
x−

(
2K − 3γ1K

2 +
A0

3

√
−6γ1(γ2 + 2γ3)

)
t+ ξ0

)]}
ei(Kx−Ωt). (22)

Similarly, in the case of (20), from (13), we obtain

Y (ξ) =
1

6γ1

√
−6γ1(γ2 + 2γ3)X

2(ξ)−A0, (23)

and then the exact solution of the Eq. (1) can be written as

u(x, t) = −

{√
6A0γ1√

−6γ1(γ2 + 2γ3)
tanh

[√
A0

√
−6γ1(γ2 + 2γ3)

6γ1

×
(
x−

(
2K − 3γ1K

2 − A0

3

√
−6γ1(γ2 + 2γ3)

)
t+ ξ0

)]}
ei(Kx−Ωt), (24)

where ξ0 is arbitrary constant.
Case B. Suppose that m = 2, by equating the coefficients of Y i (i = 3, 2, 1, 0) on both
sides of (14), we have

ȧ2(X) = h(X)a2(X), (25)
ȧ1(X) = g(X)a2(X) + h(X)a1(X), (26)

ȧ0(X) = 2a2(X)

[
B

A
X +

C

A
X3

]
+ g(X)a1(X) + h(X)a0(X), (27)

a1(X)

[
−B
A
X − C

A
X3

]
= g(X)a0(X). (28)

Since ai(X) (i = 0, 1, 2) are polynomials, then from (25) we deduce that a2(X) is
constant and h(X) = 0. For simplicity, take a2(X) = 1. Balancing the degrees of
g(X), a1(X) and a0(X), we conclude that deg(g(X)) = 1 only. Suppose that g(X) =
A1X +B0, then we find a1(X) and a0(X) as follows

a1(X) = A0 +B0X +
1

2
A1X

2, (29)

a0(X) = d+B0A0X +

(
2K − 3γ1K

2 − c
γ1

+
B2

0

2
+
A0A1

2

)
X2

+
1

2
B0A1X

3 +

(
A2

1

8
+
γ2 + 2γ3

6γ1

)
X4. (30)

Substituting a0(X), a1(X) and g(X) in the last equation in (28) and setting all the
coefficients of powers X to be zero, then we obtain a system of nonlinear algebraic
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equations and by solving it, we obtain

d = −3

2

9γ21K
4 + 6γ1K

2c− 12γ1K
3 + 4K2 + c2 − 4Kc

γ1(γ2 + 2γ3)
,

A1 = ±2

3

√
−γ1(6γ2 + 12γ3)

γ1
,

A0 = ±
(−2K + 3γ1K

2 + c)
√
−γ1(6γ2 + 12γ3)

γ1(γ2 + 2γ3)
.

(31)

Using the conditions (31) into (13), we get

Y (ξ) = ±
√
−6γ1(γ2 + 2γ3)

6γ1(γ2 + 2γ3)

[
− 6K + 9γ1K

2 + 3c− (γ2 + 2γ3)X
2(ξ)

]
. (32)

Combining (32) with (11), we obtain the exact solution to equation (10) and then the exact
solutions to the Eq. (1) can be written as

u(x, t) = ±

{√
3(−2K + 3γ1K2 + c)

(γ2 + 2γ3)

× tanh

[√
(2K − 3γ1K2 − c)

2γ1
(x− ct+ ξ0)

]}
ei(Kx−Ωt), (33)

where ξ0 is an arbitrary constant.

4 CONCLUSION

In this work, we obtained exact solutions of the perturbed nonlinear Schrrödinger’ equa-
tion (NLSE) with Kerr law nonlinearity by using the first integral method. The results
shown that this method is efficient.
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