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Abstract. The present investigation deals with the peristaltic flow of an incompressible Johnson–
Segalman fluid in a curved channel. Effects of the channel wall properties are taken into account.
The associated equations for peristaltic flow in a curved channel are modeled. Mathematical
analysis is simplified under long wavelength and low Reynolds number assumptions. The solution
expressions are established for small Weissenberg number. Effects of several embedded parameters
on the flow quantities are discussed.
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1 Introduction

The peristaltic flows due to flexible walls of channel/tube are very significant for fluid
transport in living organisms and industry. Blood pumps in dialysis and heart lung ma-
chine work because of the peristaltic action. In nuclear industry a toxic liquid can be
transported by such action in order to avoid contamination of the outside environment.
Peristalsis is further responsible for the passage of urine from kidney to bladder, chyme
motion in the gastrointestinal tract, blood circulation in small blood vessels, in roller and
finger pumps, embryo transport in non-pregnant uterus, etc. Latham [1] and Shapiro et
al. [2] presented the seminal works on the peristalsis. Rao and Mishra [3] studied the peri-
staltic transport of power-law fluid in a porous tube. Peristaltic transport of a Herschel–
Bulkley fluid in an inclined tube has been investigated by Vajravelu et al. [4]. Mekheimer
and elmaboud [5] studied heat transfer and magnetic field effects on the peristaltic flow
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of Newtonian fluid in a vertical annulus. Radhakrishnamacharya and Murty [6] examined
the effects of heat transfer on peristaltic transport in a non-uniform channel.

Since most of the fluids in physiology are of non-Newtonian character. Johnson–
Segalman fluid is one of the subclass of such viscoelastic fluids. This model has an
ability to explain the “spurt” phenomenon. The term “spurt” has been used for the de-
scription of large increase in the volume to a small increase in the driving pressure
gradient. The peristaltic transport of MHD Johnson–Segalman fluid in a planar channel
has been discussed by Hayat et al. [7]. Peristaltic motion of Johnson–Segalman fluid
in an asymmetric and planar channel is also studied by Hayat et al. [8]. Nadeem and
Akbar [9] studied the peristaltic flow of Johnson–Segalman fluid in a non-uniform tube
with heat transfer. In another paper, the same authors examined the heat transfer effects
on peristaltic flow of Johnson–Segalman fluid in an inclined asymmetric channel [10].
Induced magnetic field effect is discussed on the peristaltic flow of Johnson Segalman
fluid in a vertical symmetric channel by Nadeem and Akbar [11]. Nadeem et al. [12]
analyzed the chemical reaction on the peristaltic flow of Johnson Segalman fluid in an
endoscope. Akbar et al. [13] studied the slip and heat transfer effects on the peristaltic
flow of third order fluid in an inclined asymmetric channel. Peristaltic flow of a Jeffrey-six
constant fluid in a diverging tube with heat transfer is studied by Akbar and Nadeem [14].
Tripathi [15] discussed the peristaltic transport of viscoelastic fluid in a channel. Vajravelu
et al. [16] studied the influence of heat transfer on peristaltic transport of a Jeffrey fluid
in a vertical porous stratum. Hayat et al. [17] analyzed the effects of induced magnetic
field on peristaltic flow with heat and mass transfer. Hayat et al. [18] have discussed the
MHD peristaltic motion of Johnson–Segalman fluid in a channel with compliant walls.
Muthu et al. [19] discussed the peristaltic flow of micropolar fluid in circular cylindrical
tubes with wall properties. Elnaby and Haroun [20] reported the effect of wall properties
on peristaltic flow in a viscous fluid. Radhakrishnamacharya and Srinivasulu [21] studied
the effects of wall properties on peristaltic transport of Newtonian fluid with heat transfer.
Hayat et al. [22] looked at the MHD peristaltic flow of Jeffery fluid with compliant walls.
Ali et al. [23] have discussed the peristaltic motion of Maxwell fluid with compliant walls.
Kothandapani and Srinivas [24] analyzed the influence of wall properties in the MHD
peristaltic transport with heat transfer and porous medium. Srinivasacharya et al. [25]
discussed the effects of wall Properties on peristaltic transport of a dusty fluid. Srinivas et
al. [26] studied the influence of slip conditions, wall properties and heat transfer on MHD
peristaltic transport. Sankad and Radharkrishnamacharya [27] discussed the influence
of wall properties on the peristaltic motion of a Herschel-Bulkley fluid in a channel.
Srinivas and Kothandapani [28] discussed the influence of heat and mass transfer on MHD
peristaltic flow of Newtonian fluid in a porous channel with compliant walls. Hayat and
Hina [29] examined the heat and mass transfer effects on the MHD peristaltic flow of
a Maxwell fluid with wall properties.

Not much has been said about the peristaltic motion in a curved channel. Ali et
al. [30] studied the viscous flow analysis in a curved channel. The peristaltic flow in
a curved channel with heat transfer is also presented by Ali et al. [31]. Peristaltic flow
of third grade fluid in a curved channel is further investigated by Ali et al. [32]. Hayat
et al. [33–35] extended the work of Ali et al. [30] for viscous and third grade fluid
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in a compliant walls channel respectively. The objective of this investigation is to put
forward the analysis of peristaltic flow for a Johnson–Segalman fluid in a curved channel.
Hence the Johnson–Segalman fluid in a curved channel with flexible walls is considered.
The relevant equations are modeled first time. Series solutions are developed for small
Weissenberg number. Graphs for the interesting quantities are plotted and interpreted.

2 Mathematical modelling

Consider a curved channel of uniform thickness 2d1 coiled in a circle with centre O and
radius R∗. The flow is in the axial direction x and r is the radial direction. The velocity
components in the axial and radial directions are respectively denoted by u and v. The
shape of walls are

r = ±η(x, t) = ±
[
d1 + a sin

2π

λ
(x− ct)

]
. (1)

In above expression c is the wave speed and a and λ are the wave amplitude and wave-
length respectively. The governing equations for the flow analysis can be written as

∂v

∂r
+

R∗

r +R∗
∂u

∂x
+

v

r +R∗ = 0, (2)

ρ

[
∂v

∂t
+ v

∂v

∂r
+

R∗u

r +R∗
∂v

∂x
− u2

r +R∗

]
= −∂p

∂r
+

1

r +R∗
∂

∂r

{
(r +R∗)τrr

}
+

R∗

r +R∗
∂τxr
∂x

− τxx
r +R∗ , (3)

ρ

[
∂u

∂t
+ v

∂u

∂r
+

R∗u

r +R∗
∂u

∂x
+

uv

r +R∗

]
=

1

(r +R∗)2
∂

∂r

{
(r +R∗)2τrx

}
+

R∗

r +R∗
∂τxx
∂x

− R∗

r +R∗
∂p

∂x
, (4)

where the constitutive relation for Cauchy stress tensor τ in a Johnson–Segalman fluid
is [7]

τ = 2µD+ S,

where the extra stress tensor S satisfies

S+m

[
dS

dt
+ S(W − ξD) + (W − ξD)TS

]
= 2η1D,

D =
1

2

[
grad V + (grad V)T

]
,

W =
1

2

[
grad V − (grad V)T

]
.
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The above relations imply the following expressions for the extra stress components:

Srr +m

[
dSrr

dt
− 2uSrx

r +R∗ + Srx

{
(1− ξ)

∂u

∂r
− 1 + ξ

r +R∗

[
R∗ ∂v

∂x
− u

]}
− 2ξSrr

∂v

∂r

]
= 2η1

∂v

∂r
, (5)

η1

(
∂u

∂r
+

R∗

r +R∗
∂v

∂x
− u

r +R∗

)
= Srx+m

dSrx

dt
+
mu(Srr − Sxx)

r +R∗ +
mSxx

2

{
(1− ξ)

∂u

∂r
− 1 + ξ

r +R∗

[
R∗ ∂v

∂x
− u

]}
+m

Srr

2

{
1− ξ

r +R∗

[
R∗ ∂v

∂x
− u

]
− (1 + ξ)

∂u

∂r

}
, (6)

Sxx +m

[
dSxx

dt
+

2uSrx

r +R∗ − Srx

{
(1 + ξ)

∂u

∂r
− 1− ξ

r +R∗

[
R∗ ∂v

∂x
− u

]}
+ 2ξSxx

∂v

∂r

]
= −2η1

∂v

∂r
, (7)

where d/dt = ∂/∂t + v∂/∂r + uR∗/(r + R∗)∂/∂x, p the pressure, µ and η1 are the
viscosities, m the relaxation time, ρ the density, R∗ the curvature parameter, τ the elastic
tension, m1 the mass per unit area, d the coefficient of viscous damping, D and W are
the symmetric and skew symmetric parts of velocity gradient, ξ is the slip parameter and
Sxr, Srr and Sxx are the components of an extra stress tensor S.

The boundary conditions can be written as [18, 21–26]

u = 0 at r = ±η, (8)

R∗
[
−τ ∂

3

∂x3
+m1

∂3

∂x∂t2
+ d

∂2

∂t∂x

]
η

=
1

(r +R∗)

∂

∂r

{
(r +R∗)2τrx

}
+R∗ ∂τxx

∂x

−ρ
(
r +R∗)[∂u

∂t
+ v

∂u

∂r
+

R∗u

r +R∗
∂u

∂x
+

uv

r +R∗

]
at r = ±η. (9)

Introducing

ψ∗ =
ψ

cd1
, x∗ =

x

λ
, r∗ =

r

d1
,

t∗ =
ct

λ
, η∗ =

η

d1
, k =

R∗

d1
,

p∗ =
d21p

cλ(µ+ η1)
, S∗

ij =
d1Sij

cη1
, We =

mc

d1
,
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Eqs. (5)–(9) take the forms

2
∂v

∂r
= Srr +We

[(
δ
∂

∂t
+ v

∂

∂r
+

ukδ

r + k

∂

∂x

)
Srr −

2uSrx

r + k
− 2ξSrr

∂v

∂r

]
+WeSrx

{
(1− ξ)

∂u

∂r
− 1 + ξ

r + k

(
kδ
∂v

∂x
− u

)}
, (10)

∂u

∂r
+

kδ

r + k

∂v

∂x
− u

r + k

= Srx +We

[(
δ
∂

∂t
+ v

∂

∂r
+

ukδ

r + k

∂

∂x

)
Srx +

u(Srr − Sxx)

r + k

]
+
WeSrr

2

{
1− ξ

r + k

[
kδ
∂v

∂x
− u

]
− (1 + ξ)

∂u

∂r

}
+
WeSxx

2

{
(1− ξ)

∂u

∂r
− 1 + ξ

r + k

[
kδ
∂v

∂x
− u

]}
, (11)

−2
∂v

∂r
= Sxx +We

[(
δ
∂

∂t
+ v

∂

∂r
+

ukδ

r + k

∂

∂x

)
Sxx +

2uSrx

r + k
+ 2ξSxx

∂v

∂r

]
+WeSrx

{
1− ξ

r + k

(
kδ
∂v

∂x
− u

)
− (1 + ξ)

∂u

∂r

}
, (12)

Re δ

[
δ
∂v

∂t
+ v

∂v

∂r
+

kδu

r + k

∂v

∂x
− u2

r + k

]
= −η1 + µ

η1

∂p

∂r
+

4δµ

η1(r + k)

∂v

∂r
+

kδ3

r + k

∂Srx

∂x
+ δ

∂Srr

∂r
+
δ(Srr − Sxx)

r + k

+
δµ

η1

∂2v

∂r2
+

δ2kµ

η1(k + r)

∂

∂x

(
∂u

∂r
+

kδ

r + k

∂v

∂x
− u

r + k

)
, (13)

Re

[
δ
∂u

∂t
+ v

∂u

∂r
+

kδu

r + k

∂u

∂x
+

uv

r + k

]
= − (η1 + µ)k

η1(r + k)

∂p

∂x
+
∂Srx

∂r
+

2Srx

r + k
+

kδ

r + k

∂Sxx

∂x

− 2kδµ

(r + k)η1

∂2v

∂r∂x
+
µ

η1

∂

∂r

(
∂u

∂r
+

kδ

r + k

∂v

∂x
− u

r + k

)
+

2µ

η1(r + k)

(
∂u

∂r
+

kδ

r + k

∂v

∂x
− u

r + k

)
. (14)

The boundary conditions now reduce to the following expressions:

u = 0 at r = ±η = ±
(
1 + ε sin 2π(x− t)

)
, (15)
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k

[
E1

∂3

∂x3
+ E2

∂3

∂x∂t2
+ E3

∂2

∂t∂x

]
η

=
η1(r + k)

(η1 + µ)

[
∂

∂r

(
∂u

∂r
+

kδ

r + k

∂v

∂x
− u

r + k

)
− 2kδ

r + k

∂2v

∂r∂x

]
−Reµ(r + k)

(η1 + µ)

[
δ
∂u

∂t
+ v

∂u

∂r
+

kδu

r + k

∂u

∂x
+

uv

r + k

]
+
η1(r + k)

(η1 + µ)

[
∂Srx

∂r
+

2Srx

r + k
+

kδ

r + k

∂Sxx

∂x

]
+

2µ

(η1 + µ)

(
∂u

∂r
+

kδ

r + k

∂v

∂x
− u

r + k

)
at r = ±η. (16)

Obviously the continuity equation (2) is satisfied identically, ε (= a/d1), δ (= d1/λ)
the geometric parameters, k the dimensionless curvature parameter, Re (= cρd1/η1) the
Reynolds number and E1 (= −τd31/λ3η1c), E2 (= m1cd

3
1/λ

3η1), E3 (= dd31/λ
2η1) the

non-dimensional elasticity parameters [16,18,21-26].
If ψ(x, y, t) is the stream function then writing

u = −∂ψ
∂r
, v = δ

k

k + r

∂ψ

∂x
,

expressions (10)–(16) after using long wavelength and low Reynolds number assumptions
give

∂p

∂r
= 0, (17)

−k(η1 + µ)

η1(r + k)

∂p

∂x
+
∂Srx

∂r
+

2Srx

r + k
+
µ

η1

∂

∂r

(
−ψrr +

ψr

r + k

)
+

2µ

(r + k)η1

(
−ψrr +

ψr

r + k

)
= 0, (18)

ψr = 0 at r = ±η = ±
(
1 + ε sin 2π(x− t)

)
, (19)

k

[
E1

∂3

∂x3
+ E2

∂3

∂x∂t2
+ E3

∂2

∂t∂x

]
η

=
η1(r + k)

(η1 + µ)

[
µ

η1

∂

∂r

(
−ψrr +

ψr

r + k

)
+
∂Srx

∂r
+

2Srx

r + k

]
+

2µ

(η1 + µ)

(
−ψrr +

ψr

r + k

)
at r = ±η (20)

with

0 = Srr +WeSrx

[
−(1− ξ)ψrr −

1 + ξ

r + k
ψr +

2ψr

r + k

]
, (21)
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−ψrr +
ψr

r + k
= −Weψr(Srr − Sxx)

r + k
+
WeSrr

2

{
1− ξ

r + k
ψr + (1 + ξ)ψrr

}
+Srx − WeSxx

2

{
(1− ξ)ψrr +

1 + ξ

r + k
ψr

}
, (22)

0 = Sxx +WeSrx

[
− 2ψr

r + k
+

{
1− ξ

r + k
ψr + (1 + ξ)ψrr

}]
. (23)

From Eqs. (21)–(23) we can write

Srx =

(
−ψrr +

ψr

r + k

)[
1 +We2

(
1− ξ2

)(
−ψrr +

ψr

r + k

)2]−1

. (24)

With the help of Eqs. (17)–(18) one obtains

(k + r)
∂2Srx

∂r2
+ 3

∂Srx

∂r
+

(k + r)µ

η1

∂2

∂r2

(
−ψrr +

ψr

r + k

)
+
3µ

η1

∂

∂r

(
−ψrr +

ψr

r + k

)
= 0. (25)

3 Solution methodology

In order to proceed for the series solution we write

ψ = ψ0 +We2ψ1 +We4ψ2 + . . . , (26)

Srx = S0rx +We2S1rx +We4S2rx + . . . . (27)

3.1 Zeroth order system

Substituting Eqs. (26) and (27) into Eqs. (19)–(20) and (24)–(25) and then equating the
coefficients of We0 we have

(k + r)
∂2

∂r2

(
−ψ0rr +

ψ0r

r + k

)
+ 3

∂

∂r

(
−ψ0rr +

ψ0r

r + k

)
= 0, (28)

ψ0r = 0 at r = ±η, (29)

k

[
E1

∂3

∂x3
+ E2

∂3

∂x∂t2
+ E3

∂2

∂t∂x

]
η

= (k + r)
∂

∂r

(
−ψ0rr +

ψ0r

r + k

)
+ 2

(
−ψ0rr +

ψ0r

r + k

)
at r = ±η. (30)

The solution of above equations can be written as

ψ0 = C1 + C2 ln(r + k) + C3(r + k)2 + C4(r + k)2 ln(r + k), (31)
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while the velocity expression at this order is

u0 = −ψ0r = − C2

r + k
− 2C3(r + k)− C4(r + k)

{
1 + 2 ln(r + k)

}
, (32)

C1 = −C2 ln k − C3k
2 − C4k

2 ln k,

C2 =
C4

2kη

(
k2 − η2

)2
ln

(
k + η

k − η

)
,

C3 = − C4

4kη

{
2kη + (k + η)2 ln(k + η)− (k − η)2 ln(k − η)

}
,

C4 = −2επ3k

{
E3

2π
sin 2π(x− t)− (E1 + E2) cos 2π(x− t)

}
.

3.2 First order system

The coefficients of O(We2) leads to the following expressions:

0 = (k + r)
∂2

∂r2

[(
−ψ1rr +

ψ1r

r + k

)
− (1− ξ2)η1

(η1 + µ)

(
−ψ0rr +

ψ0r

r + k

)3]
+3

∂

∂r

[(
−ψ1rr +

ψ1r

r + k
)− (1− ξ2)η1

(η1 + µ)

(
−ψ0rr +

ψ0r

r + k

)3]
, (33)

ψ1r = 0 at r = ±η, (34)

0 = (k + r)
∂

∂r

[(
−ψ1rr +

ψ1r

r + k

)
− (1− ξ2)η1

(η1 + µ)

(
−ψ0rr +

ψ0r

r + k

)3]
+2

∂

∂r

[(
−ψ1rr +

ψ1r

r + k

)
− (1− ξ2)η1

(η1 + µ)

(
−ψ0rr +

ψ0r

r + k

)3]
at r = ±η. (35)

Inserting the solution expressions at the zeroth order into first order system and then
solving the resulting problems we have

ψ1 = C11 + C12 ln(r + k) + C13(r + k)2 + C14(r + k)2 ln(r + k)

+
(1− ξ2)η1C

2
2

(η1 + µ)

{
3C4

(r + k)2
− C2

3(r + k)4

}
, (36)

u1 = −ψ1r = − C12

r + k
− 2C13(r + k)− C14(r + k)

{
1 + 2 ln(r + k)

}
− (1− ξ2)η1C

2
2

(η1 + µ)

{
6C4

(r + k)3
− 4C2

3(r + k)5

}
, (37)

C11 = −C12 ln k − C13k
2 − C14k

2 ln k +
6C2

2C4

k2
− 2C3

2

3k4
,
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C12 =

[
3C4

{
k − η

(k + η)3
− k + η

(k − η)3

}
− 2C2

3

{
k − η

(k + η)5
− k + η

(k − η)5

}]
×η1(1− ξ2)(k2 − η2)C2

2

2kη(η1 + µ)
+
C14

2kη

(
k2 − η2

)2
ln

(
k + η

k − η

)
,

C13 =
η1(1− ξ2)C2

2

4kη(η1 + µ)

[
2C2

3

{
1

(k + η)4
− 1

(k − η)4

}
− 3C4

{
1

(k + η)2
− 1

(k − η)2

}]
−C14

4kη

[
(k + η)2 ln(k + η)− (k − η)2 ln(k − η) + 2kη

]
,

C14 =
4η1(1− ξ2)C3

4

(η1 + µ)
,

where C1 and C11 are obtained by the condition ψ(0) = 0.

4 Results and discussion

This section provides the variation of the various parameters on the axial velocity u =
u0+We

2u1 = −ψ0y−We2ψ1y and stream function ψ. In particular, the role of compliant
wall parameters, i.e.E1 the elastic tension in the membrane,E2 the mass per unit area,E3

the coefficient of viscous damping, amplitude ratio ε, curvature parameter k, Weissenberg
number We and slip parameter ξ have been explained.

Fig. 1 shows the behavior of parameters involved in the axial velocity u. Figs. 1(a) and
1(b) indicate that the axial velocity increases by increasing We. Physically, the increase
of Weissenberg number corresponds to growth of relaxation time and decay of viscos-
ity that’s why the velocity increases with We. These figures also show that velocity in
Johnson–Segalman fluid is larger when compared with the Newtonian fluid. Fig. 1(a) is
for small curvature and the axial velocity is not symmetric about the centre line of the
channel. Fig. 1(b) is for We with large value of curvature parameter (straight channel).
It can be seen that the axial velocity is symmetric about the centre line of the channel
(Fig. 1(b)). Figs. 1(c) and 1(d) describe the behavior of slip parameter ξ on the axial
velocity. These figures indicate that velocity decreases by increasing ξ. It is noticed that
the large curvature shifts the curved channel into straight channel that’s why Fig. 1(d)
is symmetric about centre line which is for straight channel whereas Fig. 1(c) is tilted
towards left i.e. the lower part of the channel. The compliant wall effects (E1, E2 andE3)
on the velocity are sketched in the Figs. 1(e) and 1(f). It is found that velocity decreases
with an increase in E3. From physical point of view E3 represents the oscillatory resis-
tance due to which the velocity decreases. The axial velocity is increasing function of E1

and E2. Fig. 1(e) is for curved channel. The velocity profile is not symmetric about the
centre line whereas for straight channel, i.e. for large curvature parameter, the velocity
profile is symmetric about the centre line of the channel. Fig. 1(g) shows that the axial
velocity decreases near the lower wall of the channel and increases in the rest part of the
channel when there is an increase in the curvature parameter k. The point of maxima
where the velocity is maximum decreases in magnitude in the curved channel.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 1. Variation of We2 on u when E1 = 0.02, E2 = 0.01, E3 = 0.1, ε = 0.2, η1 = 0.1,
µ = 0.1, ξ = 0.5, x = −0.2, t = 0.1: (a) k = 1.5, (b) k = 10. Variation of ξ on u
when E1 = 0.02, E2 = 0.01, E3 = 0.1, ε = 0.2, We2 = 0.9, µ = 0.2, η1 = 0.2,
x = −0.2, t = 0.1: (c) k = 1.5, (d) k = 10. Variation of compliant wall parameters on u
when η1 = 0.1, ε = 0.2, We2 = 0.2, µ = 0.1, ξ = 0.5, x = 0.2, t = 0.1: (e) k = 1.5,
(f) k = 10. Variation of k on u when E1 = 0.02, E2 = 0.01, E3 = 0.1, ε = 0.2,

We2 = 0.01, ξ = 0.5, µ = 0.1, η1 = 0.1, x = −0.2, t = 0.1 (g).
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Figs. 2–5 indicate the behavior of parameters in the stream function. Fig. 2 shows
that the bolus increases with an increase in We. Physically, Weissenberg number is the
ratio of the fluid’s relaxation time to the flow’s characteristic time so by increasing We
the viscosity decreases and the size of trapped bolus increases. From this figure we
can conclude that the bolus size increases for Johnson–Segalman fluid in comparison
to Newtonian fluid. Fig. 3 shows that the size of bolus decreases with the slip parameter.
Fig. 4 is plotted to study the behavior of curvature parameter. This figure shows that
the size of bolus increases when k increase. The size of trapped bolus is not similar in
the upper and lower parts of the channel which is due to the curvature effects whereas
the size of trapped bolus become symmetric about the central line in the planar channel.
Figs. 5(a)–5(c) show that the size of trapped bolus increases when E1 and E2 increase
because these are the elastance parameters that increases the velocity as well as the size
of trapped bolus. Figs. 5(a) and 5(d) depict that bolus size decreases when there is an
increase in E3 i.e. the increase in oscillatory resistance decreases the size of bolus.
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Fig. 2. Variation of We2 on ψ when E1 = 0.02, E2 = 0.01, E3 = 0.1, ε = 0.3, t = 0,
ξ = 0.1, k = 2.5, η1 = 0.1, µ = 0.1: (a) We2 = 0, (b) We2 = 0.02.
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Fig. 3. Variation of ξ on ψ when E1 = 0.02, E2 = 0.01, E3 = 0.1, ε = 0.3, t = 0,
We2 = 0.1, k = 2.5, η1 = 0.1, µ = 0.1: (a) ξ = 0.1, (b) ξ = 0.6.
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Fig. 4. Variation of k on ψ when E1 = 0.02, E2 = 0.01, E3 = 0.1, ε = 0.3, t = 0,
We2 = 0.1, ξ = 0.1, η1 = 0.1, µ = 0.1: (a) k = 2.5, (b) k = 3.
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Fig. 5. Variation of compliant wall parameters on ψ when η1 = 0.1, ξ = 0.1, ε = 0.3,
t = 0, We2 = 0.1, k = 2.5, µ = 0.1: (a) E1 = 0.02, E2 = 0.01, E3 = 0.1; (b) E1 =
0.03, E2 = 0.01, E3 = 0.1; (c) E1 = 0.02, E2 = 0.03, E3 = 0.1; (d) E1 = 0.02,

E2 = 0.01, E3 = 0.2, k = 2.5.
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5 Concluding remarks

The peristaltic flow of Johnson–Segalman fluid in a curved channel is discussed. Present
analysis has been performed under the long wavelength and low Reynolds number ap-
proximations. It is observed that the axial velocity in Johnson–Segalman fluid is larger
than the Newtonian fluid. Due to curved channel the velocity profile is tilted towards left.
The curved channel for large curvature parameter is reduced into the straight channel.
This fact is also obvious from the modeled equations. The slip parameter decrease the
velocity profile. The bolus size in Johnson–Segalman fluid is greater than the viscous
fluid. In curved channel, there is no symmetry in the bolus in the upper and lower halves
of the channel. We can reduce this problem for upper convected Maxwell fluid model by
taking ξ = 1 and µ = 0 and in Newtonian fluid model by considering m = µ = 0.
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