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Abstract. We consider a dynamic frictionless contact problem for elastic-viscoplastic materials
with damage. The contact is modelled with normal compliance condition. The adhesion of the
contact surfaces is considered and is modelled with a surface variable, the bonding field whose
evolution is described by a first order differential equation. We derive variational formulation for
the model and prove an existence and uniqueness result of the weak solution. The proof is based
on arguments of nonlinear evolution equations with monotone operators, a classical existence and
uniqueness result on parabolic inequalities, differential equations and fixed-point arguments.
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1 Introduction

The adhesive contact between bodies, when a glue is added to keep the surfaces from
relative motion, is receiving increasing attention in the mathematical literature. Analysis
of models for adhesive contact can be found in [1–4], and recently in the monograph [5].
The novelty in all the above papers is the introduction of a surface internal variable,
the bonding field, denoted in this paper by β; which describes the pointwise fractional
density of active bonds on the contact surface, and sometimes referred to as the intensity
of adhesion. Following [6,7], the bonding field satisfies the restrictions 0 ≤ β ≤ 1, when
β = 1 at a point of the contact surface, the adhesion is complete and all the bonds are
active, when β = 0 all the bonds are inactive, severed, and there is no adhesion, when
0 < β < 1 the adhesion is partial and only a fraction β of the bonds is active. We refer
the reader to the extensive bibliography on the subject in [8–10]. In this paper we deal
with the study of a dynamic problem of frictionless adhesive contact for general elastic-
viscoplastic materials of the form

σ(t) = Aε
(
u̇(t)

)
+ Eε

(
u(t)

)
+

t∫
0

G
(
σ(s)−Aε

(
u̇(s)

)
, ε
(
u(s)

)
, α(s)

)
ds, (1)
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where u is the displacement field and σ and ε(u) are the stress and the linearized strain
tensor, respectively. Here A and E are nonlinear operators describing the purely vis-
cous and the elastic properties of the material, respectively. G is a nonlinear constitutive
function describing the viscoplastic behaviour of the material. We also consider that the
viscoplastic function G depends on the internal state variable α describing the damage
of the material caused by plastic deformations. In (1) and everywhere in this paper the
dot above a variable represents derivative with respect to the time variable t. It follows
from (1) that at each time moment, the stress tensor σ(t) is split into two parts: σ(t) =
σV (t) +σR(t), where σV (t) = Aε(u̇(t)) represents the purely viscous part of the stress
whereas σR(t) satisfies a rate-type elastic-viscoplastic relation with damage

σR(t) = Eε
(
u(t)

)
+

t∫
0

G
(
σR(s), ε

(
u(s)

)
, α(s)

)
ds. (2)

When G = 0 (1) reduces to the Kelvin–Voigt viscoelastic constitutive law given by

σ(t) = Aε
(
u̇(t)

)
+ Eε

(
u(t)

)
. (3)

The damage is an extremely important topic in engineering, since it affects directly the
useful life of the designed structure or component. There exists a very large engineering
literature on it. Models taking into account the influence of the internal damage of the
material on the contact process have been investigated mathematically. General models
for damage were derived in [11, 12] from the virtual power principle. Mathematical anal-
ysis of one-dimensional problems can be found in [13]. In all these papers the damage
of the material is described with a damage function α, restricted to have values between
zero and one. When α = 1 there is no damage in the material, when α = 0 the material
is completely damaged, when 0 < α < 1 there is partial damage and the system has a
reduced load carrying capacity. Contact problems with damage have been investigated
in [5, 14–19]. In this paper the inclusion used for the evolution of the damage field is

α̇− k∆α+ ∂ϕK(α) 3 φ
(
σ −Aε(u̇), ε(u), α

)
,

where K denotes the set of admissible damage functions defined by

K =
{
ξ ∈ H1(Ω)

∣∣ 0 ≤ ξ ≤ 1, a.e. in Ω
}
,

k is a positive coefficient, ∂ϕK represents the subdifferential of the indicator function of
the setK and φ is a given constitutive function which describes the sources of the damage
in the system. Examples and mechanical interpretation of elastic-viscoplastic materials
of the form (2) in which the function G does not depend on the damage parameter α
were considered by many authors, see for instance [20, 21] and the references therein.
Contact problems for materials of the form (1), (2) without damage parameter and (3)
are the topic of numerous papers, e.g. [5, 22–27] and the recent references [25, 28].
Contact problems for elastic-viscoplastic materials of the form (2) are studied in [5, 16].
In this paper we study a dynamic frictionless contact problem. The contact is model-
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led with normal compliance where the adhesion of the contact surfaces is taken into ac-
count and is modelled with a surface variable, the bonding field. We model the material’s
behavior with an elastic-viscoplastic constitutive law with damage. We derive a variational
formulation of the problem and prove the existence of a unique weak solution.

The paper is organised as follows. In Section 2 we present the notation and some
preliminaries. In Section 3 we present the mechanical problem, list the assumptions on
the data, give the variational formulation of the problem. In Section 4 we state our main
existence and uniqueness result, Theorem 1. The proof of the theorem is based on ar-
guments of nonlinear evolution equations with monotone operators, a classical existence
and uniqueness result on parabolic inequalities and fixed-point arguments.

2 Notation and preliminaries

In this section we present the notation we shall use and some preliminary material. For
further details, we refer the reader to [29]. We denote by Sd the space of second order
symmetric tensors on Rd (d = 2, 3), while “·” and | · | will represent the inner product
and the Euclidean norm on Sd and Rd, respectively. Let Ω ⊂ Rd be a bounded domain
with a Lipschitz boundary Γ and let ν denote the unit outer normal on Γ . Everywhere
in the sequel the index i and j run from 1 to d, summation over repeated indices is
implied and the index that follows a comma represents the partial derivative with respect
to the corresponding component of the independent spatial variable. We use the standard
notation for Lebesgue and Sobolev spaces associated toΩ and Γ and introduce the spaces:

H = L2(Ω)d =
{
u = (ui)

∣∣ ui ∈ L2(Ω)
}
,

H =
{
σ = (σij)

∣∣ σij = σji ∈ L2(Ω)
}
,

H1 =
{
u = (ui)

∣∣ ε(u) ∈ H
}
,

H1 =
{
σ ∈ H

∣∣ Divσ ∈ H
}
.

Here ε and Div are the deformation and divergence operators, respectively, defined by

ε(u) =
(
εij(u)

)
, εij(u) =

1

2
(ui,j + uj,i), Divσ = (σij,j).

The spaces H , H, H1 and H1 are real Hilbert spaces endowed with the canonical inner
products given by

(u,v)H =

∫
Ω

uivi dx ∀u,v ∈ H,

(σ, τ )H =

∫
Ω

σijτij dx ∀σ, τ ∈ H,

(u,v)H1
= (u,v)H +

(
ε(u), ε(v)

)
H ∀u,v ∈ H1,

(σ, τ )H1 = (σ, τ )H + (Divσ,Div τ )H ∀σ, τ ∈ H1.
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The associated norms on the spaces H ,H, H1 andH1 are denoted by | · |H , | · |H, | · |H1

and | · |H1 , respectively. For every element v ∈ H1 we also use the notation v for the
trace of v on Γ and we denote by vν and vτ the normal and the tangential components of
v on Γ given by

vν = v · ν, vτ = v − vνν. (4)

We also denote by σν and στ the normal and the tangential traces of a function σ ∈ H1,
and we recall that when σ is a regular function then

σν = (σν) · ν, στ = σν − σνν, (5)

and the following Green’s formula holds:(
σ, ε(v)

)
H + (Divσ,v)H =

∫
Γ

σν · v da ∀v ∈ H1. (6)

Let T >0. For every real Banach spaceX we use the notation C(0,T ;X) and C1(0,T ;X)
for the space of continuous and continuously differentiable functions from [0, T ] to X ,
respectively; C(0, T ;X) is a real Banach space with the norm

|f |C(0,T ;X) = max
t∈[0,T ]

∣∣f(t)∣∣
X

while C1(0, T ;X) is a real Banach space with the norm

|f |C1(0,T ;X) = max
t∈[0,T ]

∣∣f(t)∣∣
X

+ max
t∈[0,T ]

∣∣ḟ(t)∣∣
X
.

Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for the Lebesgue spaces
Lp(0, T ;X) and for the Sobolev spaces W k,p(0, T ;X). Moreover, for a real number r,
we use r+ to represent its positive part; that is r+ = max{0, r} and if X1 and X2 are
real Hilbert spaces then X1 × X2 denotes the product Hilbert space endowed with the
canonical inner product (. , .)X1×X2

.

3 Problem statement

We consider an elastic-viscoplastic body which occupies the domain Ω ⊂ Rd with the
boundary Γ divided into three disjoint measurable parts Γ1, Γ2 and Γ3 such that
meas(Γ1) > 0. The time interval of interest is [0, T ] where T > 0. The body is clamped
on Γ1 and so the displacement field vanishes there. A volume force of density f0 acts
in Ω × (0, T ) and surface tractions of density f2 act on Γ2× (0, T ). We assume that the
body is in adhesive frictionless contact with an obstacle, the so-called foundation, over the
potential contact surface Γ3. Moreover, the process is dynamic, and thus the inertial terms
are included in the equation of motion. We use an elastic-viscoplastic constitutive law
with damage to model the material’s behaviour and an ordinary differential equation to
describe the evolution of the bonding field. The mechanical formulation of the frictionless
problem with normal compliance is as follows.
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Problem P. Find a displacement field u : Ω×[0, T ]→ Rd, a stress fieldσ : Ω×[0, T ]→
Sd, a damage field α : Ω× [0, T ]→ R and a bonding field β : Γ3× [0, T ]→ R such that

σ(t) = Aε
(
u̇(t)

)
+ Eε

(
u(t)

)
+

t∫
0

G
(
σ(s)−Aε

(
u̇(s)

)
, ε
(
u(s)

)
, α(s)

)
ds in Ω × (0, T ), (7)

α̇− k∆α+ ∂ϕK(α) 3 φ
(
σ −Aε(u̇), ε(u), α

)
in Ω × (0, T ), (8)

ρü = Divσ + f0 in Ω × (0, T ), (9)

u = 0 on Γ1 × (0, T ), (10)

σν = f2 on Γ2 × (0, T ), (11)

− σν = pν(uν)− γνβ2Rν(uν) on Γ3 × (0, T ), (12)

− στ = pτ (β)Rτ (uτ ) on Γ3 × (0, T ), (13)

β̇ = −
(
β
(
γν
(
Rν(uν)

)2
+ γτ

∣∣Rτ (uτ )
∣∣2)− εa)+ on Γ3 × (0, T ), (14)

∂α

∂ν
= 0 on Γ × (0, T ), (15)

u(0) = u0, u̇(0) = v0, α(0) = α0 in Ω, (16)

β(0) = β0 on Γ3. (17)

Equation (7) represents the elastic-viscoplastic constitutive law with damage intro-
duced in Section 1, Eq. (8) is the inclusion used for the evolution of the damage field.
Equation (9) represents the equation of motion where ρ denotes the material mass density.
Equations (10) and (11) are the displacement and traction boundary conditions, respec-
tively. Condition (12) represents the normal compliance condition with adhesion where γν
is a given adhesion coefficient and pν is a given positive function which will be described
below. In this condition the interpenetrability between the body and the foundation is
allowed; that is uν can be positive on Γ3. The contribution of the adhesive to the normal
traction is represented by the term γνβ

2Rν(uν), the adhesive traction is tensile and is
proportional, with proportionality coefficient γν , to the square of the intensity of adhesion
and to the normal displacement, but as long as it does not exceed the bond length L. The
maximal tensile traction is γνL. Rν is the truncation operator defined by

Rν(s) =


L if s < −L,
−s if −L ≤ s ≤ 0,

0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer
any additional traction. The contact condition (12) was used in various papers, see e.g.
[1, 2, 5, 10]. Condition (13) represents the adhesive contact condition on the tangential
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plane, in which pτ is a given function and Rτ is the truncation operator given by

Rτ (v) =

{
v if |v| ≤ L,
L v
|v| if |v| > L.

This condition shows that the shear on the contact surface depends on the bonding field
and on the tangential displacement, but as long as it does not exceed the bond length L.
The frictional tangential traction is assumed to be much smaller than the adhesive one and,
therefore, omitted. The introduction of the operator Rν , together with the operator Rτ

defined above, is motivated by mathematical arguments but it is not restrictive for physical
point of view, since no restriction on the size of the parameter L is made in what follows.

Next, Eq. (14) represents the ordinary differential equation which describes the evo-
lution of the bonding field and it was already used in [1], see also [9,10] for more details.
Here, besides γν , two new adhesion coefficients are involved, γτ and εa. Notice that in
this model once debonding occurs bonding cannot be reestablished since, as it follows
from Eq. (14), β̇ ≤ 0. Boundary condition (15) describes a homogeneous Neumann
boundary condition where ∂α/∂ν is the normal derivative of α. In Eq. (16) u0 is the initial
displacement, v0 the initial velocity and α0 is the initial damage. Finally, in Eq. (17) β0
denotes the initial bonding. To obtain the variational formulation of the problem (7)–(17)
we introduce for the bonding field the set

Z =
{
θ ∈ L∞

(
0, T ;L2(Γ3)

) ∣∣ 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3

}
.

Let V be the closed subspace of H1 given by

V =
{
v ∈ H1

∣∣ v = 0 on Γ1

}
.

Then, the following Korn’s inequality holds:∣∣ε(v)
∣∣
H ≥ Ck|v|H1 ∀v ∈ V,

where Ck > 0 is a constant depending only on Ω and Γ1. On the space V we consider
the inner product given by

(u,v)V =
(
ε(u), ε(v)

)
H (18)

and let | · |V be the associated norm. It follows from Korn’s inequality that | · |H1
and | · |V

are equivalent norms on V . Therefore (V, | · |V ) is a real Hilbert space. Moreover, by the
Sobolev trace theorem there exists a positive constant C0 which depends only on Ω, Γ1

and Γ3 such that
|v|L2(Γ3)d ≤ C0|v|V ∀v ∈ V. (19)

In the study of the mechanical problem (7)–(17), we assume that:

(A1) The viscosity operator A : Ω × Sd → Sd satisfies:

(a) There exists a constant LA > 0 such that∣∣A(x, ε1)−A(x, ε2)
∣∣ ≤ LA|ε1 − ε2| ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
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(b) There exists a constant mA > 0 such that(
A(x, ε1)−A(x, ε2)

)
· (ε1 − ε2) ≥ mA|ε1 − ε2|2 ∀ε1, ε2 ∈ Sd,

a.e. x ∈ Ω.

(c) The mapping x→ A(x, ε) is Lebesgue measurable on Ω for any ε ∈ Sd.
(d) The mapping x→ A(x,0) ∈ H.

(A2) The elasticity operator E : Ω × Sd → Sd satisfies:

(a) There exists a constant LE > 0 such that∣∣E(x, ε1)− E(x, ε2)
∣∣ ≤ LE |ε1 − ε2| ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) For any ε ∈ Sd, x→ E(x, ε) is Lebesgue measurable on Ω.
(c) The mapping x→ E(x,0) ∈ H.

(A3) The viscoplasticity operator G : Ω × Sd × Sd × R→ Sd satisfies:

(a) There exists a constant LG > 0 such that∣∣G(x,σ1, ε1, α1)−G(x,σ2, ε2, α2)
∣∣ ≤ LG(|σ1−σ2|+ |ε1−ε2|+|α1−α2|

)
∀σ1,σ2, ε1, ε2 ∈ Sd and α1, α2 ∈ R, a.e. x ∈ Ω.

(b) For any σ, ε ∈ Sd and α ∈ R, x → G(x, σ, ε, α) is Lebesgue measurable
on Ω.

(c) The mapping x→ G(x,0,0,0) ∈ H.

(A4) The damage source function φ : Ω × Sd × Sd × R→ R satisfies:

(a) There exists a constant Lφ > 0 such that∣∣φ(x,σ1, ε1, α1)−φ(x,σ2, ε2, α2)
∣∣ ≤ Lφ(|σ1−σ2|+ |ε1−ε2|+ |α1−α2|

)
∀σ1,σ2, ε1, ε2 ∈ Sd and α1, α2 ∈ R, a.e. x ∈ Ω.

(b) For any σ, ε ∈ Sd and α ∈ R,x → φ(x, σ, ε, α) is Lebesgue measurable
on Ω.

(c) The mapping x→ φ(x,0,0, 0) ∈ H.

(A5) The normal compliance function pν : Γ3 × R→ R+ satisfies:

(a) There exists a constant Lν > 0 such that∣∣pν(x, r1)− pν(x, r2)
∣∣ ≤ Lν |r1 − r2| ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) The mapping x→ pν(x, r) is measurable on Γ3, for any r ∈ R.
(c) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(A6) The tangential contact function pτ : Γ3 × R→ R+ satisfies:

(a) There exists a constant Lτ > 0 such that∣∣pτ (x, d1)− pτ (x, d2)
∣∣ ≤ Lτ |d1 − d2| ∀d1, d2 ∈ R, a.e. x ∈ Γ3.

(b) There exists Mτ > 0 such that
∣∣pτ (x, d)

∣∣ ≤Mτ ∀d ∈ R, a.e. x ∈ Γ3.
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(c) The mapping x→ pτ (x, d) is measurable on Γ3, or any d ∈ R.
(d) The mapping x→ pτ (x, 0) ∈ L2(Γ3).

(A7) The mass density satisfies:

ρ ∈ L∞(Ω), there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗, a.e. x ∈ Ω.

(A8) The adhesion coefficient and the limit bound satisfy:

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0.

(A9) The body forces and surface tractions have the regularity

f0 ∈ L2(0, T ;H), f2 ∈ L2
(
0, T ;L2(Γ2)d

)
.

(A10) Finally, we assume that the initial data satisfy:
(a) u0 ∈ V , v0 ∈ H ,
(b) α0 ∈ K,
(c) β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1, a.e. on Γ3.

We define the bilinear form a : H1(Ω)×H1(Ω)→ R by

a(ξ, ϕ) = k

∫
Ω

∇ξ · ∇ϕdx. (20)

We will use a modified inner product on the Hilbert space H = L2(Ω)d given by(
(u,v)

)
H

= (ρu,v)H ∀u,v ∈ H,

that is, it is weighted with ρ, and we let ‖ · ‖H be the associated norm, i.e.,

‖v‖H = (ρv,v)
1/2
H ∀v ∈ H.

It follows from assumptions (A7) that ‖·‖H and | · |H are equivalent norms onH , and also
the inclusion mapping of (V, | · |V ) into (H, ‖ · ‖H) is continuous and dense. We denote
by V ′ the dual space of V . Identifying H with its own dual, we can write the Gelfand
triple

V ⊂ H ⊂ V ′.

We use the notation (. , .)V ′×V to represent the duality pairing between V ′ and V and
recall that

(u,v)V ′×V =
(
(u,v)

)
H
∀u ∈ H, ∀v ∈ V.

Assumptions (A9) allow us, for a.e. t ∈ (0, T ), to define f(t) ∈ V ′ by(
f(t),v

)
V ′×V =

∫
Ω

f0(t) · v dx+

∫
Γ2

f2(t) · v da ∀v ∈ V, (21)

and note that
f ∈ L2(0, T ;V ′). (22)
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Finally, we consider the adhesion functional j : L∞(Γ3)× V × V → R defined by

j(β,u,v) =

∫
Γ3

pν(uν)vν da+

∫
Γ3

(
−γνβ2Rν(uν)vν + pτ (β)Rτ (uτ ) · vτ

)
da. (23)

Keeping in mind (A5) and (A6), we observe that integrals in (23) are well defined. Using
standard arguments based on Green’s formula (6), we can derive the following variational
formulation of the frictionless problem with normal compliance (7)–(17) as follows.

Problem PV. Find a displacement field u : [0, T ] → V , a stress field σ : [0, T ] → H,
a damage field α : [0, T ]→ H1(Ω) and a bonding field β : [0, T ]→ L∞(Γ3) such that

σ(t) = Aε
(
u̇(t)

)
+ Eε

(
u(t)

)
+

t∫
0

G
(
σ(s)−Aε

(
u̇(s)

)
, ε
(
u(s)

)
, α(s)

)
ds, a.e. t ∈ (0, T ), (24)

(
ü(t),v

)
V ′×V +

(
σ(t), ε(v)

)
H + j

(
β(t),u(t),v

)
=
(
f(t),v

)
V ′×V ∀v ∈ V,

a.e. t ∈ (0, T ), (25)

α(t) ∈ K,
(
α̇(t), ξ − α(t)

)
L2(Ω)

+ a
(
α(t), ξ − α(t)

)
≥
(
φ(σ(t)−Aε

(
u̇(t)

)
, ε
(
u(t)

)
, α(t)

)
, ξ − α(t)

)
L2(Ω)

∀ξ ∈ K,

a.e. t ∈ (0, T ), (26)

β̇(t) = −
(
β(t)

(
γν
(
Rν
(
uν(t)

))2
+ γτ

∣∣Rτ

(
uτ (t)

)∣∣2)− εa)+, a.e. t ∈ (0, T ), (27)

u(0) = u0, u̇(0) = v0, α(0) = α0, β(0) = β0. (28)

The existence of the unique solution to Problem PV is proved in the next section. To
this end, we consider the following remark which is used in different places of the paper.

Remark 1. We note that, in Problem P and in Problem PV we do not need to impose
explicitly the restriction 0 ≤ β ≤ 1. Indeed, Eq. (27) guarantees that β(x, t) ≤ β0(x)
and, therefore, assumption (A10c) shows that β(x, t) ≤ 1 for t ≥ 0, a.e. x ∈ Γ3. On
the other hand, if β(x, t0) = 0 at time t0, then it follows from (27) that β̇(x, t) = 0 for
all t ≥ t0 and therefore, β(x, t) = 0 for all t ≥ t0, a.e. x ∈ Γ3. We conclude that
0 ≤ β(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

4 Existence and uniqueness result

The main result in this section is the following existence and uniqueness result.

Theorem 1. Let the assumptions (A1)–(A10) hold. Then Problem PV has a unique
solution (u,σ, α, β) which satisfies

u ∈ H1(0, T ;V ) ∩ C1(0, T ;H), ü ∈ L2
(
0, T ;V ′

)
, (29)
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σ ∈ L2(0, T ;H), Divσ ∈ L2
(
0, T ;V ′

)
, (30)

α ∈W 1,2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
, (31)

β ∈W 1,∞(0, T ;L2(Γ3)
)
∩ Z. (32)

A quadruplet (u,σ, α, β) which satisfies (24)–(28) is called a weak solution to the
compliance contact Problem P. We conclude that under the stated assumptions, prob-
lem (7)–(17) has a unique weak solution satisfying (29)–(32). We turn now to the proof
of Theorem 1 which will be carried out in several steps and is based on arguments
of nonlinear equations with monotone operators, a classical existence and uniqueness
result on parabolic inequalities and fixed-point arguments. To this end, we assume in the
following that (A1)–(A10) hold. Below, C denotes a generic positive constant which may
depend on Ω,Γ1, Γ2, Γ3,A, E ,G, φ, pν , pτ , γν , γτL, and T but does not depend on t nor
of the rest of input data, and whose value may change from place to place. Moreover,
for the sake of simplicity we suppress in what follows the explicit dependence of various
functions on x ∈ Ω ∪ Γ .

Let η ∈ L2(0, T ;V ′) be given. In the first step we consider the following variational
problem.

Problem PVη . Find a displacement field uη : [0, T ]→ V such that(
üη(t),v

)
V ′×V +

(
Aε
(
u̇η(t)

)
, ε(v)

)
H +

(
η(t),v

)
V ′×V =

(
f(t),v

)
V ′×V

∀v ∈ V, a.e. t ∈ (0, T ), (33)
uη(0) = u0, u̇η(0) = v0. (34)

In the study of problem PVη we have the following result.

Lemma 1. Problem PVη has a unique solution with the regularity expressed in (29).

Proof. We use an abstract existence and uniqueness result which may be found in [5,
p. 48] or in [30] and proceed like in [5, p. 105].

In the second step we use the displacement field uη obtained in Lemma 1 and we
consider the following initial-value problem.

Problem PVβ. Find the adhesion field βη : [0, T ]→ L2(Γ3) such that

β̇η(t) = −
(
βη(t)

(
γν
(
Rν
(
uην(t)

))2
+ γτ

∣∣Rτ

(
uητ (t)

)∣∣2)− εa)+, (35)

βη(0) = β0. (36)

We have the following result.

Lemma 2. There exists a unique solution βη ∈W 1,∞(0, T ;L2(Γ3))∩Z to Problem PVβ.
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Proof. For the sake of simplicity we suppress the dependence of various functions on Γ3,
and note that the equalities and inequalities below are valid a.e. on Γ3. Consider the map-
ping Fη : [0, T ]× L2(Γ3)→ L2(Γ3) defined by

Fη(t, β) = −
(
β(γν(Rν

(
uην(t)

))2
+ γτ

∣∣Rτ

(
uητ (t)

)∣∣2)− εa)+ (37)

for all t ∈ [0, T ] and β ∈ L2(Γ3). It follows from the properties of the truncation
operator Rν and Rτ that Fη is Lipschitz continuous with respect to the second variable,
uniformly in time. Moreover, for all β ∈ L2(Γ3), the mapping t → Fη(t, β) belongs to
L∞(0, T ;L2(Γ3)). Thus using a version of the classical Cauchy–Lipschitz theorem given
in [31, p. 60] we deduce that there exists a unique function βη ∈ W 1,∞(0, T ;L2(Γ3))
solution to Problem PVβ. Also, the arguments used in Remark 1 show that 0 ≤ βη(t) ≤ 1
for all t ∈ [0, T ], a.e. on Γ3. Therefore, from the definition of the set Z, we find that
βη ∈ Z, which concludes the proof of Lemma 2.

In the third step we let θ ∈ L2(0, T ;L2(Ω)) be given and consider the following
variational problem for the damage field.

Problem PVθ. Find a damage field αθ : [0, T ]→ H1(Ω) such that

αθ(t) ∈ K,
(
α̇θ(t), ξ − αθ(t)

)
L2(Ω)

+ a
(
αθ(t), ξ − αθ(t)

)
≥
(
θ(t), ξ − αθ(t)

)
L2(Ω)

∀ξ ∈ K, a.e. t ∈ (0, T ), (38)

αθ(0) = α0. (39)

In the study of Problem PVθ we have the following result.

Lemma 3. Problem PVθ has a unique solution αθ satisfying

αθ ∈ H1
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
. (40)

Proof. We use a standard result for parabolic variational inequalities (see, e.g., [30, p. 124]
or [5, p. 47].

Now we use the displacement field uη obtained in Lemma 1 and αθ obtained in
Lemma 3 to construct the following Cauchy problem for the stress field.

Problem PVηθ. Find a stress field σηθ : [0, T ]→ H such that

σηθ(t) = Eε
(
uη(t)

)
+

t∫
0

G
(
σηθ(s), ε

(
uη(s)

)
, αθ(s)

)
ds ∀t ∈ [0, T ]. (41)

In the study of Problem PVηθ we have the following result.
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Lemma 4. There exists a unique solution to Problem PVηθ and it satisfies σηθ ∈
W 1,2(0, T,H). Moreover, if σi, ui and αi represent the solutions of Problem PVηiθi ,
PVηi and PVθi , respectively, for (ηi, θi) ∈ L2(0, T ;V ′ × L2(Ω)), i = 1, 2, then there
exists C > 0 such that

∣∣σ1(t)− σ2(t)
∣∣2
H ≤ C

(∣∣u1(t)− u2(t)
∣∣2
V

+

t∫
0

∣∣u1(s)− u2(s)
∣∣2
V

ds

+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds

)
∀t ∈ [0, T ]. (42)

Proof. Let Ληθ : L2(0, T,H)→ L2(0, T,H) be the operator given by

Ληθσ(t) = Eε
(
uη(t)

)
+

t∫
0

G
(
σ(s), ε

(
uη(s)

)
, αθ(s)

)
ds (43)

for all σ ∈ L2(0, T,H) and t ∈ [0, T ]. For σ1,σ2 ∈ L2(0, T,H) we use (43) and (A3)
to obtain for all t ∈ [0, T ]

∣∣Ληθσ1(t)− Λησ2(t)
∣∣
H ≤ LG

t∫
0

∣∣σ1(s)− σ2(s)
∣∣
H d.

It follows from this inequality that for p large enough, a power Λpηθ of the operator Ληθ
is a contraction on the Banach space L2(0, T ;H) and, therefore, there exists a unique
element σηθ ∈ L2(0, T ;H) such that Ληθσηθ = σηθ. Moreover, σηθ is the unique
solution to Problem PVηθ and, using (41), the regularity of uη , the regularity of αθ and the
properties of the operators E and G, it follows that σηθ ∈ W 1,2(0, T,H). Consider now
(η1, θ1), (η2, θ2) ∈ L2(0, T ;V ′ ×L2(Ω)) and for i = 1, 2, denote uηi = ui,σηiθi = σi
and αθi = αi. We have

σi(t) = Eε
(
ui(t)

)
+

t∫
0

G(σi(s), ε
(
ui(s)

)
, αi(s)) ds ∀t ∈ [0, T ],

and, using the properties (A2) and (A3) of E and G, we find∣∣σ1(t)− σ2(t)
∣∣2
H

≤ C

(∣∣u1(t)− u2(t)
∣∣2
V

+

t∫
0

∣∣σ1(s)− σ2(s)
∣∣2
H ds

+

t∫
0

∣∣u1(s)− u2(s)
∣∣2
V

ds+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds

)
∀t ∈ [0, T ]. (44)
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We use Gronwall argument in the obtained inequality to deduce (42), which concludes
the proof of Lemma 4.

Finally, as a consequence of these results and using the properties of the operator G,
the operator E , the functional j and the function φ, for t ∈ [0, T ], we consider the element

Λ(η, θ)(t) =
(
Λ1(η, θ)(t),Λ2(η, θ)(t)

)
∈ V ′ × L2(Ω), (45)

defined by the equations(
Λ1(η, θ)(t),v

)
V ′×V

=
(
Eε
(
uη(t)

)
, ε(v)

)
H +

( t∫
0

G
(
σηθ(s), ε

(
uη(s)

)
, αθ(s)

)
ds, ε(v)

)
H

+ j
(
βη(t),uη(t),v

)
∀v ∈ V, (46)

Λ2(η, θ)(t) = φ
(
σηθ(t), ε

(
uη(t)

)
, αθ(t)

)
. (47)

Here, for every (η, θ) ∈ L2(0, T ;V ′×L2(Ω)) uη, βη, αθ and σηθ represent the displace-
ment field, the bonding field, the damage field and the stress field obtained in Lemmas 1,
2, 3 and 4 respectively. We have the following result.

Lemma 5. The operator Λ has a unique fixed point (η∗, θ∗) ∈ L2(0, T ;V ′ × L2(Ω))
such that Λ(η∗, θ∗) = (η∗, θ∗).

Proof. Let now (η1, θ1), (η2, θ2) ∈ L2(0, T ;V ′×L2(Ω)). We use the notation uηi = ui,
u̇ηi = vηi = vi, σηiθi = σi, αθi = αi and βηi = βi for i = 1, 2. Using (19), (A2),
(A3), (A5), (A6), the definition of Rν , Rτ and the Remark 1, we have∣∣Λ1(η1, θ1)(t)− Λ1(η2, θ2)(t)

∣∣2
V ′

≤
∣∣Eε(u1(t)

)
− Eε

(
u2(t)

)∣∣2
H

+

t∫
0

∣∣G(σ1(s), ε
(
u1(s)

)
, α1(s)

)
− G

(
σ2(s), ε

(
u2(s)

)
, α2(s)

)∣∣2
H ds

+ C
∣∣pν(u1ην(t)

)
− pν(u2ην(t)

)∣∣2
L2(Γ3)

+ C
∣∣β2

1(t)Rν
(
u1ην(t)

)
− β2

2(t)Rν(u1ην(t)
)∣∣2
L2(Γ3)

+ C
∣∣pτ(β1(t)

)
Rτ

(
u1ητ (t)

)
− pτ

(
β2(t)

)
Rτ (u1ητ (t)

)∣∣2
L2(Γ3)

≤ C

(∣∣u1(t)− u2(t)
∣∣2
V

+
∣∣β1(t)− β2(t)

∣∣2
L2(Γ3)

+

t∫
0

∣∣σ1(s)− σ2(s)
∣∣2
H ds

+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds+

t∫
0

∣∣u1(s)− u2(s)
∣∣2
V

ds

)
. (48)
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We use estimate (42) to obtain∣∣Λ1(η1, θ1)(t)− Λ1(η2, θ2)(t)
∣∣2
V ′

≤ C

(∣∣u1(t)− u2(t)
∣∣2
V

+

t∫
0

∣∣u1(s)− u2(s)
∣∣2
V

ds

+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds+
∣∣β1(t)− β2(t)

∣∣2
L2(Γ3)

)
. (49)

Recall that above uην and uητ denote the normal and the tangential component of the
function uη respectively. By similar arguments, from (47), (42) and (A4) it follows that∣∣Λ2(η1, θ1)(t)− Λ2(η2, θ2)(t)

∣∣2
L2(Ω)

≤ C

(∣∣u1(t)− u2(t)
∣∣2
V

+

t∫
0

∣∣u1(s)− u2(s)
∣∣2
V

ds

+
∣∣α1(t)− α2(t)

∣∣2
L2(Ω)

+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds

)
. (50)

Therefore,∣∣Λ(η1, θ1)(t)− Λ(η2, θ2)(t)
∣∣2
V ′×L2(Ω)

≤ C

(∣∣u1(t)− u2(t)
∣∣2
V

+

t∫
0

∣∣u1(s)− u2(s)
∣∣2
V

ds+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds

+
∣∣α1(t)− α2(t)

∣∣2
L2(Ω)

+
∣∣β1(t)− β2(t)

∣∣2
L2(Γ3)

)
. (51)

Moreover, from (33) we obtain

(v̇1 − v̇2,v1 − v2)V ′×V +
(
Aε(v1)−Aε(v2), ε(v1 − v2)

)
H

+ (η1 − η2,v1 − v2)V ′×V = 0.

We integrate this equality with respect to time, we use the initial conditions v1(0) =
v2(0) = v0 and condition (A1) to find

mA

t∫
0

∣∣v1(s)− v2(s)
∣∣2
V

ds ≤ −
t∫

0

(
η1(s)− η2(s),v1(s)− v2(s)

)
V ′×V ds

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2/mA +mAb
2 we obtain

t∫
0

∣∣v1(s)− v2(s)
∣∣2
V

ds ≤ C
t∫

0

∣∣η1(s)− η2(s)
∣∣2
V ′

ds ∀t ∈ [0, T ]. (52)
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On the other hand, from the Cauchy problem (35)–(36) we can write

βi(t) = β0 −
t∫

0

(
βi(s)

(
γν
(
Rν
(
uiν(s)

))2
+ γτ

∣∣Rτ

(
uiτ (s)

)∣∣2)− εa)+ ds,

and then ∣∣β1(t)− β2(t)
∣∣
L2(Γ3)

≤ C
t∫

0

∣∣β1(s)
(
Rν
(
u1ν(s)

))2 − β2(s)
(
Rν
(
u2ν(s)

))2∣∣
L2(Γ3)

ds

+ C

t∫
0

∣∣β1(s)
∣∣Rτ

(
u1τ (s)

)∣∣2 − β2(s)
∣∣Rτ

(
u2τ (s)

)∣∣2∣∣
L2(Γ3)

ds.

Using the definition of Rν and Rτ and writing β1 = β1 − β2 + β2, we get∣∣β1(t)− β2(t)
∣∣
L2(Γ3)

≤ C

( t∫
0

∣∣β1(s)− β2(s)
∣∣
L2(Γ3)

ds+

t∫
0

∣∣u1(s)− u2(s)
∣∣
L2(Γ3)d

ds

)
. (53)

Next, we apply Gronwall’s inequality to deduce

∣∣β1(t)− β2(t)
∣∣
L2(Γ3)

≤ C
t∫

0

∣∣u1(s)− u2(s)
∣∣
L2(Γ3)d

ds,

and from the relation (19) we obtain

∣∣β1(t)− β2(t)
∣∣2
L2(Γ3)

≤ C
t∫

0

∣∣u1(s)− u2(s)
∣∣2
V

ds. (54)

From (38) we deduce that

(α̇1 − α̇2, α1 − α2)L2(Ω) + a(α1 − α2, α1 − α2)

≤ (θ1 − θ2, α1 − α2)L2(Ω), a.e. t ∈ (0, T ).

Integrating the previous inequality with respect to time, using the initial conditionsα1(0) =
α2(0) = α0 and inequality a(α1 − α2, α1 − α2) ≥ 0 to find

1

2

∣∣α1(t)− α2(t)
∣∣2
L2(Ω)

≤
t∫

0

(
θ1(s)− θ2(s), α1(s)− α2(s)

)
L2(Ω)

ds,
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which implies that

∣∣α1(t)− α2(t)
∣∣2
L2(Ω)

≤
t∫

0

∣∣θ1(s)− θ2(s)
∣∣2
L2(Ω)

ds+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds.

This inequality, combined with Gronwall’s inequality, leads to

∣∣α1(t)− α2(t)
∣∣2
L2(Ω)

≤ C
t∫

0

∣∣θ1(s)− θ2(s)
∣∣2
L2(Ω)

ds ∀t ∈ [0, T ]. (55)

We substitute (54) in (51) to obtain∣∣Λ(η1, θ1)(t)− Λ(η2, θ2)(t)
∣∣2
V ′×L2(Ω)

≤ C

(∣∣u1(t)− u2(t)
∣∣2
V

+

t∫
0

∣∣u1(s)− u2(s)
∣∣2
V

ds

+
∣∣α1(t)− α2(t)

∣∣2
L2(Ω)

+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds

)

≤ C

( t∫
0

∣∣v1(s)− v2(s)
∣∣2
V

ds+
∣∣α1(t)− α2(t)

∣∣2
L2(Ω)

+

t∫
0

∣∣α1(s)− α2(s)
∣∣2
L2(Ω)

ds

)
.

From the previous inequality and estimates (52) and (55), it follows now that∣∣Λ(η1, θ1)(t)− Λ(η2, θ2)(t)
∣∣2
V ′×L2(Ω)

≤ C
t∫

0

∣∣(η1, θ1)(s)− (η2, θ2)(s)
∣∣2
V ′×L2(Ω)

ds.

Reiterating this inequality m times leads to∣∣Λm(η1, θ1)− Λm(η2, θ2)
∣∣2
L2(0,T ;V ′×L2(Ω))

≤ CmTm

m!

∣∣(η1, θ1)− (η2, θ2)
∣∣2
L2(0,T ;V ′×L2(Ω))

.

Thus, for m sufficiently large, Λm is a contraction on the Banach space L2(0, T ;V ′ ×
L2(Ω)), and so Λ has a unique fixed point.

Now, we have all the ingredients to prove Theorem 1.
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Proof. Let (η∗, θ∗) ∈ L2(0, T ;V ′×L2(Ω)) be the fixed point of Λ defined by (45)–(47)
and denote

u = uη∗ , σ = Aε(u̇) + ση∗θ∗ , (56)
β = βη∗ , α = αθ∗ . (57)

We prove that the quadruplet (u,σ, α, β) satisfies (24)–(28) and (29)–(32). Indeed, we
write (41) for η = η∗, θ = θ∗ and use (56)–(57) to obtain that (24) is satisfied. Now we
consider (33) for η = η∗ and use the first equality in (56) to find(

ü(t),v
)
V ′×V +

(
Aε
(
u̇(t)

)
, ε(v)

)
H +

(
η∗(t),v

)
V ′×V =

(
f(t),v

)
V ′×V

∀v ∈ V, a.e. t ∈ (0, T ). (58)

Equalities Λ1(η∗, θ∗) = η∗ and Λ2(η∗, θ∗) = θ∗ combined with (46), (47), (56) and (57)
show that(
η∗(t),v

)
V ′×V

=
(
Eε
(
u(t)

)
, ε(v)

)
H +

( t∫
0

G
(
σ(s)−Aε

(
u̇(s)

)
, ε
(
u(s)

)
, α(s)

)
ds, ε(v)

)
H

+ j
(
β(t),u(t),v

)
∀v ∈ V, (59)

θ∗(t) = φ
(
σ(t)−Aε

(
u̇(t)

)
, ε
(
u(t)

)
, α(t)

)
. (60)

We now substitute (59) in (58) and use (24) to see that (25) is satisfied. We write (38)
for θ = θ∗ and use (57) and (60) to find that (26) is satisfied. We consider now (35) for
η = η∗ and use (56)–(57) to obtain that (27) is satisfied. Next, (28) and the regularities
(29), (31) and (32) follow Lemmas 1, 2 and 3. The regularity σ ∈ L2(0, T ;H) follows
from Lemmas 1, 4, the second equality in (56) and (A1). Finally (25) implies that

ρü(t) = Divσ(t) + f0(t) in V ′, a.e. t ∈ (0, T ),

and therefore by (A7) and (A9) we obtain that Divσ ∈ L2(0, T ;V ′). We deduce that the
regularity (30) holds which concludes the existence part of the theorem. The uniqueness
part of Theorem 1 is a consequence of the uniqueness of the fixed point of the operator Λ
defined by (45)–(47) and the unique solvability of the Problems PVη , PVβ, PVθ and
PVηθ.
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