
16 Nonlinear Analysis: Modelling and Control, 2012, Vol. 17, No. 1, 16–26

Some applications of IFS based on square symmetries

Gintautas Bareikis, Algirdas Mačiulis
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Abstract. This paper describes a fractal based method for generating the pseudorandom permuta-
tions. We construct an Iterated Function System (IFS) belonging to the class of square symmet-
ries and simulate the pseudorandom walk on a square. In this way some families of key based
permutations are generated. The cardinalities of generated families are analysed.
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1 Introduction

Let S be a finite set. A p-permutation is a sequence of p distinct elements in S. If p = |S|,
then p-permutation of S is simply called a permutation. Algorithms for generating and
numbering permutations have been developed over the years (see, e.g. [1–3]). Since per-
mutation is widely used in cryptography, it is of special interest algorithms and methods
which compute a unique permutation for a specific key [1, 4].

Recently, following Hutchinson, Barnsley and others [5–8], iterated function systems
(IFS) as well as other fractal theory tools were employed in various encryption schemes
(see, e.g. [9–11]).

In this paper we introduce a new method based on the properties of a special class
of contraction mappings which allows us to generate invertible key based pseudorandom
permutations. Namely, we will construct an IFS belonging to the class of square sym-
metries and simulate the pseudorandom walk on a square. Sensitive dependence on the
parameters of IFS ensure chaotic nature of dynamical system, based on a corresponding
Hutchinson map. So small changes of parameters can result in significant changes of
permutation generated.

Our paper is organized as follows. The second section following introduction contains
definitions and notations. In the third section we investigate the properties of defined
contractions maps. Section 4 provides the iterative algorithms for evaluating of super-
position of contraction maps and its inverse. In the last section we construct key based
pseudorandom permutations and discuss some unsolved problems.
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2 Preliminaries

We will consider maps based on symmetry transformations of the square T := (0,∆) ×
(0,∆), ∆ > 0. Eight symmetry transformations of T are defined by

ω0(x, y; ∆) := (x, y), ω1(x, y; ∆) := (∆− y, x),

ω2(x, y; ∆) := (∆− x,∆− y), ω3(x, y; ∆) := (y,∆− x),

ω4(x, y; ∆) := (∆− y,∆− x), ω5(x, y; ∆) := (x,∆− y),

ω6(x, y; ∆) := (y, x), ω7(x, y; ∆) := (∆− x, y)

for each point X = (x, y) ∈ T .
Let c be a positive integer. Splitting T := [0,∆] × [0,∆] into l := 22c equal squares

V 0, V 1, . . . , V l−1 we denote by Pk their bottom left vertices, namely:

Pk :=

((
k −

[
k

2c

]
· 2c
)

∆

2c
,

[
k

2c

]
∆

2c

)
, k ∈ N(l) := {0, 1, . . . , l − 1}.

Then the interior of the square V k is

Vk = V0 + Pk, where V0 = 2−c · T.

Here and subsequently we follow usual notations:

φ(B) :=
{
φ(X)

∣∣ X ∈ B},
X0 + αB :=

{
(x0 + αx, y0 + αy)

∣∣ (x, y) ∈ B
}

for each B ⊂ R2, X0 = (x0, y0) ∈ R2, α ∈ R and transformation φ : R2 → R2.
Consider the family of contraction transformations

FT :=
{
fij : T → T

∣∣ i ∈ N(8), j ∈ N(l)
}

defined by

fij(x, y) :=
1

2c
ωi(x, y; ∆) + Pj , (x, y) ∈ T.

Note that fij(T ) = Vj for each i ∈ N(8), j ∈ N(l).
For any τ = (τ0, τ1, . . . , τl−1) ∈ Nl(8) and permutation σ : N(l) → N(l) we intro-

duce the notations λ := 〈τ, σ〉, λ(i) := (τi, σ(i)) and

fλ(i) := fτiσ(i) ∈ FT , i ∈ N(l). (1)

The set of parameters λ

Λ :=
{
λ = 〈τ, σ〉

∣∣ τ ∈ Nl(8), σ ∈ Sl
}

contains |Λ| = l!8l elements. Here Sl is symmetric group on N(l).
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Let n ∈ N(ls) be given by the s-digits representation to the base l

n = (ns−1 . . . n0)l =

s−1∑
k=0

nkl
k, nk ∈ N(l).

Then
fn(λ,X) := fλ(ns−1) ◦ fλ(ns−2) ◦ · · · ◦ fλ(n0)(X). (2)

Note, that function fn(λ, ·) : T → T is injective since fλ(i) are injective.

3 Designing IFS on square symmetries

We are interested in an IFS related to the family FT . Using above defined maps we will
construct a family of key based pseudorandom permutations. In this section we investigate
the properties of the superposition (2).

Theorem 1. Let s be a positive integer and n 6= m, n,m ∈ N(ls). Then for each λ ∈ Λ
we have

fn(λ, T ) ∩ fm(λ, T ) = ∅.

Proof. We will prove the theorem by induction on s. The definition of the functions fλ(i) :
T → T implies that

fλ(i)(T ) ∩ fλ(j)(T ) = ∅, if i 6= j, i, j ∈ N(l). (3)

Assume the assertion holds for s− 1, that is

fn(λ, T ) ∩ fm(λ, T ) = ∅ (4)

for
n = (ns−2 . . . n0)l, m = (ms−2 . . .m0)l, ni,mi ∈ N(l).

Suppose, that n′ = (ns−1ns−2 . . . n0)l 6= n′′ = (ms−1ms−2 . . .m0)l .
Consider two cases.

Case 1. Let n′ = (ns−1ns−2 . . . n0)l 6= n′′ = (ms−1ns−2 . . . n0)l, here ns−1 6= ms−1.
We have

fn′(λ, T ) = fλ(ns−1)

(
fλ(ns−2) ◦ · · · ◦ fλ(n0)(T )

)
and

fn′′(λ, T ) = fλ(ms−1)

(
fλ(ns−2) ◦ · · · ◦ fλ(n0)(T )

)
.

Applying (3) we deduce that

fn′(λ, T ) ∩ fn′′(λ, T ) = ∅.

Case 2. Assume n′ = (ns−1ns−2 . . . n0)l 6= n′′ = (ns−1ms−2 . . .m0)l.
In this case we apply assumption (4) and get

fλ(ns−1)

(
fλ(ns−2) ◦ · · · ◦ fλ(n0)(T )

)
∩ fλ(ns−1)

(
fλ(ms−2) ◦ · · · ◦ fλ(m0)(T )

)
= ∅,

since fλ(i) are injective.
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The images of superpositions describes the following theorem.

Theorem 2. For given (x, y) ∈ T and fitjt ∈ FT , t = 1, 2, . . . define the sequence of
points (xk, yk) := fikjk ◦ · · · ◦ fi1j1(x, y), k = 1, 2, . . . . Then

(xk, yk) =
1

2kc
(
∆ ·Qk + ωrk(x, y; ∆)

)
, (5)

where

Qk = (q1,k, q2,k) ∈ N
(
2kc
)
× N

(
2kc
)
, rk ∈ N(8) and ωrk = ωik ◦ · · · ◦ ωi1 .

Proof. By the definition

Pjt =
∆

2c
(
j0t, j1t

)
, if jt = 2cj1t + j0t, j0t, j1t ∈ N

(
2c
)
.

This gives

(x1, y1) = fi1j1(x, y) =
1

2c
ωi1(x, y; ∆) + Pj1 =

1

2c
(
ωi1(x, y; ∆) + ∆ · (j01, j11)

)
.

Assuming (5) to hold for k − 1, we will prove it for k. Letting (a, b) := ωrk−1
(x, y; ∆)

for short, we have

(xk−1, yk−1) =
1

2(k−1)c
(
∆ ·Qk−1 + (a, b)

)
=

1

2(k−1)c
(
∆ · q1,k−1 + a,∆ · q2,k−1 + b

)
. (6)

We consider only the case ik = 3, for example. The other 7 cases can be proved in the
same way. Since

ωik(xk−1, yk−1; ∆) = ω3(xk−1, yk−1; ∆) = (yk−1,∆− xk−1),

we have

(xk, yk) = fikjk(xk−1, yk−1) =
1

2c
ωik(xk−1, yk−1; ∆) + Pjk

=
1

2c
(
yk−1 + ∆ · j0k, ∆− xk−1 + ∆ · j1k

)
.

From this and (6) it follows, that

xk =
1

2kc
(∆ · q2,k−1 + b) +

∆

2c
j0k

=
1

2kc
(
∆ ·
(
2(k−1)cj0k + q2,k−1

)
+ b
)

=
1

2kc
(∆ · q1,k + b),

where
q1,k = 2(k−1)cj0k + q2,k−1 ∈ N

(
2kc
)
.
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Analogously

yk =
1

2c

(
∆− 1

2(k−1)c
(∆ · q1,k−1 + a) + ∆ · j1k

)
=

1

2kc
(∆ · q2,k + ∆− a),

where
q2,k = 2(k−1)cj1k + 2(k−1)c − q1,k−1 − 1 ∈ N

(
2kc
)
.

Hence
(xk, yk) =

1

2kc
(
∆ ·Qk + (b,∆− a)

)
.

The group properties of the square symmetries yield

(b,∆− a) = ω3(a, b; ∆) = ω3 ◦ ωrk−1
(x, y; ∆) = ωrk(x, y; ∆)

for some rk ∈ N(8).

Dividing each side of the square T into 2cs equal intervals, we get open squares

Tk :=

{(
x+

(
k −

[
k

2cs

]
· 2cs

)
∆

2cs
, y +

[
k

2cs

]
∆

2cs

) ∣∣∣ x, y ∈ (0,
∆

2cs

)}
,

for k ∈ N(ls). If k = k22cs + k1, then

Tk =

{(
x+ k1

∆

2cs
, y + k2

∆

2cs

) ∣∣∣ x, y ∈ (0,
∆

2cs

)}
= T0 +

∆

2cs
(k1, k2).

Theorem 3. For any n ∈ N(ls) and λ ∈ Λ we have

fn(λ, T ) = Tk

for some k = k(n, λ).

Proof. For each X = (x, y) ∈ T and n ∈ N(ls) Theorem 2 implies

fn(λ,X) =
1

2cs
(
∆ ·Qs + ωrs(x, y; ∆)

)
,

where
Qs = (q1,s, q2,s) ∈ N

(
2cs
)
× N

(
2cs
)
, rs ∈ N(8).

Let us define
k = 2csq2,s + q1,s ∈ N

(
ls
)
.

Having in mind, that ωr(T ; ∆) = T for any r ∈ N(8), we get

fn(λ, T ) =
1

2cs
(
∆ · (q1,s, q2,s) + ωrs(T ; ∆)

)
= Tk.
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Some applications of IFS based on square symmetries 21

We define the key K to be a pair K := 〈λ,X〉, where λ ∈ Λ, X ∈ T . The key
K based function fK : N(ls)→ T is given by

fK(n) := fn(λ,X), n ∈ N
(
ls
)
.

It follows from Theorem 1 that the function fK is injection. This enables us to construct
the bijection gK : N(ls)→ N(ls) as follows:

gK(n) = k, if fn(λ,X) ∈ Tk, n, k ∈ N
(
ls
)
.

Now let us fix an integer m ≥ 2. From now on we assume that ∆ = m2cs and
consider points of the square T with integer coordinates. These points are contained in
the grid

G̃ :=
{

(i, j)
∣∣ i, j = 0, 1, 2, . . . ,m2cs

}
.

In addition we define the subsets of G̃:

E =
{(
m12cs,m22cs

) ∣∣ m1,m2 = 1, 2, . . . ,m− 1
}
,

G :=

ls−1⋃
k=0

Gk,

where Gk := G̃ ∩ Tk, k ∈ N(ls). So we have that

Gk =
{

(mk1 + x,mk2 + y)
∣∣ x, y = 1, 2, . . . ,m− 1

}
,

provided k = k22cs+k1. The number of elements inGk equals to (m−1)2. The setsGk
are pairwise disjoint and therefore |G| = ls(m − 1)2. Moreover the definition of square
symmetries implies ωr(E; ∆) = E and

1

2cs
ωr(E; ∆) = G0

for each r ∈ N(8).
Consider the discrete versions of the functions fn and fK .

Theorem 4. For any n ∈ N(ls) and λ ∈ Λ there exists k = k(n, λ) ∈ N(ls) such that

fn(λ, ·) : E → Gk

is bijection. Moreover, k(n′, λ) 6= k(n′′, λ) if n′ 6= n′′.

Proof. Theorem 3 yields, that fn(λ, T ) = Tk for some k = k22cs + k1 ∈ N(ls). Choose
X = (m12cs,m22cs) ∈ E and ∆ = m2cs. Applying Theorem 2 we obtain

fn(λ,X) =
∆

2cs
(k1, k2) +

∆

2cs
ωrs(X; ∆)

= (mk1,mk2) + ωrs(m1,m2;m), rs ∈ N(8).

We see that fn(λ,X) ∈ Gk for any X ∈ E. The function fn(λ, ·) : E → Gk is bi-
jection, since |Gk| = |E|. The rest part of the proof follows from Theorem 1.
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Corollary 1. Let K = 〈λ,X〉 be a key, where λ ∈ Λ, X ∈ E. Then

fK : N
(
ls
)
→ G

is injective. It becomes bijection if m = 2.

Let us consider an example showing how can be evaluated the function fK for the
given key K.

Example. Assume c = 1, s = 3, m = 3. Using definitions above we obtain, that
l = 22c = 4 and ∆ = m2cs = 24. Let us take a key K = 〈λ,X〉 with λ = 〈τ, σ〉 by
choosing X = (8, 8) ∈ E, τ = (0, 3, 4, 7) ∈ N4(8) and

σ =

(
0 1 2 3

1 0 2 3

)
∈ S4.

Let us evaluate fK(54) for example. We have 54 = 3 · 42 + 1 · 4 + 2 · 40 ∈ N(64).
Therefore

fK(54) = fλ(3) ◦ fλ(1) ◦ fλ(2)(X) = f73
(
f30
(
f42(8, 8)

))
.

Direct computations yield

f42(8, 8) =
1

2
ω4(8, 8; 24) + P2 =

1

2
(16, 16) + (0, 12) = (8, 20).

Analogously f30(8, 20) = (10, 8) and finally f73(10, 8) = (19, 16). Thus

fK(54) = (19, 16) = (3 · 6 + 1, 3 · 5 + 1) ∈ G46,

since 5 · 21·3 + 6 = 46.

It is natural to try to relate the set of mappings fK to the set of keys K.

Theorem 5. Let K = 〈λ,X〉 and K ′ = 〈λ′, X ′〉 be the keys. If s ≥ 2 and K 6= K ′, then
there exists n ∈ N(ls) such that

fK(n) 6= fK′(n).

Proof. Setting λ = 〈τ, σ〉 ∈ Λ and λ′ = 〈τ ′, σ′〉 ∈ Λ we conduct the proof in three
steps.

Step 1. Suppose that λ = λ′. Then fn(λ,X) 6= fn(λ,X ′) since fn(λ, ·) is injective
and X 6= X ′.

Step 2. Assume that σ 6= σ′ . Then there exists k ∈ N(l) such that σ(k) 6= σ′(k).
Choosing n = (kns−2 . . . n0)l we have

fK(n) = fλ(k)
(
fλ(ns−2) ◦ · · · ◦ fλ(n0)(X)

)
∈ Vσ(k),

fK′(n) = fλ′(k)
(
fλ′(ns−2) ◦ · · · ◦ fλ′(n0)(X

′)
)
∈ Vσ′(k).
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Hence fK(n) 6= fK′(n) since Vσ(k) and Vσ′(k) are disjoint.
Step 3. Suppose that σ = σ′ and τ 6= τ ′. Without loss of generality we can assume

that τ0 6= τ ′0. One can easily show that for each τ0 6= τ ′0 there exist at least two squares
Vr, Vr′ such that

ωτ0(Vr; ∆) ∩ ωτ ′0(Vr; ∆) = ∅, ωτ0(Vr′ ; ∆) ∩ ωτ ′0(Vr′ ; ∆) = ∅.

Set i = r, if σ(0) 6= r, otherwise i = r′.
Let us choose n = (0kns−3 . . . n0)l, where k = σ−1(i). Then

fK(n) = fλ(0)
(
fλ(k) ◦ fλ(ns−3) ◦ · · · ◦ fλ(n0)(X)

)
= fλ(0)(Xi) =

1

2c
ωτ0(Xi; ∆) + Pσ(0)

and analogously

fK′(n) = fλ′(0)(X
′
i) =

1

2c
ωτ ′0
(
X ′i; ∆

)
+ Pσ(0),

where Xi, X
′
i ∈ Vi. This implies

ωτ0(Xi; ∆) 6= ωτ ′0
(
X ′i; ∆

)
and consequently fK(n) 6= fK′(n).

4 Computation

Given key K the function fK(n) and its inverse can be evaluated efficiently.
At first let us fix integer parameters s ≥ 2, c ≥ 1, m ≥ 2 and recall that l = 4c,

∆ = m2cs. Choose a key K = 〈λ, X〉, which consists of a subkey λ = 〈τ, σ〉 ∈ Λ and
an initial point X ∈ E.
Computation of fK . Given key K and n = (ns−1 . . . n0)l ∈ N(ls), computing Xs =
fK(n) ∈ G is straightforward by performing s iterations

Xi = fλ(ni−1)(Xi−1), i = 1, 2, . . . , s, (7)

with X0 = X . Here fλ(ni−1) is defined in (1).

Computation of f−1
K . Given key K and Xs ∈ fK(N(ls)) ⊂ G, to evaluate n =

(ns−1 . . . n0)l = f−1K (Xs) we perform reverse iterations as follows. Suppose that
Xs−1, . . . , Xi and ns−1, . . . , ni are computed. Let us find ni−1 and Xi−1. Since Xi =
(xi, yi) ∈ Vki−1 with

ki−1 =

[
yi
∆

2c
]
2c +

[
xi
∆

2c
]
,

it follows that ni−1 = σ−1(ki−1) and consequently

Xi−1 = f−1λ(ni−1)
(Xi)
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for i = s, s− 1, . . . , 1.
If K is unknown, the task of computing f−1K seems to become computationally infea-

sible by increasing l, since the set of keys has cardinality

|Λ| · |E| = 8ll!(m− 1)2

and by Theorem 5 fK 6= fK′ , if K 6= K ′.

5 Applications and final remarks

Let us consider some special cases of mappings fK which enable us to construct key
based pseudorandom permutations.
Permutations I. According to Corollary 1 of Theorem 4 we have constructed the injec-
tive function

fK : N(ls)→ G

for each key K = 〈λ,X〉, where λ ∈ Λ, X ∈ E. Having numbered points in the grid
G = {Yi | i = 0, 1, . . . , (m− 1)2ls − 1} one can define the family of ls-permutations in
N((m− 1)2ls)

A(s, l,m) :=
{
ϕK : N

(
ls
)
→ N

(
(m− 1)2ls

) ∣∣ K = 〈λ,X〉, λ ∈ Λ, X ∈ E
}
,

where ϕK(n) = k, if fK(n) = Yk ∈ G. Theorem 5 yields, that for s ≥ 2 this family has
cardinality ∣∣A(s, l,m)

∣∣ = 8ll!(m− 1)2.

Permutations II. Let us define the bijection πK : N(ls) → N(ls) iteratively. If j =
(js−1 . . . j0)l , then πK(j) := (ns−1 . . . n0)l, where

ni =
(
ji + (l + 1)

(
yi mod (l + 1)

)
+ xi mod (l + 1)

)
mod l, i = 0, . . . , s− 1,

and Xi = (xi, yi) are defined by iterations (7). The inverse permutation π−1K can be eval-
uated analogously provided key K is known. Therefore, having in mind the applications
in cryptography, instead of A(s, l,m) we may consider the family of ls-permutations in
N((m− 1)2ls)

B(s, l,m) :=
{
β
∣∣ ∃ key K: β = ϕK ◦ πK , ϕK ∈ A(s, l,m)

}
.

Permutations III. If m = 2, then |E| = 1 and |G| = ls. Taking into account the
binary representations of integers we may assume, that ϕK(n) = ϕλ(n) = k, where
n, k ∈ {0, 1}N , N = s log2 l = 2cs. Therefore A(s, l, 2) can be thought of as family of
key based pseudorandom permutations

A(s, l, 2) =
{
ϕλ : {0, 1}N → {0, 1}N

∣∣ λ ∈ Λ
}
.

Similar considerations apply to the family of permutations B(s, l, 2).
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Permutations IV. If m = 2c + 1, then |E| = l and say E = {Z0, Z1, . . . , Zl−1}. We
write h(λ) for the value of hash function h : Λ → Z. For example, we can take a prime
number p > l and set

h(λ) = h(〈τ, σ〉) =

l−1∑
k=0

(
p · τk + σ(k)

)
p2k mod l.

Each integer n ∈ N(ls+1) can be written in the form

n = n′ · l + n0, n′ ∈ N(ls), n0 ∈ N(l).

Taking
nλ := σ

((
h(λ) + n0

)
mod l

)
we define ψλ : N(ls+1)→ N(ls+1) by

ψλ(n) := fn′(λ, Znλ).

Slight modifications in the proofs of Theorems 4 and 5 show, that ψλ is bijection and the
family

C(s, l, h) :=
{
ψλ : {0, 1}M → {0, 1}M

∣∣ λ ∈ Λ
}

consists of |C(s, l, h)| = 8ll! distinct permutations. Here M = (s+ 1) log2 l = 2c(s+ 1)
and c ≥ 1, s ≥ 2.

Final remarks. Based on IFS we have constructed families of key based pseudorandom
permutations. Actually each family consists of virtual permutations which do not need
to store. Any permutation of size ls = 4cs is defined as injective function on N(ls).
Given key K = 〈λ,X〉 this function and its inverse can be evaluated efficiently for any
n ∈ N(ls). The length of the key does not exceed l(3 + log2 l) + 2 log2m bits and
may become much less then the size of permutation by increasing number of iterations s.
However to prove rigorously how hard is the problem of computing the inverse function
with unknown key (or maybe to find some fast algorithm) remains still open question.

We have proved that the cardinalities of the families A(s, l,m) and C(s, l, h) equal
to the number of possible keys. In view of data encryption applications, permutations
β ∈ B(s, l,m) are likely to perform better than those of A(s, l,m). The question is: how
many members contains the family B(s, l,m)? One may conjecture that |B(s, l, 2)| =
l!8l. Direct computation shows that this is true when l = 4 and s = 2, 3, 4, 5. However,
in general case this question is still unanswered.
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